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Abstract

Viterbi is an algorithm for error correction in the trans-
mission of messages. It requires coding and decoding stages
in the sender and receiver, respectively. These type of algo-
rithms are very useful for the transmission of a type of mes-
sages where some degree of error in the received message
is acceptable, such as, voice and video. The coding allows
some error detection and correction.

In this paper we present an architecture for the Viterbi
Decoder. Using this initial structure, we have applied a set
of transformation techniques aiming for a power optimized
implementation. These techniques include pipelining, oper-
ation reduction/substitution and the reduction of transition
activity. We show that it is possible to reduce the circuit’s
power consumption by more than half without impacting ex-
cessively on the area.

1 Introduction

The Viterbi algorithm, proposed by Forney [5], brought
many benefits in a large number of problems, such as fil-
ters, transmissions and error detection, etc. There has been
some work in the implementation of Viterbi algorithms, for
instance [6, 8, 2, 7]. For the majority of them, the architec-
ture optimization targeted the detection and correction of a
larger number of errors. In this work we propose the use of
transformation techniques to reduce the power consumption
in a simple viterbi decoder architecture. These techniques
were applied on a Viterbi decoder for the rate 1/2 convolu-
tional code.

The developed architecture has the capacity to de-
code messages 8-bit long. This constraint is due to the
faster/easier implementation, and it does not change any of
the optimizations introduced.

The implementation was made in the BLIF format. This

format was used because it is supported by SIS [9] whose
power estimation tool we used in this work. Initially we im-
plemented a Viterbi Decoder circuit without any low-power
concerns. On this initial structure we tested some methods
in order to reduce the power consumption. The methods
used will be described together with their results. In ad-
diction to our own ideas, we experimented with methods
described in [4], [1] and [3].

This paper is organized as follows. In Section 2 we de-
scribe both the coder and decoder algorithm. The imple-
mentation is described in Section 3. In Section 4 we de-
scribe all the optimizations tested and their results. The
conclusions of this paper are in Section 5.

2 Viterbi Algorithm

The Viterbi Decoder is similar to the coder method but
works backwards. The coder algorithm is explained first.

2.1 Viterbi Coder

The Viterbi algorithm is based on a 2n state algorithm,
where n is the number of bits that is transmitted for each
bit in the original message. Hence, if the message has m

bits the Viterbi Coder sends m × n bits. In each step of
the algorithm there is a single state, between 0 and 2n

− 1.
Initially the state is 0.

The bits sent are generated by a state machine that func-
tions as follows. For the present state and bit to transmit we
have to generate the n bits to send and the next state. The
values used can be displayed in a table or a diagram. An
example of a diagram for n = 2 is shown in Figure 1. We
follow this state machine until all bits have been sent.

2.2 Viterbi Decoder

Viterbi Decoder is similar to the Viterbi Coder, but it
presents some differences. One is that all the 2n sequences
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Figure 1. State diagram showing for each bit
to send how the next state and bits actually
sent are generated in the Viterbi coder.

with possible messages are kept during decoding and a
function is used to compare those different sequences. The
2n sequences are needed because the algorithm tries to min-
imize the error between the sequence received and the one
generated.

At each step of the algorithm are created 2 × 2n new se-
quences based on the last 2n messages (corresponding to the
2n possible states). It is created one message for each pos-
sible received bit, i.e., 2 sequences are generated for each
state 2 × (2n), see Figure 1. Now we have 2 sequences for
each possible next state, and the decoder must select one
of them. These 2 sequences are compared with a function,
which is called “metric”. This metric function returns a dis-
tance between the messages. The one that is selected is the
one that presents less error, i.e., with lower metric. At each
stage the value of the metric can be saved in order to help
future calculations. At the end is chosen the message with
lower metric from all the possible 2n sequences.

In this work we used the Hamming distance (sum of the
number of bits that are different) as our metric function.

As has already been said we need to keep the 2n entire
sequences so we can compare them and make the most cor-
rect choice. Because of memory limitations in our hardware
implementation we use slices of 8 bits and treated them sep-
arately.

