
Low Power Architectures for FFT and FIR Dedicated Datapaths
Eduardo Costa Sergio Bampi José Monteiro

UCPel UFRGS IST/INESC-ID
Pelotas, Brazil P. Alegre, Brazil Lisbon, Portugal

ABSTRACT
This paper addresses the use of architectural transformations

for the low power realization of FIR filter and FFT algorithms
on dedicated datapath architectures. We report significant power
savings using the propose methodology. New low power arith-
metic operators are used as basic modules. In FIR filter and
FFT algorithms, 2’s complement is a widely used encoding for
signed operands. We use a new architecture for signed mul-
tiplication, which maintains the pure form of an array multi-
plier. This architecture uses radix-2m encoding, which leads to
a reduction of the number of partial lines, enabling large gains
in performance and power consumption. The proposed archi-
tecture is applied to the DSP architectures and compared with
the state of the art. Due to the characteristics of the FIR filter
and FFT algorithms, which involve multiplications of input data
with appropriate coefficients, the best ordering of these opera-
tions in order to minimize the power consumption in the imple-
mented architectures is also investigated.

I. INTRODUCTION

This paper focuses on power optimization techniques at the
architectural level applied to Digital Signal Processing (DSP)
systems [1], [2], [3], [4], [5]. In our work, FIR filter and FFT
computations are addressed through the implementation of ded-
icated architectures, where the main goal is to reduce the power
consumption by using transformation techniques.

Since multiplier modules are common to many DSP applica-
tions, one of the low power techniques used in this work is the
use of efficient multiplier architectures [7] in the dedicated DSP
architectures in order to reduce their switched capacitance. As
observed in this paper, DSP architectures that use the multiplier
of [7] are more efficient than those that use the common Booth
multiplier. Power savings above 40% are achievable in the FFT
architecture using array multiplier of [7]. This power reduction
is mainly due to the lower logic depth in the multiplier circuit,
which has a big impact on the reduction of the glitching activity
in the FFT architectures.

In this paper, the low power arithmetic modules are experi-
mented in different dedicated FIR filter and FFT architectures.
In the FIR implementations, combinations of Fully-Parallel,
Fully-Sequential and Semi-Parallel architectures with simple,
transposed and pipelined version are explored. For the FFT al-
gorithm, Fully-Sequential and Semi-Parallel architectures with
simple and pipelined version are implemented.

Additionally, we propose an extension to the Coefficient Or-

dering technique [8] that aims at reducing the power dissipation
by optimizing the ordering of the coefficient-data product com-
putation. We have used this technique in the FIR and FFT im-
plementations. As will be shown, the manipulation of a set of
coefficients can contribute for reducing the power consumption
in the dedicated architectures.

This paper is organized as follows. In Section 2, we present
the dedicated FIR filter and FFT implementations. An overview
of relevant work related to power optimization in FIR filter and
FFT realization are shown in Section 3. Section 4 describes
the low power techniques used in this work. Performance com-
parisons between the architectures for the different low power
techniques are presented in Section 5. Finally, in Section 6 we
discuss the main conclusions of this work.

II. DEDICATED DSP DATAPATH IMPLEMENTATION

We present Fully-Parallel and Fully-Sequential FIR filter ar-
chitectures, both in three versions: Pipelined, Non-Pipelined
and Transposed. The Pipelined and Non-Pipelined version
are also explored for the Fully-Sequential FFT implementa-
tion. Additionally, we present for both DSP implementations
a Semi-Parallel architecture which improves performance over
the Fully-Sequential architecture by using duplicated hardware
and thus being able to compute two partial products at a time.
These different datapath architectures are compared with imple-
mentations that are 16-bit wide and use as examples: i) an 8-
order FIR filter ii) a 16-point radix-2 common factor FFT with
decimation in frequency. As should be emphasized, although
we have presented FIR and FFT examples with a low number
of coefficients, the techniques described in this work can be ap-
plied to architectures with any coefficient order. The limitation
is that power estimates for these more complex architectures are
more difficult to compute.

A. FIR Filter Architectures
FIR filtering is achieved by convolving the input data samples

with the desired unit impulse response of the filter. The output
Y [n] of an N -tap FIR filter is given by the weighted sum of the
latest N input data samples X[n] as shown in Equation 1.

