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Abstract

The representation of relationships between haplotypes in a population is per-
formed normally through the use of trees. Frequently, the selection of a single tree
implies the application of maximum parsimony principles, being prone to interpre-
tation errors. The adoption of a graph structure, rather than a tree-like structure,
avoids making simplifying assumptions leaving open the number of possible inter-
pretations. In particular, it allows for the representation of homoplasies which can
represent recombination events, frequently ignored by existing methods.

Here, we propose a graph structure, denominated SLV (Single Locus Variant)
graph, as an alternative to the BURST family of algorithms. This structure, con-
nects individuals if and only if they share a single allelic difference in their MLST
profile. We further explore the topological properties of such structure and propose
biological interpretations for each property.

1 Introduction

Prokaryotes reproduce asexually by binary fission where each individual gives rise to
two identical descendants. The existence and accumulation of mutation events allows
for the introduction of variability, i.e., creation of new individuals. These mechanisms
create lineages that share a common ancestry, which have been typically represented and
modeled using a tree-like structure.

The knowledge of how a set of bacterial isolates relate to each other, i.e., their phyloge-
netic tree, is an important tool for their characterization. This characterization can then
be used to infer the phenotypical properties of new isolates and study the formation of
groups according to different characteristics, which is particularly useful for evolutionary
and epidemiological studies.

With the diversification of sequencing techniques and their cost reduction, typing
methods based on sequences have become the standard for the study of microbial popu-
lations and their epidemiological surveillance.
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One of such methods is Multilocus Sequence Typing (MLST), which takes into con-
sideration the nucleotide sequence variations at specific housekeeping genes, believed to
accumulate little or no mutations since these loci are assumed to be under purifying
selection. In most MLST schemes, the nucleotide sequences of approximately 450 bp
fragments internal to (normally) seven housekeeping loci are sequenced, for each isolate.
A new allele number is attributed to each new sequence found at each gene. Then, to each
new combination of seven of these numbers, corresponding to the seven housekeeping loci,
a new sequence type (ST) number is attributed.

Several methodologies have been developed for the analysis of the MLST data, by
looking only at the difference between the allele numbers, aiming at the accurate recon-
struction of the evolutionary history of the population through time. Dendograms, such
as UPGMA [4] aim at obtaining a rooted tree, and algorithms such as eBURST [6] and
goeBURST [7] aim at obtaining an unrooted tree. However, most of these methodologies
make simplifying assumptions, not taking horizontal gene transfer and recombination
into account. But, more often than not, existing data cannot be explained by muta-
tion alone [9]. Accepting the existence of recombination events is hard, since a tree-like
structure will prove insufficient to represent this exchange of alleles between isolates [16].
This is particularly true in bacterial species like Neisseria spp., where recombination is
known to play a dominant role [14]. This problem has been tackled by Bandelt and Dress
[1] and developed in the tool Splitstree [13]. Splitstree computes unrooted phylogenetic
networks from molecular sequence data, based on the split decomposition method. A
special case of such networks is the reticulate network, which is capable of representing
reticulate events such as hybridization, horizontal gene transfer, or recombination.

In this paper, we propose an alternative to the BURST family of algorithms to rep-
resent the relationships between different individuals in a graph-like structure, whilst
making a minimal assumption. This graph, denominated SLV graph (Single Locus Vari-
ant graph), connects two individuals if and only if they share only one allelic difference in
their MLST profile. Additionally, we show that the structure of the SLV graph is robust
to the increasing acquisition of data through time and to possible sampling problems.
Moreover, we show that it is possible to infer biological events through the structure of
the SLV graph. Finally, we argue that the advantages of the SLV graph are not limited
to MLST, and can prove useful for other typing methods such as Multiple-Locus Variable
number tandem repeat Analysis (MLVA).

2 Methods

In this section, we describe the algorithms for the construction of the goeBURST unrooted
tree and the construction of the SLV graph. Also, we enumerate the biological data sets
considered for the validation of this study.