3 Hardware Implementation

The hardware implementation has three distinct blocks:
one to control the operations, one to execute the decode and
another to choose the final result. Figure 2 shows the dia-
gram for this architecture.

Next we explain with some detail all the three parts of
the implementation.
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Figure 2. Hardware Diagram for the Viterbi De-
coder.

3.1 Control Block

The Control block generates control signals to the Oper-
ation and Final Message Chooser blocks. It enables two sig-
nals called “CLEAR” and “Final” signals. The first clears
all memories in the Operation block. The second one in-
forms the last block that it is possible to decide on the de-
coded message.

Due to memory limitations, we have only kept 8-bit
slices of the messages at a time. Thus, we have a 3-bit
counter in order to indicate when the 8-bit message has al-
ready been decoded and a new 8-bit slice can start.

The “Final” signal is generated each eight clock cycles,
with the help of the 3-bit counter. The “CLEAR” signal is
generated by the existence of one of two signals, where the
first is an external “Clear” signal and the other is the “Final”
signal. The “Clear” signal is used to begin the decoding pro-
cess. It should be observed that this implementation could
be easily extended to higher order circuits by using a higher
counter circuit.

3.2 Operation Block

The Operation block executes the decoding algorithm
and it is composed of two main parts. The first part is the
Memory block that keeps the sequences and their metrics.
The second one creates the new sequences and the respec-
tive new metrics.

3.2.1 Memory Block

The number of latches used in this block depends on the
number of bits used in the state algorithm. In our algorithm,
we are using n = 2, and therefore we have 4 states and
consequently 4 messages kept in the decoding algorithm.
We have 8 latches for each sequence and 4 latches for each
metric, thus we have a total of 48 = (4× (4+8)) latches in
the Memory block. In should be observed that this imple-
mentation can also be extended to higher sequences, using
the correct memory extension.



3.2.2 New Sequence Generator Block

This block creates the 3 new sequences and their metrics.
As mentioned in Section 2.2, for each old sequence 2 new
sequences are generated. As there are 4 old sequences, 8
new sequences will be created but we have to choose only 4
of them. Figure 3 shows how the message for state 0 is cre-
ated. The new sequence is created by the best choice of two
sequences that are calculated based on the previous ones.
This choice is based on the metric for the new sequences,
which are also calculated in this block. As shown in Fig-
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Figure 3. New Sequence Generator for mes-
sage of state 0.

ure 3, the new metric and new sequence are available in the
outputs block after some operations. One of these opera-
tions includes the Hamming distance calculation between
fixed values (00 and 11), and the input subsequence. The
values 00 and 11 correspond to the two alternative ways to
arrive at next state 0 form the present states 0 and 1, respec-
tively as show in the diagram of Figure 1. In this case, both
of these states present the value 0 for the input bit. The re-
sults from the Hamming distance calculation are added to
the previous metric values of states 0 and 1, in order to gen-
erate the metric of the new sequences. The lower of these
values is the metric selected by the comparator circuit. As
can be observed in Figure 3, this comparator is also used to
choose the new sequence.

For the generation of the messages for the others states
the same procedure is used. In this case it is only necessary
to perform an adjustment in the input values of the current
state. All of this information is obtained from the State/Bits
diagram shown in Figure 1.

3.3 Final Message Chooser Block

This last block has only one objective, to choose from
four possible sequences the one with the lowest metric
value. All we need is a comparator to compare all four met-
rics and a multiplexer to pick the chosen sequence.

4 Optimizations and Results

In this section we explain all the techniques used and
show the results obtained.

4.1 Optimizing the Final Message Chooser block

The block under optimization chooses the message de-
coded, so it is only used once in each eight clock cycles,
because it is the time needed to decode a sequence of eight
bits.

If this block was used as described in Section 3.3, it
would choose a message in all clock cycles. It is obvious
that this block spends more energy than necessary.