Y [n] =

N−1∑

i=0

HiX[n − i] (1)

The most direct method of FIR filter implementation is the
Fully-Parallel Direct Form, where delay units are used to store

H7 H6 H5 H4 H3 H2

*

H0H1

+

X[n]

Y[n]

H0 H1 H2 H3 H4 H5 H7H6

+ + + + + + +

X[n]

Y[n]

D D D D D D D

(b)

D D D D D D D D

(a)
Pipelined Version

+ + + + + +D D D D D D D

Fig. 1. Datapath of FIR Filter Fully-Parallel Implementations.

previous input samples as shown in Figure 1(a).
In the Direct Form FIR filter implementation, in each clock

cycle a new data sample and the corresponding filter coefficient
are simultaneously applied to each multiplier. The results of
all multipliers are added simultaneously, producing considerable
glitching at the primary outputs [3].

In our work, we address this problem by implementing two
alternative Fully-Parallel architectures, called Pipelined and
Transposed forms, as shown in Figure 1(a) and Figure 1(b) re-
spectively. As can be observed in Figure 1, the Fully-Parallel
implementations present a large number of multiplier modules,
which can increase area, delay and power consumption in the
architectures, depending on the type of operator used. In order
to optimize these parameters in the Fully-Parallel architectures,
we have used in this work shift-add circuits for the multipliers,
which is possibly because one of the inputs is constant.

The second type of datapath implementations considered in
this work are Fully-Sequential architectures, as a manner to re-
duce hardware requirements for the FIR filter algorithm, shown
in Figure 2. In the sequential implementation the basic idea is to
reduce hardware requirements by re-using as much of the hard-
ware as possible. We have experimented the Direct Form (Non-
Pipelined and Pipelined) and Transposed Fully-Sequential im-
plementations, as shown in the Figures 2(a) and 2(b).

Multiplexer Multiplexer

Shift Register

X[n]

*

+

Result

 Coeficients (Hi)

D

Version
Pipelined

Multiplexer

Coeficients (Hi)

*

X[n]

+

AND2 Gates

control

Register

(a) (b)

RegRegRegReg

RegRegReg

Y[n]

Y[n]

Fig. 2. Datapath of FIR Filter Fully-Sequential Implementations.

In order to enable an intermediate alternative between Fully-
Parallel and Fully-Sequential implementations, we have experi-
mented a Semi-Parallel architecture. In this architecture, shown
in Figure 3, hardware requirements are duplicated with respect

to the Fully-Sequential, allowing two samples to be processed
simultaneously. Again, we have constructed three versions of
the Semi-Parallel architecture.

Multiplexer

*

+

+

Shift_Register

*

X[n]

Coefficients (Hi)

DD

Result

 Pipelined
 Version

Multiplexer Multiplexer Multiplexer

Coefficients (Hi)
Multiplexer

Coefficients (Hi)

*

D

D

X[n]

+

RegRegReg AND2
 Gates

RegRegReg

M

U

X

+

*

Multiplexer

Coefficients (Hi)

Result

(a) (b)

control

Y[n]Y[n]

Fig. 3. Datapath of FIR Filter Semi-Parallel implementations.

B. FFT Architectures
The FFT algorithm allows for an efficient computation of the

Discrete Fourier Transform (DFT) [10]. The hierarchical com-
putational blocks in the FFT structure are stages, groups, and
butterflies. Each stage requires the computation of groups, and
each group requires the computation of butterflies. The butterfly
plays a central role in the FFT computation. For the common
factor FFT algorithm with decimation in frequency, the butter-
fly allows the calculation of complex terms according to Equa-
tions 2 and 3.

Ccomplex = Acomplex + Bcomplex (2)

Dcomplex = (Acomplex − Bcomplex) × Wcomplex (3)

As can be observed in the equations above, one complex ad-
dition, one complex subtraction and one complex multiplication
are involved in the butterfly block. The arithmetic operators for
the complex operation are shown in the Figure 4 for a Fully-
Sequential FFT implementation. In this figure, the arithmetic
operators present in the butterfly block, enable the calculation
of the real and imaginary parts. The results of these calculation
are stored in appropriate register banks shown in the left side
and right side of the Figure 4 for the real and imaginary parts
respectively. The set of multiplexers shown in this figure select
the appropriate values to be stored in the register banks. Several
modules of ROM are required for the storage of twiddle factors.

