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Abstract
This paper presents a new approach to classify, index and retrieve technical drawings by content. Our work uses
spatial relationships, visual elements and high-dimensional indexing mechanisms to retrieve complex drawings
from CAD databases. This contrasts with conventional approaches which use mostly textual metadata for the same
purpose.
Creative designers and draftspeople often re–use data from previous projects, publications and libraries of ready
to use components. Usually, retrieving these drawings is a slow, complex and error–prone endeavor, requiring
either exhaustive visual examination, a solid memory, or both. Unfortunately, the widespread use of CAD systems,
while making it easier to create and edit drawings, exacerbates this problem, insofar as the number of projects
and drawings grows enormously, without providing adequate retrieval mechanisms to support retrieving these
documents.
In this paper we describe an approach that supports automatic indexation of technical drawing databases through
drawing simplification techniques based on geometric features and efficient algorithms to index large amounts of
data. We describe in detail the indexing structure (NB–Tree) we have developed within the context of a more general
approach. Experimental evaluation reveals that our approach outperforms some of the best indexing structures
published, enabling us to search very large drawing databases.
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1. INTRODUCTION

Recent studies [13] refer that the use of libraries with old
cases is important to help designers identifying relevant
features to include or problems to avoid. Additionally,
in some design firms, designers often work by making or
copying diagrams from their design team colleagues for
further development [12]. Furthermore, in some informal
conversations with designers, we found out that they re-use
old drawings during the creation phase of a new project, to
get some ideas or solutions already achieved. Eventhough,
the re-use of drawings save time, the searching process is
usually slow and problematic.

Unfortunately, the widespread use of CAD systems, while
making the creation and edition of new drawings easier,
exacerbates this problem, because the number of projects
and drawings grows enormously, without providing ad-
equate retrieval mechanisms to support retrieving docu-
ments. Present-day CAD systems rely on conventional
database queries and direct-manipulation to achieve this.

Some of the solutions [1, 10] to this problem use textual

databases to organize the information. Drawings are clas-
sified by keywords and additional information, such as,
designer name, style, date and a textual description. How-
ever, solutions based on textual queries are not satisfactory,
because they force the designers to knowing in detail the
meta-information used to characterize drawings and they
require humans to produce it. Opposed to the textual orga-
nization, we propose a visual classification based on shape
and spatial relationships, which we consider more suited to
this problem, because it uses the visual memory owned by
designers and explore their ability on sketching as a query
mechanism.

Additionally, recent studies [16, 13] show that design-
ers use a small set of common graphical elements to de-
scribe the same drawings, validating our approach of using
sketches to specify queries to a database of technical draw-
ings.

The rest of the paper is organized as follows: In section 2
we give an overview of the related work in sketch–based
retrieval. In section 3 we describe the system architecture
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Figure 1. System architecture.

and all its components. Section 4 explains the basic idea
of the indexing structure, the NB-Tree, and presents a per-
formance comparison with other indexing structures. We
conclude the paper by discussing the results and present
further work directions for our system and related areas.

2. RELATED WORK

Recently there has been considerable interest in query-
ing Multimedia databases by content. However, most of
this work has focused on image databases as surveyed by
Shi-Kuo Chang [9]. Moreover, in [23], the author anal-
yses several image retrieval systems that use color and
texture as main features to describe image content. On
the other hand, drawings in electronic format (CAD) store
data in structured form (vector graphics) requiring differ-
ent approaches from image-based (color, texture) meth-
ods. Some initial work [1, 10] attempted to index technical
drawings through textual databases. However, this fails to
use the rich visual association mechanisms and designer’s
use of sketches to recover information.

Although, the three systems described below address the
problem of content-based retrieval of drawings, they fol-
low different principles and different algorithms to achieve
their goals.

The first, developed by Mark Gross and Ellen Do, in the
context of the Electronic Cocktail Napkin [16, 12, 15] ad-
dressed a visual retrieval scheme based on diagrams, to
indexing databases of architectural drawings. Users draw
sketches of buildings, which are compared with annota-
tions (diagrams), stored in a database and manually pro-
duce by users. Eventhough, this system works well for
small sets of drawings, the lack of automatic indexation
and classification makes it impossible to use for large col-
lections of drawings.