To avoid unnecessary power consumption we need to
stop the input signals from propagating into the block.
There are two choices, to use simple gates or use latches
in the block’s inputs.

Here we apply the first technique because the second will
spend more since the latches spend more than a simple gate,
such as an AND gate.

So we used for each input signal a gate AND with the
“Final” signal. To study the impact of this technique we
studied three places where to introduce the AND gates:

A - At the inputs of metric values

B - At the inputs of metric values and inputs of sequence 0

C - At all inputs

When AND gates are added in input metric values, only
the multiplexer that choose the sequence will be active,
choosing sequence 0. So the second experience was to stop
the inputs of sequence 0 too, in order to avoid possible tran-
sitions in these signals. The last experience stopped all sig-
nals.

In the next sections we will use the terminology original,
A, B and C circuit to refer to the type of Final Message
Chooser block used in the experience.

Table 1 shows the results for these experiences. Till the
B circuit there is a good improvement in power, though for
the D circuit there is no real gain in comparison to the B
circuit. The area increases in each new circuit, but only by
5.4%, in the worst case.

Note that for the original circuit the Final Message
Chooser block spends 582.25µW and that in the B circuit
it spends 120.45µW, i.e., about 20% of the initial value! In
the simulation with real delay the percentage of initial value
is 12.3%.

With this simple modification we achieved power reduc-
tion of 12% with zero delay and 57% with general delay.



Table 1. Final Message Chooser Optimization.

Type Power (in µW)
of Original A B C

Simulation circuit circuit circuit circuit
Zero delay 4153.3 3691.5 88.9% 3649.2 87.8% 3678.3 88.5%
Real delay 25002.9 11072.6 44.3% 10804.2 43.2% 10705.3 42.8%

Area 2634 2682 101.8% 2706 102.7% 2778 105.4%

4.2 Optimizing Internal Sub-Blocks and Remov-
ing Constants

In this section we tried to optimize all the little details in
all blocks and sub blocks. By little details, we mean sig-
nals that are not used, constant signals that can be removed,
duplicated blocks, etc.

4.2.1 Removing Unused Signals and Constant Signals

When we are building the circuit we generally use pre-
constructed modules, like adders, multipliers, etc. These are
prepared for all possible cases, but in our application some
of those cases are not used, like the Cin and Cout signals
in adders. So all unnecessary output signals were removed
and constant input logical signals (like a Cin not used) were
simplified.

This technique was specially used in the adders, i.e., we
used a full 4-bit adder to add a 4-bit number with a 2-bit
number, knowing that the output value is lower than 16. So
we remove three inputs and one output in each adder.

Another application of this technique was in the memory
block. Initially all 8 bits of the four sequences were stored,
but for each state we know which is the last bit inserted and
that the first one is not used, so these were also removed.

4.2.2 Removing Duplicated Blocks

Here we reduce some subcircuits that were performing the
same job.

In our case, there were eight blocks to calculate the
Hamming Distance between the input subsequence and the
possible ones. But there are only four possible output se-
quences, because they have only 2 bits. This optimization
used also the technique explained in the previous subsec-
tion, because the signal for all four possible subsequences
(see Figure 1) are constants. So it was created a single sub-
circuit that calculates all four Hamming distances.

The results of these optimizations are in Table 2. The
power reduces about 12% when comparing with the B cir-
cuit (with real delay),

which is a good result. The total area of the circuit is
30% lower, due to the reduction of many unnecessary gates.

Table 2. Changing internal sub-blocks and re-
moving constants.

Type Power (in µW)
of B B circuit +

Simulation circuit Sec.4.2 optimizations
Zero delay 3649.2 2978.3 81,6%
Real delay 10804.2 9482.7 87.8%

Area 2706 1899 70.2%

4.3 Comparators Optimization

One of the techniques tried, was to reduce the compara-
tor’s power [1]. The objective was to avoid signal propa-
gation of the lower bits of the comparator when the higher
bits of the two numbers are different and there is no need to
compare them.