We have omitted these modules to minimize the complexity of
Figure 4.

The presence of a large number of multiplier operators in the
FFT architecture leads to a significant amount of glitching in a
transform computation. Thus, we have implemented a pipelined
version with the insertion of registers at the multiplier outputs,
as shown using the dotted lines in the Figure 4.

M
U
X

MUX(d)
Xr15

Xr12

Xr6

Xr10

Xr3

Xr5

Xr9

Xr0

Xr14

Xr13

Xr7

Xr11

Xr1

Xr2

Xr4

Xr8

M

U

X

M

U

X

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

ld15

ld14

ld13

ld12

ld11

ld10

ld9

ld8

ld7

ld6

ld5

ld4

ld3

ld2

ld1

ld0

M
U
X

+

-

*

-

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

32b

32b
16bMSB

M

U

X

M

U

X

+

16b

16b

16b

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

ld15

ld14

ld13

ld12

ld11

ld10

ld9

ld8

ld7

ld6

ld5

ld4

ld3

ld2

ld1

ld0

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

MUX
Xi15

Xi12

Xi6

Xi10

Xi3

Xi5

Xi9

Xi0

Xi14

Xi13

Xi7

Xi11

Xi1

Xi2

Xi4

Xi8

*
32b

-

*

+

32b

*
32b

32b
16bMSB

16b

Wr WrWi Wi

Reg Reg Reg Reg

 Pipelined
 Version

T
R
U
N
C

T
R
U
N
C

(a)

(a) (a)

(a)

(b)

M
U
X
(b)

M
U
X
(b)

M
U
X
(b)

(c)

M
U
X

(c)

M
U
X

(c)

M
U
X

(c)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

Fig. 4. Datapath of FFT Fully-Sequential Implementations.

In a 16-point FFT algorithm, it is not viable to produce a
Fully-Parallel version due to the large number of arithmetic op-
erators present in the butterfly block (32 butterflies operating
simultaneously implies 512 arithmetic operators). On the other
hand, in a Fully-Sequential implementation 32 real and 32 imag-
inary terms are performed in the butterfly (4 stages with 8 butter-
fly). Thus, 33 clock cycles are necessary for a full calculation in
the FFT architecture (1 cycle for the 16 point load and 32 cycle
for a transform computation in the butterfly).

In order to speed-up the FFT calculation, we have imple-
mented a Semi-Parallel architecture, presented in Figure 5. In
this architecture, hardware requirements in terms of arithmetic
operators are duplicated with respect to the Fully-Sequential,
because two butterfly are used and two transforms can be per-
formed simultaneously. Thus, the full transform calculation is
performed using half of the cycles used in the Fully-Sequential
version. Again, we have implemented two versions of the Semi-
Parallel architecture (Direct and Pipelined form), as shown in
Figure 5.

III. RELATED WORK ON DSP OPTIMIZATION

Various architectures have been used in FIR filter and FFT
realizations, where implementations in programmable DSP and
hardwired architectures are addressed [2], [4], [11]. For applica-
tions where the flexibility of the programmable processor is not
required, a hardwired implementation is the preferred choice as
such an implementation typically results in higher throughput
and lower power [8].

For the hardwired implementation, architectural transforma-
tions have targeted performance, power and computational com-
plexity [8]. A very efficient technique when targeting low power