2.1 Construction of the goeBURST unrooted tree

The goeBURST algorithm [7], a globally optimized implementation of the eBURST al-
gorithm [6], aims at the identification of the relationships between isolates, assuming
essentially that bacterial populations are dominated by diversification of a few dominant
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clones. The identification of these relationships is performed by following a specific set
of rules which divide the data into several clusters of related strains, designated clonal
complexes. The existing relationships between the STs belonging to a given clonal com-
plex, aim at representing the most parsimonious pattern of evolutionary descent between
those STs. If two STs are directly linked in the tree this means that the genotype of
those STs differ only by one housekeeping gene, called a single locus variant (SLV).

The goeBURST algorithm identifies the pattern of evolutionary descent within a
given set of STs S by applying the following set of rules: a) it computes the number of
SLVs existent among all of the STs in the set S; b) it then chooses the links between
STs with higher number of SLVs; c) in case of a tie in choosing a given SLV link, it
computes the number of DLVs (Double Locus Variant) and chooses the link between
STs with higher number of DLVs; d) in case of a tie at this level too, it proceeds for
the TLV (Triple Locus Variant) disambiguation, and in case of persistence of the tie,
it disambiguates using the ST frequency and then the ST identifier as tie-breaker. The
eBURST [6] algorithm implements the same set of rules with an heuristic optimization,
whereas goeBURST performs a global optimization taking into consideration all possible
ties at all levels between STs in the set S.

It is worth noting that running the algorithm multiple times for the same set of STs
will result in the same set of unrooted trees. However, a drawback of the goeBURST
algorithm (or any other tree-like algorithm) is the fact that the shape of the resulting
tree may change upon the inclusion of new STs, forcing the displacement of a given set of
STs from one part of a given eBURST group to another part of the same eBURST group,
effectively suggesting a different evolutionary history for the affected group of STs.

2.2 Construction of the SLV graph

The implementation of the algorithm for the construction of the SLV graph follows Oc-
cam’s principle of parsimony. It proceeds by following only the first rule of the goeBURST
algorithm: for a set of STs in the set S, it computes the allelic differences between all
the STs in S. It then creates a link between every pair of STs u, v ∈ S that share one
allelic differences between themselves.

Topologically, by drawing every link between each pair of STs that are SLVs between
themselves, the structure looses its tree-like shape and becomes a graph (see Figure 1
a) and b)). The rationale is that any assumption made with the attempt of recovering
the true pattern of evolutionary descent, may in fact obscure it, because since we are
dealing with events at a micro-evolutionary scale, this possibly can never be achieved
with certainty. The SLV graph structure will therefore consist of an overlay of all possible
trees. The impact and the advantages of representing the microbial typing data using
such a structure is described in the following sections.

2.3 Biological data sets

We downloaded several complete bacterial allelic profiles available on MLST data sets
from http://pubmlst.org and http://www.mlst.net1. Most of the available data sets
have a relatively small number of isolates, and frequently even a smaller number of unique

1The biological data sets considered are from January 16, 2014.
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a) goeBURST tree b) SLV graph c) Penicillin data overlay

Figure 1: Visual representations of the (second group/clonal complex of the) S. pneu-
moniae data set. Subfigure a) represents the goeBURST unrooted tree containing the
founders ST 156 and ST 162. Subfigure b) represents the SLV graph containing all the
SLV relations between all of the STs, including the ones represented by goeBURST. Sub-
figure c) represents the overlay information concerning the resistance to penicillin for
each ST by color, where green means susceptible and blue means resistant. The shared
subclique suggests the group of STs where the resistance to penicillin was first acquired.

ST profiles. Due to this scarcity of data, we only considered some of the data sets with
more than 500 unique STs in the complete SLV graph, in order to adequately compare the
types of structures observed in the bacterial MLST data sets with the types of structures
observed in the simulated MLST data sets.

In total, we considered 9 bacterial species for this study (see Table 3): Campylobacter
jejuni, Pseudomonas aeruginosa, Neisseria spp. and Streptococcus agalactiae from http:

//pubmlst.org; and Burkholderia pseudomallei, Enterococcus faecium, Haemophilus in-
fluenzae, Staphylococcus aureus and Streptococcus pneumoniae from http://www.mlst.

net/.