The S3 system [7] supports the management and retrieval

of industrial CAD parts, described using polygons and the-
matic attributes. It retrieves parts using bi-dimensional
contours drawn using a graphical editor or sample parts
stored in a database. Although, this system presents good
results in retrieving industrial CAD parts, it relies exclu-
sively on matching contours, ignoring spatial relationships
and shape information, making it unsuitable for retrieving
complex multi-shape drawings.

In [22], Park describes an approach to retrieve mechani-
cal parts based on the dominant shape. Objects are de-
scribed by recursively decomposing its shape into a dom-
inant shape, auxiliary components and their spatial rela-
tionships. The small set of geometric primitives and the
not so efficient matching algorithm makes it hard to use
with large databases of drawings.

In general, our approach improves on Berchtold [7] and
Park [22] systems, since we aim to retrieve technical CAD
drawings and privilege the use of spatial relationships and
dominant shapes. Indeed, our method is more ambitious
in the sense that we plan to do automatic simplification,
classification and indexation of existing drawings, to make
retrieval process more effective and accurate.

3. SYSTEM ARCHITECTURE

Our approach solves these problems by developing a
mechanism for retrieving technical drawings, in electronic
format, through hand-sketched queries, taking advantage
of designer’s natural ability at sketching and drawing.

Figure 1 illustrates the main components of our approach,
which we describe below.

3.1. Classification

Most technical drawings contain detailed descriptions of
objects, which are not necessary for a visual search and
in fact, increase the cost of searching. We include in our



approach a process to remove visual details (i.e. small-
scale features) while retaining the perceptually dominant
elements and shapes in a drawing. Our method divides
the technical drawing in several dominant blocks, that later
will also be divided in other blocks, and extract the spatial
relationships between them. We only use two spatial rela-
tionships,Inclusion andAdjacency. These relationships
are weakly discriminating, however they are invariant with
rotation and translation.

We then combine shape information with the spatial re-
lationships into a topological graph and store it into a
database for later use in matching candidate graphs. Fig-
ures 2, 3 and 4 illustrate the different steps of the classifi-
cation process: technical drawing, block and spatial rela-
tionship extraction and topological graph creation, respec-
tively.

Since graph matching is a NP problem, we try to overcome
this using spectral information on the graph. For each
graph we compute a descriptor based on their spectrum
[11, 25]. To support sub-graph matching, we also compute
descriptors for sub-graphs of the main graph. The compu-
tation of the graph spectrum is based on the calculation of
the eigenvalues of the adjacency matrix of the graph. The
resulting descriptor is a multidimensional point, whose di-
mension depends on graph complexity. Additionally, it

Figure 2. Technical Drawing.
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captures local topology, is invariant to sub-graph re-order
and is stable, since small changes in the graph produce lit-
tle changes in the descriptor. However, the resulting de-
scriptor is not unique. More than one graph can have the
same descriptor, which gives rise to collisions. In [25] the
authors argue that this collision frequency is small.

Since we need to index most sub-graphs of a given graph
to allow for sub-graph matching, we end up with a large
database comprising tens of thousands or potentially hun-
dreds of thousands of descriptors, even to index hundreds
to thousands of technical drawings. Thus, at the core of our
approach, we need to have an efficient indexing structure
for storing descriptors. This will be detailed in section 4.

3.2. Query

Our system includes a Calligraphic Interface to support
the definition of hand-sketched queries, to supplement and
overcome the limitations of textual queries. The query
component performs the same steps of the classification
process, with an additional recognition step to identify
sketched shapes [14]. After identification of all shapes,
the system extracts the spatial relationships, construct the
topological graph and compute the corresponding descrip-
tor. This multidimensional descriptor will be used as query
to the indexing structure.

3.3. Matching

The results returned by the indexing structure are a set of
descriptors similar (near in the space) to the query descrip-
tor. Each returned descriptor correspond to a specific graph
stored in the topology database, which will be used in the
matching process to perform a deeper comparison.

Our classification and query process perform a first filter-
ing based mainly on topology. This step reduces drastically
the number of graphs to compare, selecting only graphs
with a high probability of being isomorphic to the query
graph.