M
U
X

MUX
Xr15

Xr3

Xr5

Xr9

Xr12

Xr6

Xr10

Xr0

Xr13

Xr7

Xr11

Xr1

Xr14

Xr2

Xr4

Xr8

M
U
X

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

ld15

ld14

ld13

ld12

ld11

ld10

ld9

ld8

ld7

ld6

ld5

ld4

ld3

ld2

ld1

ld0

+

-

*

-

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

32b

32b
16b

+

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

ld15

ld14

ld13

ld12

ld11

ld10

ld9

ld8

ld7

ld6

ld5

ld4

ld3

ld2

ld1

ld0

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

16b

Xi15

Xi3

Xi5

Xi9

Xi12

Xi6

Xi10

Xi0

Xi13

Xi7

Xi11

Xi1

Xi14

Xi2

Xi4

Xi8

*
32b

-

*
32b

*
32b

16b

Wr1 Wi1

Reg Reg Reg Reg

 Pipelined
 Version

M
U
X

M
U
X

e
f
g
h

e
f
g
h

e
f
g
h

e
f
g
h

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

a

b

c

d

a

b
c

d

a

b
c

d

a

b
c

d

a

b
c

d

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

a

b

c

d

a

b
c

d

a

b
c

d

a

b
c

d

a

b
c

d

M
U
X

M
U
X

M
U
X

M
U
X

+

-

*

+

16b

32b

32b

+

*
32b

-

*

+

32b

*
32b

32b

16b

Reg Reg Reg Reg

e

f

-

h

(a)

(a)

(a)

(a)

(b)

(b)

(b)

(b)

(b) (a)

(b)

(b)

(b)

(a)

(a)

(a)

(c)

(c)

(c)

(c)

(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

MUX(d)

g

Wr2 Wi2 Wr1 Wr2 Wi1 Wi2

T
R
U
N
C

T
R
U
N
C

16b

32b

16b

f

h

T
R
U
N
C

T
R
U
N
C

16b

e
f
g
h

e
f
g
h

e
f
g
h

e
f
g
h

(c)

(c)

(c)

(c)

e

g

X1

X1 X2
X2

Fig. 5. Datapath of FFT Semi-Parallel Implementations.

consumption is to reduce the supply voltage, resulting in a power
reduction proportional to the square of the reduction in the sup-
ply voltage. With the same objective, parallel processing and
pipelining have been applied to the implementation of FIR fil-
ters and FFT architectures [5], [12], [13], [14], [15] as a form of
recovering the performance loss due to a lower supply voltages.

The work proposed in this paper will build on some of the
transformation approaches mentioned, specially the techniques
that target the increase in performance and switching activity
reduction. In particular, similar transformations will be essayed
on dedicated FIR filter and FFT architectures. In our work, we
experiment the use of low power arithmetic operators in the ded-
icated architectures. The use of pipelining approach in the FIR
filter and FFT architectures is also investigated.

In the FIR filter operation, the output is performed by a sum-
mation of data-coefficient products. Thus, some techniques
called Coefficient Ordering, Selective Coefficient Negation and
Coefficient Scaling have addressed the use of coefficient manip-
ulation in order to reduce the switching activity in the multipliers
inputs [1], [8]. The main goal of these techniques is to mini-
mize the Hamming distance between consecutive coefficients in
order to reduce power consumption in the multiplier input and
data bus. The technique is only applied to a Fully-Sequential
architecture. In our work an extension of the Coefficient Order-
ing technique is experimented in the FIR and FFT architectures.
The proposed technique can be applied to both Fully-Sequential
and Semi-Parallel architectures.

IV. LOW POWER TECHNIQUES

This section presents different low power techniques that will
be experimented in the dedicated datapath architectures for DSP.
The reduction of switching activity is addressed by using low
power arithmetic operators and the manipulation of the filter and
FFT coefficients.

A. Low Power Arithmetic Operators
In this section, we summarize the methodology of [7] for the

generation of regular structures for arithmetic operators using
signed radix-2m representation.

A.1 2’s Complement Radix-2m Multiplier Architecture
For the operation of a radix-2m multiplication, the operands

are split into groups of m bits. Each of these groups can be
seen as representing a digit in a radix-2m. Hence, the radix-2m

multiplier architecture follows the basic multiplication operation
of numbers represented in radix-2m. The radix-2m operation in
2’s complement representation is given by Equation 4.

A × B = A
′
× B

′
− A

′
bW−1bW

m
−12

W−m

−aW−1aW

m
−1

W

m
−1∑

j=0

bj2
W−m+j (4)

This operation is illustrated in Figure 6.

