Designing reliable analog circuits in an unreliable world

Georges Gielen
ESAT–MICAS, KU Leuven
gielen@esat.kuleuven.be
MICAS: the numbers

- **research focus** on IC design, incl. CAD

- **6 full-time professors**
 - 3 are Fellow of IEEE
 - ~55 Ph.D. students (@ ESAT)
 - ~25 Ph.D. students (@ IMEC)

- **4 affiliated professors**

- **9.5 tech/ admin staff**

- **created 6 spinoffs in last 14 years**

Contents

- **Motivation**
- Aging modeling
- Reliability simulation
- Reliability-aware or resilient design
- Conclusions
Evolution in technology

- traditional scaling philosophy: more for less

Result of scaling

- same function, smaller, faster, less power
Good news from Intel & co

CMOS scaling will continue for at least two more technology nodes beyond 32 nm!!

Variability

line edge roughness (LER) random dopant fluctuations (RDF)

[Frank, IBM]
Analog circuits and matching

- mismatch inversely proportional to area:
 \[\sigma^2(\Delta V) \approx \frac{A_{VT}}{WL} \]

\[P = 24 C_{ax} A_{VT}^2 f DR^2 \]

\[\frac{\text{Speed} \times \text{Accuracy}^2}{\text{Power}} = \text{techn const} \]

[Vittoz AICSP 1994] [Kinget CICC 1996]

Benefit from process scaling?

analog does not really become smaller!!
→ no real cost benefit for analog
Analog design versus scaling

- **Supply voltage drops**
 - limits signal range

- **Intrinsic gain drops**:
 \[A_{int} = \frac{g_m}{g_{DS}} \]

ITRS

- Reliability due to material, process, and structural changes, and novel applications.

- TIDDR, SRH, PBTI, HCI, RTN in scaled and non-planar devices

- Increasing statistical variation of intrinsic failure mechanisms in scaled and non-planar devices

- 3-D interconnect failure mechanisms

- Reduced reliability margins drive need for improved understanding of reliability at circuit level

- Reliability of embedded electronics in extreme or critical environments (medical, automotive, etc.)
Importance of reliability

- guarantee product lifetime
 - e.g. safety-critical applications
 - in an increasingly unreliable context
 - technology process
 - environment
 - without huge overdesign

IC reliability

- spatial unreliability
 - manufacturing process variations
 - random defects
IC reliability

- **spatial unreliability**
 - manufacturing process variations
 - random defects

- **temporal unreliability**
 - aging effects
 - $\text{HCI, NBTI/PBTI, TDDB}$

- **dynamic unreliability**
 - workload dependence
 - temperature variations
 - EMC
Device aging effects

- Hot Carrier Degradation
- Time Dependent Dielectric Breakdown
- Bias Temperature Instability

→ circuit perf degrades with time:

\[\Delta V_{TH} = A t^n \]

\[A = f(V_{DS}, V_{GS}, T, L, W, ...) \]
The effect of CMOS scaling

> 65nm CMOS
- 'large' transistors
- some effects can be considered deterministic: NBTI, (PBTI), HCI
- some effects are statistical: TDDB, variability

< 65nm CMOS
- PBTI besides NBTI
- 'atomic' scale transistor
- everything becomes stochastic

[Maricau IEEE JETCAS 2011]
[Maricau DATE 2011]

What do we need for analog circuits?

- compact models for all important unreliability effects
 - include all important factors
 » e.g. W/L, Vgs, Vds, T, ...
 - include interaction effects
 » e.g. Vds-Vgs for HCI
 - cover a broad continuous range of values
 » e.g. Vgs = [0V ... 1.5V], W=[0.08μm-10μm]
 - model time-varying stress effects
 » e.g. Vgs(t)= VGS + sin(0.5,1e6)
Hot Carrier degradation