3 Results

The problem of recovering the true phylogeny from a set of STs is a challenging one.
Algorithms from the BURST family aim at recovering the true phylogeny with the hy-
pothesis that a given set of STs can be represented using a tree-like structure. This
objective is immediately hampered by several constraints, like the considered model, the
selected data structure, or even potential sampling problems. The latter may be due
to geographical factors or even due to temporal discontinuities during data acquisition.
Moreover, the problem of recovering the true phylogeny in bacterial populations includes
an additional obstacle: the existence and influence of recombination events, keeping dis-
tinct lineages from completely diverging through allelic exchange. This is more evident
in highly recombinogenic species like Neisseria where a “bifurcating tree-like phylogeny
is not an appropriate model” [12].

3.1 Basic topological structure of the SLV graph

The topological structure of the SLV graph is characterized by several types of basic
motifs (see Table 1). We proceed by describing the existing types and the conditions for
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their occurrence.
The trivial case is to have a singleton, corresponding to a single ST which is not a

SLV of any other ST in set S (Type 1 of Table 1). Then two STs can be SLVs between
themselves without being a SLV of any other ST in set S (Type 2 of Table 1), forming
a doubleton. Three STs can form a clique2, if they are all are SLVs between themselves
fully (Type 3a of Table 1), and they are not a SLV of any other ST in set S; or a linear
chain, if they are SLVs between themselves pairwise (Type 3b of Table 1). It is clear
from this definition that a doubleton is a particular case of a linear chain.

Generally speaking, whenever a subset of STs L ⊆ S is considered, containing more
than two STs, they will be completely linked, forming a clique, if the differences between
them are all in the same locus (i.e., they form a set of complete SLVs). Whenever this
condition is not verified, several substructures are possible, due to differences among the
STs at distinct loci (Type 4b-e of Table 1). Whenever each ST s ∈ L is a SLV to at most
two other STs t, u ∈ L and they do not share a SLV with any of the other STs in set S,
then the subset of STs L is represented by a linear chain (Type 4e of Table 1).

3.2 Basic topological structure of the goeBURST unrooted tree

The topological structure of the goeBURST unrooted tree is actually the represention of
one particular tree contained in the SLV graph topological structure. However, one can
also find and characterized several types of basic motifs (see Table 1) in the structure of
a goeBURST unrooted tree. The two trivial cases in the goeBURST unrooted tree, are
the singleton or a doubleton, which occur under the same conditions as those described
for the SLV graph (Type 1 and 2 of Table 1). However, unlike the SLV graph, when
considering three STs which are SLVs between themselves, the goeBURST always forms
a linear chain, without making the distinction whether the STs are SLVs in the same
locus or at two different loci (Type 3 of Table 1).

Generally speaking, when considering any subset of STs L ⊆ S, containing at least
four distinct STs, if each ST in L is a SLV of at most two other STs and it is not a SLV
of any other ST in set S, then the subset of STs L is represented by a linear chain (Type
4d-e of Table 1). Alternatively, if every ST in L is a SLV of at least another ST in L
and is not a SLV of any other ST in set S, then the subset of STs L is represented by a
star-like tree (see Type 4a-c of Table 1).

3.3 High-level topological structures of the SLV graph

Due to the nature of the biological data, one can observe the emergence of higher-level
topological structures in the SLV graph, which would otherwise be invisible when consid-
ering solely the goeBURST unrooted tree. These structures emerge due to creation of all
possible links between a set of STs whenever they share allelic differences at a single locus
(see Type 4-a of Table 1). The founder, is inferred to have increased in the population,
and then progressively diversified under the effects of mutation and recombination, form-
ing a cluster of phylogenetically closely related isolates. In MLST, this diversification is

2In graph theory, a clique is an undirected graph G = (V,E), such that for every two vertices s, t ∈ V ,
it exists an edge e ∈ E connecting the two. Here, a clique is only observed whenever a set of STs are
SLVs between themselves in the same gene.
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Table 1: Comparison between basic topological structures found in a goeBURST group
with their equivalent representation in the SLV graph. Each color node represents a
distinct ST (from a to d) and gn represents an allelic difference at gene n. Combinations
of up to four STs are represented in the table, considering the possible variations between
the number of different genes in which two STs may differ.