1 1 1 1 0 1 1 0

x

 0 0 0 0 0 1 0 0 0 1 1 0

 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 0

0 768 208 4

+

Radix-16
Representation

+ + + =

(-10)

(-98)

Decimal
Representation

1 1 1 1 0 1 1 0

 1 1 1 0x

0 1 0 1 0 1 0 0

1 1 1 1 0 0 1 0
+

1 1 1 1 0 1 1 1 0 1 0 0

(4096x0) (256x3) (16x13) (4)

(980)

(a) (b)

1 0 0 1 1 1 1 0

616 X -1 = -16

1416 X -7 = -112

 (1 1 1 1) 1 1 1 1 0 1 1 1 0 1 0 0

1 1 1 1 0 1 1 0

 1 0 0 1x

1 1 0 1 0 1 1 0

0 0 0 0 0 1 1 1
+

0 0 0 0 0 1 0 0 0 1 1 0

sign extension

(-7)

(14)

6-1

(84)

(-224)

(-140)

6-1

(-42)

(112)

(70)

Fig. 6. Example of a 2’s complement 8-bit wide radix-16 multiplication.

For the W −m least significant bits of the operands unsigned
multiplication can be used. The partial product modules at the
left and bottom of the array need to be different to handle the
sign of the operands.

For this architecture, three types of modules are needed.
Type I are the unsigned modules used in the previous section.
Type II modules handle the m-bit partial product of an un-
signed value with a 2’s complement value. Finally, Type III
modules that operate on two signed values. Only one Type
III module is required for any type of multiplier, whereas
2W

m
− 2 Type II modules and (W

m
− 1)2 Type I modules

are needed. We present a concrete example for W = 8 bit wide
operands using radix-16 (m = 4) in Figure 7.

A.2 Modified Booth Multiplier
The radix-4 Booth’s algorithm (also called Modified Booth)

has been presented in [16]. In this architecture it is possi-
ble to reduce the number of partial products by encoding the
two’s complement multiplier. In the circuit the control sig-
nals (0,+X,+2X,-X and -2X) are generated from the multiplier
operand for each group of 3-b as shown in the example of Fig. 8
for a 8 bits wide operation. A multiplexer produces the partial
product according to the encoded control signal.

Common to both architectures is that at each step of the al-
gorithm two bits are processed. However, the basic Booth cells

**

++

44
4

B3 B2 B1 B0A3 A2 A1 A0B7 B6 B5 B4A3 A2 A1 A0

4 4 4 4

1

**

++

444

 B3 B2 B1 B0A7 A6 A5 A4B7 B6 B5 B4A7 A6 A5 A4

4 4 4 4

1

+++
1 1

4 4

4

4 4

4 4 4 4

P3 P2 P1 P0P7 P6 P5 P4P11 P10 P9 P8P15 P14 P13 P12

Type II Type I

Type IIType III

Fig. 7. Example of a 8-bit wide 2’s complement radix-16 array multiplier.

MD 1 0 1 1 0 1 1 1 (-73)
MR 0 1 0 1 1 0 1 0(0) (+90)

1 0 1 1 0 1 1 1 0 (2*MD)
0 0 1 0 0 1 0 0 1 (-MD)
0 1 0 0 1 0 0 1 0 (-2*MD)

1 0 0 0 0 0 0 0 0 0 0 0 (PP)
0 1 0 0 1 0 0 1 01 0 1

 0 0 0 1 0 0 1 0 0 1 0 (shift)

0 0 1 0 0 1 0 0 1

0 0 0 0 1 1 0 1 1 0 1 1 0 (shift)

0 1 1

1 0 1 1 0 1 1 1 0

1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 (shift)

0 1 0

1 1 0 1 1 0 1 1 1

1 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 (shift)(-6570)

Fig. 8. Example of a 8-bit wide Modified Booth multiplication.

are not simple adders as in the proposed array multiplier, but
must perform addition-subtraction-no operation and controlled
left-shift of the bits on the multiplicand. Besides taking more
area, this complexity also makes it more difficult to increase the
radix value in the Booth architecture.

In [7], it is reported that the radix-4 array multiplier can be
significantly more efficient in terms of power consumption than
the Modified Booth multiplier, allowing for about 50% power
savings.

B. Coefficient Manipulation
Coefficient ordering can be used as a technique for low power

because, in a FIR filter computation, the summation operation is
both commutative and associative. Thus, the filter output is in-
dependent of the order of computing the coefficient product [8].
Coefficient ordering is used in [8] as a technique for low power,
where all coefficients are ordered in a Fully-Sequential circuit so
as to minimize the transitions in the multiplier input and bus. In
our work we have experimented an extension of this technique
in a Semi-Parallel architecture, where the hardware is duplicated
and coefficients are partitioned into groups of coefficients. Thus,
the problem is related to finding the best coefficient partition by
calculating the minimum Hamming distance between the coef-
ficients that fall in each partition.