- **channel hot carrier**
 - a well known phenomenon (>25 years)
 - interface traps due to impact ionization near drain
 - dominant for nMOS in saturation
 - high V_{DS}
 - high V_{GS}
 - impact at device level
 - ΔV_{TH}, $\Delta \beta$, Δg_0

$$\Delta N_{IT}(t) = C \exp(\alpha_1 V_{GS}) \exp(\alpha_2 V_{GS}) t^{0.45}$$

[INSESC Jan 2013 © G. Gielen, KU Leuven]

ESAT-MICAS model

- based on Reaction-Diffusion (RD) model
- includes all important transistor parameters (V_{gs}, V_{ds}, L, T)
- DC and AC voltage stress
- parameter set to be extracted for every process

<table>
<thead>
<tr>
<th>ΔV_{TH}</th>
<th>$A [(V_{GS} - V_{TH})K_n (\frac{n_{ps}}{L} t)^{1/4}]^{3/2}$</th>
<th>K_n</th>
<th>E_m</th>
<th>E_{sat}</th>
<th>E_{sat}</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{ox}</td>
<td>$(V_{GS} - V_{TH})$</td>
<td></td>
<td></td>
<td>E_{sat}</td>
<td>$L+(V_{GS} - V_{TH})$</td>
</tr>
<tr>
<td>V_{DSAT}</td>
<td>$E_{sat} L (V_{GS} - V_{TH})$</td>
<td></td>
<td>E_{sat}</td>
<td>$\frac{1}{\rho_{ps}}$</td>
<td>μ_{eff}</td>
</tr>
<tr>
<td>μ_{eff}</td>
<td>$\frac{1}{(V_{GS} - V_{TH})}$</td>
<td></td>
<td></td>
<td>ρ_{ps}</td>
<td>μ_{eff}</td>
</tr>
</tbody>
</table>

A: 1.0E-2, n_x: 1.21, E_0 [V/m]: 0.71E8, E_a [eV]: -0.06
ϕ_0 [eV]: 3.7, λ [nm]: 7.8E-9, t [nm]: 45E-9
μ_0 [cm2/V.s]: 235, $\# [V^{-1}]$: 0.95, k [J/K]: 1.38E-23

[Maricau ESREF 2008]
Negative Bias Temperature Instability

- recent phenomenon
- NBTI important for pMOS
 - [also PBTI for nMOS below 65 nm]
- traps due to electro-chemical reaction with SiH
- large V_{GS}
- temperature activated
- relaxation phenomenon
 - interface traps: permanent part
 - oxide traps: recoverable part
- impact at device level
 - ΔV_{TH}, $\Delta \beta$, Δg_o

\[\Delta N_{IT} = C \exp\left(\frac{V_G}{\alpha}\right) t^{0.18} \]
Bias Temperature Instability model

\[R \approx \begin{cases} \frac{m}{l} (V_{C_{I,0}} + (V_{p_{\text{ref}}}' - V_{C_{I,0}}')) \log_{10} (\tau_{p}) - n_{p} \log_{10} (\tau_{p}) (V_{p_{\text{ref}}}' - V_{C_{I,0}}') \geq 0 \\ \frac{m}{l} (V_{C_{I,0}} + (V_{p_{\text{ref}}}' - V_{C_{I,0}}')) \log_{10} (\tau_{n}) - n_{n} \log_{10} (\tau_{n}) (V_{p_{\text{ref}}}' - V_{C_{I,0}}') < 0 \end{cases} \]

\[
\log(P) = \log(B_{p} V_{p_{\text{ref}}}') + \int_{0}^{t} \left(r^{-p} + n_{\text{leak}} \right) d \log(r)
\]

\[R, P = f(V_{p_{\text{ref}}}') \text{ with } V_{p_{\text{ref}}}' = V_{p_{\text{ref}}} \]

\[D = (R + P)(C_{T1} + C_{T2}) \]

\[\tau_{p} = 5.5, \tau_{n} = 65, n_{p} = 0.5, n_{n} = 0.55, B_{p} = 1.25, p = 0.15, n_{\text{leak}} = 0.11, F_{s} = 2.45, \]

\[F_{T1} = 1e^{-3}, F_{T2} = 2.88e^{-5} \]