Type goeBURST tree SLV graph
1 a a

2 a b
g1

a b
g1

3-a a b c
g1 g1

a b

c
g1

g1g1

3-b a b c
g1 g2

a b c
g1 g2

4-a

a b

cd

g1

g1
g1

a b

cd

g1

g1 g1g1

4-b

a b

cd

g3

g1
g2

a b

cd

g3

g1
g2

4-c

a b

cd

g2

g1
g2

a b

cd

g2

g1
g2 g2

4-d

a b

cd

g2

g1 g1
a b

cd

g2

g1 g1g2

4-e a b c d
g1 g2 g3

a b c d
g1 g2 g3

· · · · · · · · ·

usually seen as changes in the allelic sequence at any of (the typically seven) distinct loci.
Let us consider a set of STs sharing allelic changes at a single locus. One can easily

see that the SLV graph will represent a link between all the STs forming a clique (see
Type 1 of Table 2), which is represented by goeBURST as a simple star-like structure.
Additionally, if we consider a larger set of STs, which includes the previous one, sharing an
allelic change at all the possible MLST loci, the goeBURST structure will still represent
thhis set as a star-like structure, since the founder ST f is a SLV of all the other STs. On
the other hand, the SLV graph takes into account all the possible relationships between all
the STs. This resulting graph, a SLV star-like subclique structure, not only contains all
the links between the founder ST f and the rest of the STs in the set, but also explicitly
represents the relationships between all the STs that are STs between themselves, forming
a set of subcliques. It should not come as a surprise to see that this SLV star-like subclique
structure yields the same number of subcliques as the number of loci considered in the
MLST data set, usually seven in the currently used schemes as indicated above, since
each clique contains the subset of STs that are SLVs at a particular locus.

One can now imagine a given ST d, which is not only a DLV of the founder ST f
but it is also SLV of two other STs, t and u, each belonging to two distinct subcliques
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(see Type 3 of Table 2). Whenever this situation occurs, the goeBURST algorithm will
always decide on a single ST to be linked with ST d, either ST t or ST u. On the other
hand, the SLV graph allows for the creation of both links d − t and d − u without any
constraints. We denominate this substructure, composed of four STs, a SLV square, for
reasons that will become apparent in the next subsection.

Finally, it is also possible to imagine two distinct SLV star-like subcliques structures
sharing a subclique. This shared subclique is composed of a set of STs that are all SLVs
between themselves, but are also SLVs of both founders of the two distinct SLV star-like
subcliques. The goeBURST representation in this case, is to represent all the STs as two
connected star-like trees around each of the two founders, where the subset of STs belong-
ing to a shared subclique would be distributed between the two star-like trees acording
to the goeBURST rules. Interestingly, the SLV graph representation avoids making this
choice of distribution, connecting all the STs belonging to this shared subclique between
themselves, as well as to both of the founder STs. The resulting high-level topological
structure is shown in Type 4 of Table 2.

3.3.1 Inferring biological events from the topological properties of the SLV
graph

Giving a set of STs S, the corresponding SLV graph does not offer a single descendence
path, since it represents the superposition of all possible trees between those STs, reflect-
ing the uncertainty in the identification of the correct phylogeny in micro-evolutionary
studies. The basic topological properties described in Table 1 can give rise to four high-
level structures in a SLV graph. In the following subsections we describe each of these
high-level structures and correlate them with possible biological events.

SLV clique: The first high-level structure that can be observed in the SLV graph is the
SLV clique (see Type 1 of Table 2). It is characterized by a set of STs S that are all SLVs
between themselves, sharing all their differences in the same locus, forming a clique. A
direct consequence of this observation is that every triangle observed in the SLV graph,
represents a set of three STs that are SLVs in the same locus.