The pseudo-code presented in Figure 9 describes an algorithm
that optimizes the partitioning and ordering of the coefficients.
In this algorithm, the cost function is calculated for all the com-
binations over the coefficients. For the FIR and FFT architec-
tures used in this work, the total number of permutations is still
reasonable. However, for a higher number of coefficients this
exhaustive algorithm is less attractive due to the time necessary

1. for all permutations of coefficients H(0-7){
2. partition1=Hamming((H[0],H[1]) + (H[1],H[2]) +
3. (H[2],H[3]) + (H[3],H[0]));
4. partition2=Hamming((H[4],H[5]) + (H[5],H[6]) +
5. (H[6],H[7]) + (H[7],H[0]));
6. cost function = partition1 + partition2;
7. if (cost function < minimum found) {
8. save current partition;
9. minimum=cost function;
10. }
11. }
Fig. 9. Pseudo-code of the algorithm for the generation of coefficient partition-

ing and ordering.

to process the large number of combinations. In this case, an
heuristic algorithm should be used to get as near as possible to
the optimal solution.

V. RESULTS

In this section, we discuss the impact of the proposed low
power techniques on dedicated pipelined FIR filter and FFT ar-
chitectures. Area, delay and power consumption for each archi-
tecture are presented. Area is given in terms of the number of lit-
erals. Delay values were obtained in SIS environment [17] using
the general delay model from the mcnc library. This parameter
defines the minimum clock period. Power results were obtained
with the SLS tool [9] using the general delay model. For the
power simulation, we have applied a random pattern signal with
10,000 input vectors represented in 2’s complement. For power
consumption comparisons, we chose to compute the power dis-
sipation per sample for the FIR filter and the power dissipation
per transform for the FFT.

A. Application of the Low Power Arithmetic Operator
In this section, we present results on use of the array (m=2)

arithmetic operators of Section IV-A in the FIR and FFT archi-
tectures. Area, minimum clock period and power consumption
are investigated and compared to the architectures with Modi-
fied Booth operator.

A.1 Area
Table I presents area results for FIR filter and FFT architec-

tures using the array (m=2) and Modified Booth operators. As
can be observed in this table, there is significant area differ-
ence between the architectures with these operators. The Fully-
Sequential and Semi-Parallel architectures which use the array
multiplier operators present slightly more area. This due to the
fact that array multipliers require more area than Booth circuits.

TABLE I. Area results for the pipelined architectures.

Architecture Operators Difference(%)
Booth Array Array vs. Booth

Fully-Sequential
FIR 6427 7329 +14.0

FFT 24099 29867 +23.9

Semi-Parallel
FIR 10569 12437 +17.7
FFT 46000 53246 +15.7

A.2 Minimum Clock Period
Although FIR filter and FFT architectures with the array op-

erators present higher area, these architectures permit a lower

clock period than the architectures with Booth operators, as
shown in Table II. This reduction occurs because in the Fully-
Sequential and Semi-Parallel, both for the FIR and FFT archi-
tectures, the multiplier circuit is present in the critical path (Fig-
ures 2, 3, 4 and 5). For this arithmetic operator, the circuit has a
lower delay value [7].

TABLE II. Minimum Clock Period results in ns for the pipelined architectures.

Architecture Difference(%)
Array vs. Booth

Fully-Sequential
FIR -5.8

FFT -6.3

Semi-Parallel
FIR -5.9
FFT -8.7

A.3 Power Dissipation
The array multiplier applied in this work and the Modified

Booth present reduced power consumption values because of the
reduction of the number of partial product lines. In Table III we
present the power per sample values for the Fully-Sequential and
Semi-Parallel FIR architectures in the pipelined version, using
the array multiplier (m=2) and the Modified Booth multiplier.

TABLE III. FIR architecture - Power per sample (µW).