[Maricau, ESSDERC 2012]

NBTI model verification

[Maricau, Electronics Letters 2010]
Transistor aging in sub-65nm CMOS

- **aging effects become worse, even with high-k**
 - EOT reduces
 - E_{eff} increases
 - new materials (high-k)
 - PBTI
 - SiO₂ Interfacial Layer
 - NBTI, HC, TDDB remains

\[
\text{EOT}_{90\text{nm}} = t_{\text{SiO}_2} \\
\text{EOT}_{32\text{nm}} = t_{\text{IL}} + \frac{\varepsilon_{\text{SiO}_2}}{\varepsilon_{\text{HK}}} t_{\text{HK}}
\]

Stochastic BTI model

- individual charges can change ΔV_{TH}
- Poisson distribution for number of trapped charges ($N=\text{mean number of traps}$)
- exponential distribution for the impact of an individual defect ($\eta=\text{average impact}$)
- $\Delta V_{TH}=f(V_{gs},T)$
- $\sigma(V_{TH})=f(1/(WL))$

\[
F_N(\Delta V_{TH}, \eta) = \sum_{n=1}^{\infty} \frac{e^{-N} N^n}{n!} \frac{1 - \Gamma(n, \Delta V_{TH}/\eta)}{(n-1)!}
\]

[Maricau DATE 2011]
Time-Dependent Dielectric Breakdown

- PMOS and NMOS
- Statistical phenomenon
- Gate current increases
- High V_{GS}
- Soft BD – I_g noise
- Hard BD – $k\Omega$ gate resistance

TDDB model

- **Soft breakdown**
 - Example: 65nm technology
 - 1V gate stress
 - 10 year stress time
 - Time to SBD follows a Weibull distribution
 - $\eta_{SBD} = 1.2$
 - $\beta = -30$

$$F(t_{SBD}) = 1 - \exp\left(-\left(\frac{t_{SBD}}{\eta_{SBD}}\right)^\beta\right)$$

[Maricau DATE 2011]
Soft breakdown example

- Aging creates spread
 - 65nm technology (1.7nm tox)
 - 0.8V gate stress
 - PDF after 0,1,10 year stress time

[Maricau DATE 2011]

Contents

- Motivation
- Aging modeling
- Reliability simulation
- Reliability-aware or resilient design
- Conclusions
Commercial tools

- transistor reliability analysis:
 - RelXpert (now part of Cadence)
 - Mentor Graphics ELDO Reliability Simulator
 - Synopsys HSPICE MOSRA

The backbone of these tools is developed in the nineties and is no longer adequate!

Transistor model for aging

\[
\Delta V_{TH} = \frac{q(N_{it} + N_{ov})}{C_{ox}}
\]

\[
g_o = (1 + \beta \Delta V_{TH}) \lambda_0 I_{DS0}
\]

\[
\mu_{eff} = \frac{\mu_0}{(1 + \theta(V_{GS} - V_{TH})) (1 + \alpha \gamma \Delta V_{TH})}
\]

[Maricau TCAD2011 & DATE2011]
Deterministic reliability simulation

\[\Delta V_{th} = \frac{q N_{th}}{C_m} \]
\[g_m = (1 + \beta \Delta V_{th}) \mu / r_{th} \]
\[\mu_{th} = \left(1 + \sigma (V_{th} - V_{th}) \right) \left(1 + \sigma \Delta V_{th} \right) \]

Example: LC-VCO

- **5 GHz and low phase noise**
 - high output swing
 - high LC-tank Q-factor
 - protective gate capacitors (DC-bias not shown)
 - UMC 90nm

\[L_{phase} \{ \Delta \omega \} = 10 \log \left(\frac{2 F k T}{P_x} \right) \left[1 + \left(\frac{\omega_0}{2 Q \Delta \omega} \right)^2 \left(1 + \frac{\Delta \omega / f}{\| \Delta \omega \|} \right) \right] \]
Nominal simulation