Since the number of graphs to compare is reduced from
thousands to dozens, a simple graph matching algorithm
can be used, without any loss of efficiency. The isomorphic
graphs will then correspond to candidate drawings stored
in the database.

To support approximate matches, our indexing struc-
ture needs to provide the means for a fast and reli-
able K nearest-neighbors scheme, since most interesting
candidates will probably yield approximate matches to
the query. However, nearest neighbor search in high-
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dimensional data spaces is a difficult problem. In what
follows, we will present an algorithm to solve this.

4. INDEXING STRUCTURE

To support processing on large amounts of high–
dimensional data, a variety of indexing structures have
been proposed in the past few years. Some of them are
structures for low–dimensional data that were adapted to
high–dimensional data spaces. However, such structures,
which provide good results on low–dimensional data, do
not perform sufficiently well on high–dimensional vec-
tor spaces. Recent studies [26] show that the majority
of indexing techniques are less efficient than sequential
search, if we consider dimensions greater than 10. Other
indexing structures are incremental evolutions from exist-
ing ones, where, sometimes, the increase in complexity
is not matched by corresponding enhancements in perfor-
mance. Finally, there are other indexing techniques that
result from the combination of several approaches, making
their algorithms very complex and hard to code.

The indexing techniques developed so far can be classified
into three categories. One that aggregates all structures de-
rived from the K-D-Tree [21], such as the VAM-Split K-
D-Tree [27], the LSD-Tree [19], the LSDh-Tree [18] and
more recently the Hybrid-Tree [8]. Figure 5 illustrates the
evolution of the indexing structures derived from the K-D-
Tree.

A second class of structures is composed by trees derived
from the R-Tree [17], such as the R*-Tree [2], the SS-
Tree [28], the SR-Tree [20], the VAMSplit R-Tree [27],
the X-Tree [6] and more recently the A-Tree [24]. Figure 6
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Figure 7. Dimension Reduction for 2D points.

presents the several structures based on the R-Tree.

The third category of structures combines several method-
ologies to improve the performance of the final structure.
In this class we can find structures like the VA-File [26],
the Pyramid Technique [3], a Voronoi based structure [5]
and more recently the IQ-Tree [4].

The main difference between the first two categories is the
route they use to divide the data space. Structures in the
first category are classified as space–partitioning methods
that divide the data space along predefined lines (hyper-
planes) regardless of data distribution. The resulting re-
gions are mutually disjoint, with their union being the com-
plete space. Structures from the second class are classified
as data–partitioning structures, which divide the data space
according to the data distribution. In this category regions
can overlap.

The increasingly complex data structures and specialized
approaches to high-dimensional indexing make it difficult
to ascertain if there might be a reasonably fast and general
approach to address many of these problems. We believe
there might be some merit in taking a step back and looking
at simpler approaches to indexing these data. Motivated by
these ideas, we developed the NB-Tree, an indexing tech-
nique based on a simple, yet efficient algorithm to search
points in high–dimensional spaces, using dimension reduc-
tion. Multidimensional points are mapped to a 1D line by
computing their Euclidean Norm. In a second step we sort
these using a B+-Tree on which we perform all subsequent
operations.

4.1. The NB-Tree Algorithm

The NB-Tree provides a simple and compact means to in-
dexing high–dimensional data points. We use an efficient
1D data structure the B+-Tree to index the points sorted by
their Euclidean norm (Norm +B+-Tree =NB-Tree).

To achieve flexibility we use dimension reduction: mul-
tidimensional points are mapped to a straight 1D line by
computing their Euclidean Norm. The second step is to
sort them by Euclidean norm, using a B+-Tree. This way,



insertPointInNB-Tree(point)
{

norm = computeEuclideanNorm(point);
insertPointInB+-Tree(point, norm);

}

Figure 8. Insertion algorithm pseudo-code.

all operations are performed on the B+-Tree. Since this
is the most efficient 1–dimensional structure, the NB-Tree
inherit its good performance, specifically for point queries.

4.1.1. Creating an NB-Tree

To create an NB-Tree we start by computing the Euclidean
norm of each N–dimensional point from the dataset, using
the Formula:

‖P‖ =
√
p2

0 + p2
1 + · · ·+ p2

N−1 (1)

whereP = (p0, p1, · · · , pN−1).