In contrast, the goeBURST algorithm follows a set of rules will select a single ST to
become the center of a star-like tree, representing the perspective of the founder clone,
forcing all the edges to connect to it. This will therefore suggest a single phylogeny
ignoring the existence of multiple equally-probable descendence paths when relating in-
dividuals that are SLVs between themselves.

Biologically, whenever a group of closely related individuals forms a SLV clique, it
suggests that we cannot identify the true path of evolutionary descent between them
without making simplifying assuptions.

SLV star-like subcliques: The second high-level structure observed in the SLV graph,
and undoubtedly the most important one, is the SLV star-like subcliques. It is charac-
terized by a set of STs S, divided into several subcliques connected to a common central
ST, where each individual subclique corresponds to the previously described SLV clique.

An obvious property of the structure, is that the number of subcliques connected
to single central ST, will be maximally bounded by the number of housekeeping genes
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Table 2: Comparison between the high level topological structural representations of
the hypothetical phylogenetic relations among a set of STs, obtained by the goeBURST
unrooted tree and the SLV graph.

Type goeBURST SLV graph

1
Star-like tree SLV clique

2
Dense star-like tree SLV star-like subcliques

3
DLV of founder SLV square

4
Connected star-like trees Shared subclique
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considered by the typing method (see Type 2 of Table 2 and Figure 1), since each subclique
contains STs sharing differences in the same locus. Another interesting property is that
the central ST will simultaneously belong to all the subcliques, since it shares a SLV with
every other ST in each connected subclique.

In contrast, the goeBURST algorithm would be unable to distinguish this case from
the previous SLV clique, where the algorithm also outputs a star-like tree (see Table 2 and
Figure 1). Nevertheless, these two cases represent radically different events, with only the
latter representing a variation at all loci compatible with the clonal expansion originally
proposed by Maynard Smith et al. [17]. In this SLV star-like subcliques structure, the
central ST is naturally identified as the founder of this group of related STs.

The SLV star-like subcliques can be clearly seen when computing the SLV graph for the
S. pneumoniae data set (see Figure 1), where two distinct structures can be identified
sharing a SLV clique. Here, we clearly see that one of the SLV star-like subcliques is
penicillin-resistant while the other is penicillin-susceptible, with the some profiles of the
shared SLV clique being penicillin-resistant and others penicillin-susceptible.

SLV square: The third high-level structure observed in the SLV graph, and one of the
most interesting ones, is the SLV square. It is characterized by a ST which is a DLV of
the central ST of a SLV star-like subcliques, through two other STs, each belonging to a
distinct subclique, which are themselves SLVs of the central ST.

The identification of this type of structure, illustrated by Type 3 in Table 2, permits
the identification of biological events in which some form of homoplasy must be invoked,
as illustrated in Figure 4. Considering a genotype composed of two genes gi − gj, one
can obtain a SLV graph square: either through a back-mutation at gene gi or at gene gj
(Figure 4 b); or through a recombination event where an allele is inserted at position gj
of the descendants of a and b, originating STs d and c (Figure 4 c).

In order to study the number of SLV squares on different species, we have considered
the SLV graph for all the MLST data sets represented in Table 3, and computed the
corresponding number of SLV squares. The data indicates that different species present
a wide range of SLV squares.

However, when considering the number of unique STs present in each SLV graph (and
that each SLV square is necessarily composed of four distinct STs), one must conclude
that the number of SLV squares higher, for most species, than it would be expected
considering non-overlapping STs. This means that, for many of these species, the SLV
squares must somehow overlap, sharing some of their STs. One can easily imagine possible
ways for the creation of overlapping SLV squares3, like those illustrated in Figure 2.