- AC simulation shows sudden V_{out} degradation (due to g_o degradation)
- no frequency degradation
- failure due to Hot Carrier damage

Variability awareness

- process variability introduces stress variability
- transistor aging + process variability = yield(t)

$$\sigma(V_{TH}) = (1 - \sigma(\Delta V_{TH}))\sigma(V_{TH_0})$$

$$\sigma(\mu) = \frac{\sigma(\Delta V_{TH})\beta \mu_0}{(1 + \beta(\Delta V_{TH})^2)}$$
Variability-aware reliability simulation

- factor space exploration
 - screening
 - linear model
 - detect interactions
 - regression
 - interactions
 - weakly nonlinear effects
- polynomial RSM
 \[\vartheta_j = a_0 + \sum_{k=1}^{m} a_kx_k + \sum_{k=1}^{m} \sum_{l=k+1}^{m} a_{kl}x_kx_l + \sum_{k=1}^{m} a_{k0}x_k^2 \]
- residual analysis
 - error estimation

[Maricau TCAD 2010]

Example: VCO

[Maricau TCAD 2010]
Variability-aware reliability simulation

<table>
<thead>
<tr>
<th>#factors/ #NRS</th>
<th>$\bar{\sigma}_{\text{rel}}$ [%]</th>
<th>$\sigma_{0,\text{rel}}$ [%]</th>
<th>$\bar{\sigma}_{\text{dec}}$ [%]</th>
<th>$\sigma_{0,\text{dec}}$ [%]</th>
<th>Analysis Time [min/sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5/19</td>
<td>0.04</td>
<td>0.57</td>
<td>0.85</td>
<td>13.9</td>
</tr>
<tr>
<td>2</td>
<td>14/43</td>
<td>0.41</td>
<td>1.44</td>
<td>1.10</td>
<td>2.80</td>
</tr>
<tr>
<td>3</td>
<td>15/53</td>
<td>0.29</td>
<td>0.25</td>
<td>0.46</td>
<td>0.28</td>
</tr>
<tr>
<td>4</td>
<td>27/95</td>
<td>0.10</td>
<td>0.11</td>
<td>0.26</td>
<td>1.80</td>
</tr>
<tr>
<td>5</td>
<td>35/121</td>
<td>0.14</td>
<td>1.30</td>
<td>1.01</td>
<td>3.90</td>
</tr>
<tr>
<td>6</td>
<td>20/361</td>
<td>0.01</td>
<td>0.26</td>
<td>0.26</td>
<td>2.00</td>
</tr>
<tr>
<td>7</td>
<td>141/333</td>
<td>0.12</td>
<td>0.08</td>
<td>1.10</td>
<td>4.00</td>
</tr>
</tbody>
</table>

1: One-stage Amplifier [Gain]
2: LC-VCO $[V_{osc}]$
3: Differential Pair Amplifier [Gain]
4: Symmetrical OTA [Offset]
5: Ring Oscillator [Frequency]
6: AND Gate [Fall Time]
7: IDAC [Normalized Output Voltage (V_{out}/V_{ref})]

<table>
<thead>
<tr>
<th>$Y^* (t=0)$ [%]</th>
<th>$\bar{\sigma}_{\text{MC-RSM}}$ (t=0) [%]</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>97.6</td>
<td>0.12</td>
</tr>
<tr>
<td>2</td>
<td>99.7</td>
<td>0.09</td>
</tr>
<tr>
<td>3</td>
<td>99.5</td>
<td>0.02</td>
</tr>
<tr>
<td>4</td>
<td>99.8</td>
<td>0.03</td>
</tr>
<tr>
<td>5</td>
<td>99.7</td>
<td>0.05</td>
</tr>
<tr>
<td>6</td>
<td>99.3</td>
<td>0.04</td>
</tr>
<tr>
<td>7</td>
<td>99.8</td>
<td>0.05</td>
</tr>
</tbody>
</table>

[Maricau TCAD 2010]