In the article [1] latches are used to stop propagation, but
in this case if we used latches we had to retime all circuit.
So we tried to use AND gates, like in Section 4.1, to see if
we could get some gain.

This technique did not result with the AND gates because
the power reduction did not compensate for the power of the
new gates. Table 3 shows the result of inserting the gates in
the B circuit.

Table 3. Comparators Optimization.

Type Power (in µW)
of B B circuit +

Simulation circuit Comparators Opt.
Zero delay 2978.3 3067.9 103.0%
Real delay 9482.7 11512.1 121.4%

Area 1899 2025 106.6%

The power goes to 103% with zero delay and 121% with
delay. This performance can be explained due the compara-
tors only having 4 bits. If this number was greater it would
have compensated.

With the delay simulation we have a worse result due
to the fact that when the signal of the comparison between
the first bits arrives at the gate, the other signal has already
passed and will not be removed. So the number of transi-
tions will be higher, and so will the power consumption.



Table 4. Pipelining.

Power (in µW)
Type Unpipelined Pipelined

of circuit circuits
Simulation B B B circuit + B circuit + B circuit + latches

circuit circuit Sec.4.2 optimizations latches + Sec.4.2 optimizations
Zero delay 3694.2 6111.6 4756.1 77.8% 6406.1 104.8% 4980.6 81.5%
Real delay 10804.2 52730.8 45473.0 86.2% 20439.1 38.8% 17995.1 34.1%

Area 2706 4225 2739 64.8% 4305 101.9% 2819 66.7%

4.4 Pipelining

Pipelining is a powerful technique. I can be used to seri-
alize procedures, raising its throughput. Here we tried to use
pipelining also with the goal to reduce power consumption.

The first try was to place two New Sequence Genera-
tor block instead of one in the Operation block in order to
perform 2 steps at a time. To do this we need to change
the Control block because at each clock cycle we gener-
ate the result corresponding to two old clock cycles without
pipeline, i.e., we will have results in four clock cycles in-
stead of 8.

These new circuits were tested using the optimizations
of unpipelined circuits of Sections 4.1 and 4.2 and the use
of latches between the two New Sequence Generator blocks
(to reduce gate switching).

The results of these experiences are presented in Table 4.
By comparing the B circuit without pipeline and the one
with, (without 3649.2µW, with 6111.6µW) we can gain
some power due the clock frequency reducing to half and
the correct value of 6111.6µW is 3055.8µW. We can see
that the area of the new circuit is not the double (we du-
plicate only the operation block). If we compare the sim-
ulation with delay, the results are not so good, this cir-
cuit dissipates 52730.8µW (half=26365.4µW) and the old
10804.2µW, i.e., we do not have an optimization.

When we use the optimization of the unpipelined circuits
(“Sec.4.2 optimizations”), the value drops to 4756.1µW
(half= 2378.05µW). But with delay simulation we still have
worse results.

The other type of optimization, the use of latches, tries
to reduce glitching. Table 4 also shows these optimizations.
Although the simulation with zero delay raises (comparing
with the non-latches circuits), the simulation with the de-
lay model gets better results, the power drops around 61%.
The latches were placed after the first metrics calculation.
Comparing the consumption of the “best” circuit (with de-
lay simulation), 17995.1µW (half=8997.55µW), with the
unpipelined 10804.2µW, we achieve better results.

The area of the final circuit (with pipeline) is similar to
the first circuit made.

This simple example shows that the decoding can be

pipelined at more levels with a good power reduction. It
depends on the area that the designer is willing to use.

4.5 Algorithmic Exploration

Some architectural exploration has been made, but with
“few” results because in this circuit (Viterbi Decoder) the
next states are very dependent on the last ones. Some tries
were to minimize metric calculation, when using a simple
pipeline, as follows.

To calculate the metric for sequence of state 0 at time
t + 2, it depends on the metrics of the sequences of states
0,1,2 and 3 at time t, as can be seen in Equation 4.5.