Despite the existence of different sequence of events capable of generating SLV squares,
these occur with different probabilities. In order to discriminate between back-mutation
and recombination events, we looked at the pairwise nucleotide differences between the
allelic sequences of the four STs of an SLV square. Since these four STs share two locus
variants between themselves, only two pairwise comparisons are necessary between the
nucleotide sequences of the differing alleles. For each of the SLV squares of each of the
species described in Table 3, we performed the two pairwise comparisons. Considering the

3In graph theory, the number of k-cubes contained in a minimal complete n-cube is given by the
formula Cn

k .2
n−k. Considering seven housekeeping genes in MLST, the minimal 7-dimensional cube, has

C7
0 .2

7−0 = 128 vertices (0-dim cube), containing C7
2 .2

7−2 = 672 squares (2-dim cube).
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Figure 2: Structural configurations of a SLV squares. Subfigure A illustrates the for-
mation of two SLV squares by a single recombination event of ST 1122. Subfigure B
illustrates an hypothetical case having adjacent SLV squares forming a complete hyper-
cube of dimension Ng, where Ng is the number of housekeeping genes used by the typing
method.

number of nucleotides differing at each comparison, we denoted it maximal and minimal.
Figure 3 shows the data for the set of SLV squares of each dataset, sorted first by the
maximal (represented in red) and then by the minimal (represented in blue) nucleotide
differences.

Table 3: Data sets statistics (downloaded on 2014-01-16). We present the number of
isolates and the number of unique profiles in each species, as well as the number of STs,
links, and SLV squares in the corresponding SLV graph (singletons are not considered).
Also, the compactness and clustering coefficients are computed in the whole SLV graph
and restricted to the biggest clonal complex of the corresponding species.

Data sets SLV Graph
Species Profiles STs STs/ Links Homoplasy Compactness Clustering

Profiles squares Total BigCC Total BigCC
C. jejuni 6.972 5.629 81% 17.892 2.854 0,127 0,004 0,495 0,599
P. aeruginosa 1.610 977 61% 1.009 5 0,566 0,042 0,282 0,303
Neisseria spp. 10.642 8.511 80% 40.468 3.594 0,135 0,007 0,573 0,627
S. agalactiae 676 639 95% 2.848 98 0,064 0,019 0,660 0,680
B. pseudomallei 1.096 756 69% 1.526 551 0,172 0,008 0,233 0,286
E. faecium 886 723 82% 1.984 530 0,106 0,011 0,425 0,460
H. influenzae 1.301 957 74% 1.613 13 0,397 0,056 0,419 0,652
S. aureus 2.602 2.216 85% 12.837 144 0,120 0,014 0,730 0,791
S. pneumoniae 9.346 7.451 80% 22.185 1.063 0,206 0,007 0,524 0,647

By sectioning the distribution, one can clearly observe three distinct regions. In the
first region, there is a high maximal nucleotide difference, suggesting that such difference
is more likely to account for recombinations events. On the other hand, in the tail of the
distribution, there is a low maximal nucleotide difference (indistinguishable from the min-
imal nucleotide difference), suggesting that back-mutation could account for that specific
region. Finally, the middle region of the distribution, corresponds to SLV squares where
we cannot distinguish between back-mutation and recombination events. In general, it
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is widely accepted that in regions with more than five nucleotide differences, recombina-
tion is more likely to be the main event [5]. But, one cannot clearly distinguish between
back-mutation or recombination events whenever two to four nucleotide differences are
observed in a given sequence. The nucleotide differences between the divergent allelic
sequences of SLV squares for some of the species described in Table 3 is illustrated in
Figure 3. By comparing the shape of each of the distributions it is possible to observe
variations in the rate of mutation and recombination between the different species.

Additionally, we have used the an Infinite Allele Model (IAM) simulator to generate
synthetic datasets with varying mutation and recombination rates ranging between 0-
100. The result is illustrated in Figure 5 where we can observe that for low values
of mutation (interval between 0-10), the recombination (interval between 0-30) is very
efficient in the creation of new SLV squares, suggesting that for low values of mutation,
the majority of the edges in the SLV graph are created by recombination. On the other
hand, as the rate of mutation increases, the probability of a recombination event before a
subsequent mutation occurs becomes lower. This means that for high values of mutation,
the generation of new individuals becomes so fast that the increase of recombination is
unable to generate a significant number of SLV squares.