Example circuit: ADC

[Gielen DATE 2013]
Impact on analog circuits

Aging-insensitive analog circuits

- circuits that are immune to process variations
 - $\Delta V_{TH}<30\text{mV}@1\text{year}$
- examples:
 - oscillation frequency of an LC-VCO
 - passive feedback networks (e.g. active-RC filter)
 - gain, slew rate, bandwidth of an amplifier

$$H(s) = \frac{1}{s^2 + \frac{(R_1 + R_2)}{C_1 R_2} s + \frac{1}{R_1 R_2 C_1 C_2}}$$

[Maricau, ESSCIRC 2012]
Aging-sensitive analog circuits

- large operating voltages (i.e. \(V_{GS}, V_{DS} > V_{DD,nom} \))
 - e.g. phase noise of an LC-VCO

- asymmetrical stress can result in time-dependent mismatch
 - e.g. \(V_{offset} \) of a comparator

- time-dependent mismatch in matched transistors due to stochastic aging effects
 - e.g. MOS resistor in sub-45nm CMOS

Contents

- Motivation
- Aging modeling
- Reliability simulation
- Reliability-aware or resilient design
- Conclusions
Design for failure resilience

- **intrinsically robust circuits**
 - worst-case overdesign to account for P/V/T corners
 - plus overdesign to account for aging effects
 - consumes extra power and area

- **self-healing circuits**
 - adapt circuits at run time to compensate for the degradation
 - reconfiguration or retuning of the circuit
 - digital calibration
 - required performance is maintained, though degradation is present

- **fully redundant circuits**

Self-healing (sense & react) circuits

- **run-time monitoring and run-time adaptability**
 - add monitors or “canary” circuits to watch the degradation of the circuit performance
 - feed information to controller
 - real-time reconfigure circuit (e.g. extra components) or update circuit parameters (e.g. bias) to maintain the performance

for analog: this is compatible with evolution towards digitally-assisted analog
Example: high-voltage line driver

- output driver overview:

- equivalent model:

\[\eta = \frac{P_{\text{load}}}{P_{\text{load}} + P_{\text{loss}}} = \frac{R_l}{R_l + R_{\text{on}}} \]

[Serneels ISSCC 2007]

- guarantee minimum power efficiency over lifetime
- breakdown monitors
- extra sub-transistors can be switched in

[De Wit DRVW 2008]
Self-healing test chip

- on-chip power efficiency monitor
 - measure output stage on-resistance ($R_{on}=2.25\Omega$)
 - compare current R_{on} to reference resistor R_{ref}
- on-chip automatic controller
- chip measurements confirm real-time self-healing capabilities

Failure-resilient implementation

- 90nm CMOS technology
- $P_{load} = 10mW$, 90% efficiency
- modifications for failure-resilient operation: all included on chip!
Measurement results

- initial performance (fresh circuit): $\eta = 82\%$
- no reconfiguration: $\Delta \eta = 5.5\%$
- with reconfiguration: $\Delta \eta_{\text{max}} < 1\%$

[De Wit JSSC 2012]

Conclusions

- handling uncertainty, spatial and temporal reliability are a big issue in nanometer CMOS design
 - more degradation effects and becoming stochastic
- accurate modeling and efficient CAD tools are needed to assist the designer
 - support design for reliability
 - less need for guardbanding – lower design margins
- results have been proposed in this presentation
 - accurate transistor aging models for BTI, HCI and TDDB effects
 - efficient circuit reliability simulator methods
 - both nominal and stochastic effects
 - resilient design solutions with limited overhead
 - self-healing circuits through run-time adaptive sense&react principle
On-going PhD projects

✈ CAD :
 • reliability modeling and simulation
 • high-frequency circuit synthesis
 • automated analog behavioral modeling

✈ design :
 • ultra-low-power wireless sensor networks
 • autonomous sensor interfaces
 • imager readout circuits
 • biomedical interface circuits
 • digitally assisted analog
 • resilient self-healing analog circuits