Architecture Modified Array Difference(%)
Booth m=2 Array vs. Booth

Fully-Sequential 215.4 155.7 -27.7
Semi-Parallel 188.6 136.9 -27.4

As can be observed in Table III, with the use of the array mul-
tiplier power per sample savings above 27% are achievable in
the Fully-Sequential and Semi-Parallel FIR architectures. This
occurs because multiplier circuits are the main responsable for
the power consumption in the FIR architectures and the array
multiplier consumes less power due to the simplest structure and
smaller critical path and delay values.

FFT architectures also have multiplier circuit in the critical
path, as can be observed in Figures 4 and 5. For the FFT struc-
ture, the higher number of multiplier circuits in the butterfly pro-
duces a great amount of glitching activity. Thus, with the use of
the array multiplier, the FFT architectures become significantly
more efficient presenting close to 40% less power consumption
per transform, as shown in Table IV. This power reduction is
mainly due to the lower logic depth of the array multiplier struc-
ture, which has a big impact on the reduction of the amount of
glitching in the FFT circuits. It has been mentioned that these
array multipliers alone may save up to 50% in power when com-
pared to the Modified Booth multiplier [7].

TABLE IV. FFT architecture - Power per transform (mW).

Architecture Modified Array Difference(%)
Booth m=2 Array vs. Booth

Fully-Sequential 156.6 96.0 -38.7
Semi-Parallel 144.8 81.6 -43.6

B. Application of Coefficient Manipulation
The coefficients ordering algorithm presented in [8] reorders

the coefficients in a Fully-Sequential architecture in order to re-
duce the switching activity in the multiplier inputs. In Table V

we show the power per sample results after using this algorithm
in the Pipelined Fully-Sequential FIR filter architecture with ar-
ray (m=2) operator. In this table, it is also shown the power
per sample results after applying the ordering algorithm to the
Semi-Parallel architecture.

TABLE V. FIR architecture - Power per sample (µW).

Original Manipulated Difference(%)
Coefficients Coefficients Manip. vs. Orig.

Fully-Seq 155.7 156.5 +0.5
Semi-Par 136.9 132.5 -3.2

As shown in Table V, there is no significant power per sample
reduction in the FIR architectures for the set of coefficients used
in this work. Moreover, the Fully-Sequential architecture that
uses this technique imposes a bottleneck where 8 clock cycles
are required for each sample. On the other hand, in the Semi-
Parallel architecture the performance is improved since the hard-
ware can be operated at half of clock cycles. Thus, we have
experimented the application of our ordering and partitioning
algorithm in this architecture. As can be observed in Table V,
for the set of coefficients used, the Semi-Parallel architecture
with ordering and partitioning presents more power per sam-
ple reduction compared to Sequential architecture with ordering
algorithm. This technique has the potential to be significantly
more effective in a set of coefficients with higher correlation.

The manipulation techniques that have been applied to the
Fully-Sequential and Semi-Parallel architectures show that the
correlation between coefficients can reduce the switching activ-
ity in the multipliers input. In the FFT algorithm this aspect
becomes more significant due to a higher number of coefficients
used in all the stages of the FFT. Thus, we have a higher oppor-
tunity for saving power by the manipulation of coefficients. Ta-
ble VI shows the power per transform results by the application
of the manipulation technique in the Pipelined Fully-Sequential
and Semi-Parallel FFT architectures with the array multiplier.

TABLE VI. FFT architecture - Power per transform (mW).

Original Manipulated Difference(%)
Coefficients Coefficients Manip. vs. Orig.

Fully-Seq 96.0 85.4 -11.0
Semi-Par 81.6 66.4 -18.6

The higher level of opportunity of applying the ordering algo-
rithm at each stage of the FFT contributes for a significant power
per transform reduction when compared to FIR architectures as
can be compared in Tables V and VI. In a Semi-Parallel archi-
tecture, the coefficients are partitioned into N

4
groups at each

FFT stage. The aspect of applying the ordering technique in a
smaller group of partitioned coefficients increase the proximity
between the coefficients. Thus, the Semi-Parallel architecture
presents a higher power per transform reduction compared to
the Sequential architecture as can be observed in Table VI.