Assuming the previously described IAM model with varying recombination and muta-
tion, by comparing the number of SLV squares obtained through the synthetic data sets
(Figure 5) with the ones obtained from the MLST data sets (Table 3), we can infer that
most of the considered species of the MLST data sets do not fall into this area of high
recombination, except for Neisseria spp. and C. jejuni. However, we can also observe
that some of the species, like B. pseudomallei and E. faecium, contain a significantly high
number of SLV squares relative to the number of STs in the corresponding SLV graph.

The shared subclique: The shared subclique, occurs whenever a subclique of STs
are SLVs of two central STs of SLV star-like subcliques, that are SLVs between them-
selves. The goeBURST algorithm would simply output two adjacent star-like trees with-
out adding much information. In contrast, the SLV graph representation of all the SLV
connections, will show that a given central ST f1, is a SLV of several subcliques, and one
of these subcliques is also SLV of another central ST f2 (see Type 4 in Table 2).

We have used PHYLOViZ [8] to load the allelic profile of the S. pneumoniae data set
from http://www.mlst.net on 2014-01-16. We then added the isolate information from
2014-01-16, considering only the resistance to penicillin. Figure 1 illustrates ST 156 (rep-
resented in purple), susceptible to penicillin, and ST 162 (represented in green), resistant
to penicillin. Each of these central STs are SLVs of seven surrounding subcliques, one of
which is shared by both central STs. It is therefore reasonable to assume that at least
one ST belonging to the shared subclique acquired resistance to penicillin and generated
some descendency. However, at the micro-evolutionary time scale, one cannot accurately
infer the true pattern of evolutionary descent. Nonetheless, this situation cannot occur
with the SLV graph, since it performs the minimal assumption, by connecting all of the
STs belonging to the shared subclique. Then, one of these descendant STs, either by a
fitness advantage or random drift, increased in frequency in the population and diver-
sified, generating a new graph SLV star-like subclique structure resistance to penicillin.
The corresponding figure using the goeBURST representation can be seen in Figure 6,
where closely related STs, represented in the shared subclique of the SLV graph, are
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Figure 3: Max/min nucleotide differences between the pairwise allelic sequences. Ob-
tained from two divergent locus of each homoplasy square (see Table 3).
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Figure 4: SLV square representation on a SLV graph composed of two genes gi − gj.
Subfigure a) illustrates the SLV connections between four STs, where ST d is a SLV of
both a and c, but only one of these two connections is drawn. Subfigure b) illustrates
the creation of an SLV square through back-mutation of locus i (allele 5 → allele 4).
Subfigure c) illustrates the creation of an SLV square through recombination, where
allele 8 is inserted at locus j of STs c and d, which are descendants of STs a and b,
respectively.

Figure 5: Heat map representation of the number of homoplasy squares contained in
last 50 generations of the synthetic datasets. Each point is an average of 50 random
simulations with the same set of parameters: population of 1.000 individuals, simulated
throughout 10.000 generations and with a profile of 7 loci.

now represented apart from each other, connected with a single SLV connection to the
corresponding founder.
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Figure 6: Visualization of the S. pneumoniae data set using the goeBURST algorithm
illustrating the resistance to penicillin for each ST by color, where green means susceptible
and purple means resistant. The set of closely related STs where the resistance of first
acquired cannot be identified, contrary to the SLV graph representation in Figure 1.

3.4 Implementation and visualization of the SLV graph

The construction and spatial arrangement of a tree-like structure is not difficult, since
one can always think on the näıve approach of propagating the successors of each node of
the tree committing to a single direction. This is however not the case when constructing
and spatially arranging graph-like structures, since we can always make connections to
previously existing nodes, loosing the planar representation. In general, the problem of
finding a planar representation of a graph minimizing the number of crossing edges is
NP-COMPLETE [11], and it is usually tackled through the use of heuristics or greedy
algorithms. Additionally, problems like the minimization of the area used by the graph
also need to be taken into account. An alternative approach for the spatial arrange-
ment of graphs is the use of force-directed physical models [3, 15]. The force-directed
approach proceeds by computing the forces acting on each vertex, and then applying an
optimization algorithm until the net force acting on each vertex reaches zero.