The resulting norm and the N–dimensional point are then
inserted in a B+-Tree, using the norm as key. After in-
sertion of all points we get a set of N–dimensional points
order by their norm value.

Figure 7 shows an example of the dimension reduction for
2D points, while Figure 8 presents the pseudo-code to im-
plement the insertion algorithm.

4.1.2. Searching

The searching process in the NB-Tree started by comput-
ing the norm of the query point. Then we perform a search
in the 1–dimensional B+-Tree. The next search steps will
depend of the query type. Current indexing structures
usually support three types of queries. The first isPoint
Query, which checks if a specific point belongs or not to
the database. The second type of query,Range Query, re-
turns the points inside a specific range of values. In our
case that range will be specified by an hyper-ball. Finally,
theKNN Query (K Nearest Neighbors) returns the K near-
est neighbors of the query point. This is the most often-
used query in content–based retrieval and is the one we
describe with more detail in this paper, because it is used
intensively by our matching component.

We start the KNN search by doing a ball query (small ball
in Figure 9). After this ball query we check if we have
enough points inside the ball to satisfy the query. If not,
we start an iterative process, where the size of the ball in-
creases gradually until we get all the points specified by
the query. Figure 9 illustrates the KNN search (in 2D),
while Figure 10 presents the pseudo-code for the KNN al-
gorithm.

To improve the performance of our algorithm we assume
that the nearest neighbors will be no far than a given dis-
tance from the query point (largest ball in Figure 9). This
way we store less intermediate results, speeding up the
searching process. The distance used to prune the interme-
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list* knnQuery(query, knn)
{

qNorm = computeEuclideanNorm(query);
bRadius = compInitialRadius();
pointList = ballQuery(query, bRadius);
if (enoughPoints(pointList, knn))

return pointList;
else {

//grow the ball by going up and
// down on the B+-Tree
do {

point = btree->search(higherLimit);
higherLimit += delta;
while (pointNorm <= higherLimit) {

dist = dist2Query(point, query);
if (dist <= pruneDist)

pointList->addPoint(point);
point = btree->nextPoint();

}
point = btree->search(lowerLimit);
lowerLimit -= delta;
while (pointNorm >= lowerLimit) {

dist = dist2Query(point, query);
if (dist <= pruneDist)

pointList->addPoint(point);
point = btree->prevPoint();

}
}while(!enoughPoints(pointList,knn));

}
return pointList;

}

Figure 10. KNN Query pseudo-code.

diate results depends on the number of points in the struc-
ture and grows logarithmically with data points dimension.

4.2. Performance Evaluation

While our approach seems to yield commensurable times
to other structures tested, we had difficulties comparing it
to other approaches namely the IQ-Tree. Indeed the im-
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plementations available did not provide the correct results
and thus it is difficult to compare run-times which seem
to be commensurable. Implementations of other popular
approaches were available but some of them crashed on
datasets of significant size, preventing comparison. We
chose the SR-Tree and the Pyramid Technique as a bench-
mark because there are reliable and stable implementa-
tions, which provide correct results and scale up to our
intended test data sizes.

In this section we describe the experimental evaluation per-
formed to compare our NB-Tree with the SR-Tree and the
Pyramid Technique. We conducted a set of experiments to
analyze creation and query times as a function of dataset
dimension and size. All experiments were performed on a
PC Pentium II @ 233 MHz running Linux 2.4.8, with 384
MB of RAM and 15GB of disk.

We evaluated the three structures using datasets of ran-
domly generated uniform distributed data points of fixed
size (100,000) and variable dimension (10, 20, 30, 40, 60,
80 and 100). We also created datasets with fixed dimen-
sion (20) and variable size (250,000, 500,000, 750,000 and
1,000,000). Additionally, we randomly generated a set of
100 queries for each dimension, which we later used to
evaluate the searching performance of each approach. We
selected the number of nearest neighbors to search for to
be always ten.

However, these data sets as they are generated from uni-
formly distributed coordinates, do not seem to be accu-
rately representative of ”real problem” data. We plan to
perform another experimental evaluation as soon as we
have access to sets of real data. However, we can con-
sider that the uniform distribution of points is a worst case
than real data, because ”real data” tend to concentrate in
clusters, thus requiring smaller balls to capture the nearest
neighbors.