VI. CONCLUSIONS

In this work different, dedicated architectures for FIR filters
and FFT were implemented. Power optimization techniques
were experimented including architectural exploration and co-
efficient manipulation. Low power arithmetic operators were

experimented in the FIR and FFT architectures. Performance
comparisons for pipelined architectures using the array (m=2)
and Modified Booth operators were investigated and the re-
sults showed that, despite higher area shown by the architec-
tures with the array operators, these architectures can present
less minimum clock period and power consumption. Due to
the characteristics of the FIR and FFT algorithms, which are
performed by the product of input data with appropriate coef-
ficients, the best ordering of these coefficients to minimize the
power consumption of the implemented architectures was also
investigated. The results showed that the FFT architectures can
present more power reduction due to the higher opportunity of
using the coefficients manipulation technique.

ACKNOWLEDGMENTS
This research was supported in part by the CAPES

(Brasilia/Brazil) Institute, Universidade Católica de Pelotas (RS,
Brazil) and by the portuguese FCT under program POCTI.

References

[1] M. Mehendale, S. Sherlekar, and G. Venkatesh. Techniques for Low Power
Realization of FIR Filters. Design Automation Conference, 3(3):404–416,
September 1995.

[2] M. Mehendale, S. Sherlekar, and G. Venkatesh. Low-Power Realization
of FIR Filters on Programmable DSP’s. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 6(4):546–553, December 1998.

[3] A. Erdogan and T. Arslan. High Throughput FIR Filter Design for Low
Power SOC Applications. In 13

th Annual IEEE International ASIC/SOC
Conference, pages 21–24, 2000.

[4] M. Baas. A Low-Power, High-Performance, 1024-Point FFT Processor.
IEEE Journal of Solid-State Circuits, 34(3):380–387, March 1999.

[5] K. Parhi. Algorithms and Architectures for High-Speed and Low-Power
Digital Signal Processing. In Proceedings of 4th International Conference
on Advances in Communications and Control, 1993.

[6] E. Mussol and J. Cortadella. Low-Power Array Multipliers with
Transition-Retaining Barriers. In PATMOS, pages 227–235, 1995.

[7] E. Costa, J. Monteiro, and S. Bampi. A New Architecture for Signed
Radix 2m Pure Array Multipliers. In IEEE International Conference on
Computer Design, pages 112–117, September 2002.

[8] M. Mehendale, S. D. Sherlekar, and G. Venkatesh. Algorithmic and Ar-
chitectural Transformations for Low Power Realization of FIR Filters. In
Eleventh International Conference on VLSI Design, pages 12–17, 1998.

[9] A. Genderen. SLS: An Efficient Switch-Level Timing Simulator Using
Min-Max Voltage Waveforms. In Proceedings of the International Con-
ference on Very Large Scale Integration, pages 79–88, 1989.

[10] A. Oppenheim. and R. Schafer. Discrete-Time Signal Processing. Prentice
Hall Signal Processing Series., 1989.

[11] P. Kumhom, J. Johnson, and P. Nagvajara. Design, Implementation, and
Implementation of a Universal FFT Processor. In 13th Annual IEEE Inter-
national ASIC/SOC Conference, pages 182–186, 2000.

[12] S. He and M. Torkelson. Design and Implementation of a 1024-point
Pipeline FFT Processor. In IEEE Custom Integrated Circuits Conference,
pages 131–134, 1998.

[13] S. Douglas and et al. A Pipelined LMS Adaptive FIR Filter Architecture
without Adaption Delay. IEEE Trans. on Signal Processing, 46(3), 1998.

[14] S. Yu and E. Swartzlander. A New Pipelined Implementation of the Fast
Fourier Transform. In Thirty-Fourth Asilomar Conference on Signals, Sys-
tems and Computers, pages 423–427, 2000.

[15] K. Muhammad, R. Staszewski, and P. Balsara. Speed, Power, Area,
and Latency Tradeoffs in Adaptive FIR Filtering for PRML Read Chan-
nels. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
9(1):42–51, February 2001.

[16] I. Khater, A. Bellaouar, and M. Elmasry. Circuit Techniques for CMOS
Low-Power High-Performance Multipliers. IEEE Journal of Solid-State
Circuits, 31:1535–1546, 1996.

[17] E. Sentovich and et al. SIS: A System for Sequential Circuit Synthesis.
Technical report, May 1992.