The use of force-directed approaches for the spatial arrangement of graphs presents
several advantages in what concerns visualization capabilities and, given their complexity,
running at O(max(m,n log n)) per iteration, where n is the number of vertices and m is
the number of edges in the graph, they are suitable for the visualization of reasonable
large graphs [2, 10]. Since the SLV is a new type of structure, not previously visualized,
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it would be hard to find the best topological arrangement following metric approaches.
The use of a force-directed approach permits the immediate visualization of the numerous
subcliques surrounding a given founder ST, corresponding to the different genotypes of
the (usually) seven housekeeping genes analyzed through MLST.

The visualization of the SLV graph was implemented in the context of PHYLOViZ.
PHYLOViZ [8] is a platform for the integrated analysis of sequence-based typing methods
and associated epidemiological data. Additionally, it allows for the visual representation
of the possible evolutionary relationships between STs provided by the goeBURST al-
gorithm. The visualization and spatial organization of the data is performed using the
Prefuse toolkit for information visualization4, which implements the force-directed graph
layout. Due to PHYLOViZ modularity, we have easily implemented a plug-in to com-
pute the SLV graph edges from a given set of STs, where the housekeeping loci from the
MLST data sets are immediately identified as distinct subcliques surrounding a founding
genotype (see Figure 1).

4 Discussion

Traditionally, the depiction of the relationships between haplotypes in a population is
through the use of trees. Frequently, the application of maximum parsimony principles
to haplotype data results in representations with cycles through graphs. In order to
simplify this representation, assumptions are made allowing the break of these cycles and
the representation of these relationships as a tree. This apparent simplifying assumption,
imposes a time-ordering restriction on the data, severely hindering the number of its
possible interpretations. The use of the SLV graph structure, relaxes this time ordering
restriction by letting STs be connected instead by a graph-like structure. This aspect is
particularly important when mapping additional genotypic or phenotypic information on
this structure, since the existence of homoplasy is frequently inferred ignoring that the
assumptions of the underlying model that generated the tree may themselves be violated.

The minimum spanning tree computed by the goeBURST algorithm may not repre-
sent the shortest path between a given set of STs. The SLV graph, by representing all the
SLV relationships between STs, ensures that not only it contains the same goeBURST
minimum spanning tree, but that it also contains the shortest (and the longest) evolu-
tionary distance between any two STs. In general, the minimum spanning tree given by
the goeBURST algorithm is always greater or equal than the minimum spanning tree
contained in the corresponding SLV graph.

Additionally, when recovering the true phylogeny, sampling can be one of the biggest
problems. Despite the fact that the amount of data is becoming increasingly available
as time progresses, it is impossible to obtain new data from the past. Additionally, the
amount of data acquisition is limited to the availability of resources. The representa-
tion of MLST data, using a data structure dependent on data availability, can severely
obstruct our capacity to correctly interpret it. The SLV graph structure, can repre-
sent new acquired relationships without changing the already existing ones, being better
suited for the representation of continuously increasing MLST data, than tree-like algo-
rithms. In particular, as the sampling augments, the structure tends to become saturated

4Prefuse is available at http://prefuse.org.
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without changing its structure. Moreover, associated to this topological property, is the
non-commitment to a particular phylogenetic ordering of events, focusing instead on rep-
resenting the relationships between all the individuals satisfying the minimal level of
vicinity, the SLV.

It is also interesting to observe that the SLV graph structure presents topological
properties that can be explored in order to suggest reasonable interpretations for bio-
logical events. This data structure endows the user with a simple visual method for
the identification of subsets of STs that are SLVs in the same locus, and for the visual
identification of the founder of a set of related STs. Additionally, we have identified a
structural motif between four STs, presented a relation between the existence of topo-
logical squares in the SLV graph and the number of potential homoplasies in a given
data set. We have also performed a sequence based analysis, for an important collection
of data sets available in public repositories, in order to better distinguish between the
likelihood of a back-mutation or a recombination event, on the formation of a particular
SLV square. Lastly, it is now possible to visually identify the subset of STs that acquired
a given characteristic, like the resistance to penicillin, carrying it as they diverge and
form other subcliques.
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