Below we present the results of our experimental evalu-
ation for uniform data, organized by creation and KNN
search times.
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4.2.1. Creation

Most published work tends to ignore insertion times. This
is because conventional scenarios focus on large static
databases which are far more often queried upon than up-
dated. However, there are many applications requiring fre-
quent updating of datasets. For these, low insertion times
are an important usability factor.

We have compared the creation times to these of the SR-
Tree and of the Pyramid Technique. Figure 11 shows the
time spent to create each structure when the dimension of
the data changes. As we can see, the NB-Tree largely out-
performs the SR-Tree and the Pyramid Technique outper-
forms both. While the Pyramid Technique takes 6 sec-
onds to insert 100,000 points of dimension 10, the NB-
Tree takes 24 seconds and the SR-Tree takes 23 minutes.
If we now consider higher dimensions, such as 80, the dif-
ference increases even more with the Pyramid Technique
taking 31 seconds, the NB-Tree taking 2 minutes and the
SR-Tree taking 40 minutes.

In Figure 12 we can see the time for the same action, but
now with dataset size changing. Although, all structures
present a linear growing with the dataset size, the SR-Tree
creation times grow faster than those of the other struc-
tures. While the Pyramid Technique requires no more than
2 minutes to create a tree with one million of data points,
the NB-Tree requires 15 minutes and the SR-Tree takes
around six hours. From this observation it is clear that the
NB-Tree and the Pyramid Technique are more suited to
large datasets than the SR-Tree.

In summary, and looking at Figures 11 and 12, we can say
that the Pyramid Technique and the NB-Tree have very
similar creation times while they largely outperform the
SR-TRee.

We were not able to create the SR-Tree for the dataset of di-
mension 100, in our system, due to memory requirements.
Thus, in the following performance charts we do not dis-
play the values for dimension 100 corresponding to the SR-
Tree.
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4.2.2. KNN Search

Nearest-neighbor queries are useful when we want to look
at the point in the dataset which most closely matches the
query.

Figure 13 depicts the performance of nearest neighbor
searches when the dimension increases. We can see that
the NB-Tree outperforms the Pyramid Technique and the
SR-Tree for any dimension of the dataset. Our approach
computes the ten nearest neighbors in less than one sec-
ond for dimensions up to 40 and less than two seconds
for dimensions up to 100. Moreover, we can notice that
the NB-Tree seems to present an asymptotic behavior with
the dimension while the SR-tree seems to exhibit at least a
quadratic growth.

As we can see in Figure 14 our approach also outperforms
both the Pyramid Technique and the SR-Tree for a varying
dataset size. The NB-Tree exhibits a linear growth with the
dataset size, while the other structures grow faster when the
dataset size increases.

In short, the NB–Tree presents a good tradeoff between
creation and searching times, clearly outperforming some
of the best indexing structures available, for uniformly dis-
tributed data. It can be argued that these represent a worse
case than, say, (hyper)normally distributed data, in that we
need to use larger balls to statistically guarantee that we
capture enough points to satisfy the initial KNN query.

5. CONCLUSIONS and FUTURE WORK

We have presented a multidimensional indexing approach
suitable for content–based retrieval of structured graph-
ics and drawings. The approach is centered on recasting
the general graphical matching problem as an instance of
graph matching. To this end we index drawings using a
topology graphwhich describes adjacency and contain-
ment relations for drawing blocks. We then transform these
graphs to descriptor vectors in a way similar to hashing
to obviate the need to perform costly graph-isomorphism
computations over large databases, using a stable method.
Finally a k–NN search over large databases provides the
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Figure 14. Searching times for KNN. Dimen-
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means to efficiently retrieve sub-drawings that match a
given query in terms of its topology. To optimize this
stage we have developed a fast yet simple method to in-
dex large databases which is flexible and scales better than
other well–known methods. Through a suitable filtering
procedure we feel confident that we will be able to sieve
out a few meaningful samples from large structured graphi-
cal document databases using graphical information alone.
Although work remains to be done at the initial stages,
of the query and classification pipeline, we are confident
on the ability to extend this approach to other classes of
graphical data, such as surfaces, other than structured vec-
tor drawings.
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