Metric′(0, t + 2) =

{

Metric(0, t) + Ham1(00) + Ham2(00)
Metric(1, t) + Ham1(11) + Ham2(00)
Metric(2, t) + Ham1(10) + Ham2(11)
Metric(3, t) + Ham1(01) + Ham2(11)

Where Ham1() and Ham2() represents the Hamming
distance between the received bits and the input bits, for
time t and t+1, respectively, i.e., calculate the metric with-
out the intermediate metric. However this alternative re-
quires 3 comparators, 8 adders (4 plus 2 bits) or 4 adders (4
plus 2 plus 2 bits) and 3 multiplexers per state. Summing up:
12 comparators, 24 or 12 adders and 12 multiplexers, but in
the original we have 8 comparators, 8 adders (4 plus 2 bits)
and 8 multiplexers, for metric calculation. And we also need
bigger multiplexers to calculate the new sequences. There-
fore no power improvement were possible.

4.6 Operand Coding

Operand codification was another method we tried in or-
der to optimize power. Gray and Hybrid [4] coding were
tried in the codification of the metric values.

4.6.1 Gray Coding

One of the most promising encodings that is used to re-
duce switching activity is the Gray code since only one bit
changes between consecutive values. Gray encoding is an
excellent technique used in sequential numbers. For exam-
ple sequential accesses at memory.



Table 7. Conclusions Table.

Power (in µW)
Type of Unpipelined circuit Pipelined circuit Unpipelined vs Pipelined circuit

Simulation Original B circuit + B B circuit + latches UnP. circuit B Pip. circuit B + latches +
circuit Sec.4.2 optimizations circuit + Sec.4.2 optimizations + Sec.4.2 opt. Sec.4.2 opt (divided by 2)

Zero delay 4153.3 2978.2 71.7% 6111.6 4980.6 81.5% 2978.2 2490.3 83.6%
Real delay 25002.9 9482.7 38.0% 52730.8 17995.1 34.1% 9482.7 8997.6 95.9%

Area 2634 1899 76.1% 5225 2819 66.7% 1899 1410 74.2%

Table 5. Number of Gates for Different Cod-
ings.

Operator Binary Gray Hybrid
Adder 4+2 10 36 15
Comparator 13 23 15

Hamming Dist. 8 9 9
Total adders(8) 80 288 120
Total comp.(7) 91 161 105

TOTAL 179 458 234
circuit Total 519 789 574

Table 6. Power for different Coding (with B
circuit).

Type of Power (in µW)
Simulation Binary Gray Hybrid
Zero delay 2978.3 5159.3 173.2% 3426.7 115.1%
Real delay 9482.7 13055.5 137.7% 13104.8 138.2%

Area 1899 2324 122.3% 1901 104.3%

The worst about Gray is its hard implementation. This
fact is due to dependences of the output bits, i.e., all output
bits depend on all input bits.This can be seen in Table 5.

In the total Gray coding has almost 2.5 times the number
of gates of binary coding, so the power dissipation, which
is displayed in Table 6, was already expected to be higher.
Also, in this application the numbers are not very sequen-
tial.

4.6.2 Hybrid Coding

The Hybrid coding is a mix between binary and Gray. It has
proprieties from both encoding. Its implementation is easier
than Gray’s, but a little harder than binary. Although power
dissipation raised with this implementation, Table 6, it can
be useful when using large multipliers, see [4].

5 Conclusions

The architecture proposed is very simple and can be eas-
ily modified to support larger messages. The optimizations
introduced in the circuit reveals a reduction of 62% without

the use of pipelining technique, 66% when we use a 2-level
pipeline, and 4% comparing the version with pipeline and
the one without. These results are presented in Table 7.
Note that all the optimizations realized were very simple.
They tried to minimize unused signals and the logical gates
associated.

It was also tried techniques to reduce the consumption,
such as different types of number coding, comparator’s op-
timization, with no success.

Area values have been reduced because the optimizations
used in Section 4.2 were more efficient than the ones used
in Section 4.1.
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