
Input Generation for Path Coverage in Software Testing

José C. Costa
IST/INESC

jccc@algos.inesc-id.pt

José C. Monteiro
IST/INESC

jcm@inesc-id.pt

ABSTRACT
The most common approach to checking correctness of a hard-
ware or software design is to verify that a description of the
design has the proper behavior as elicited by a series of input
stimuli. In the case of software, the program is simply run
with the appropriate inputs, and in the case of hardware, its
description written in a hardware description language (hdl)
is simulated with the appropriate input vectors.

Complete software functional testing in the sense of sub-
jecting the program to all possible input values is impractical.
Path testing corresponds to the input stimuli of the program
exercising a selected set of paths through it. But total path
testing is also impractical. Testing only a small set of input
values and a small set of paths is the solution. The problem
is to know which set of paths need to be tested and which
inputs need to be applied to the program.

In our work, we develop a method for obtaining the in-
puts that allow an embedded software program written in a
high-level language to execute a specified path. Given the
path to be executed, our method extracts from statements in
that path a set of linear programming (lp) constraints. The
solution of the lp problem gives us the necessary inputs or
sequence of inputs to exercise that path.

The integration of our method with a hdl functional vector
generation will give us a complete input vector generation
methodology applicable to embedded systems.

1. INTRODUCTION
Embedded systems are used in a growing number of diverse

applications. Examples include consumer electronics, auto-
motive systems and telecommunications, among others. This
prevalence is due to the fact that embedded systems results
from a mix of hardware/software systems. The software part,
which runs on a processor, gives the system the flexibility,
since it can be easily changed depending on the application.
The hardware portion, which executes more specialized func-
tions, is used in time critical subsystems.

Research done in software compilation and validation tech-
niques has been mainly directed to general-purpose software,
and in most cases the developed techniques are not directly
applicable to embedded software (that interacts with hard-
ware). The importance of embedded software has now been
recognized, and research done targeting general-purpose soft-
ware is being retooled to address the problem of embedded
software [10]. Testing is an integral part of software develop-
ment. It needs to be an integral part of programming. Com-
pleting a program should consist of an iterative process of
programming, testing, correcting, testing, and signing off the
program as having met predetermined test criteria.

If it were practical, or even possible, to test exhaustively,
we would stop when all possible tests had been executed and
passed. But testing is expensive, and in all but the sim-
plest systems, exhaustive testing is impossible in a finite time.
Given that we can never prove perfection, we want to avoid
testing beyond the point of significantly diminished returns
- while still achieving the desired level of confidence in our
product. So we need to choose test cases carefully, to achieve
the necessary coverage while avoiding replication.

In path testing, a selected set of paths of the program is ex-
ercised through a set of input stimuli. Complete path testing,
which would give a 100% coverage, is also impractical. Test-
ing only a small set of input values and a small set of paths
is the solution. The problem is to decide which set of paths
need to be tested, and which inputs need to be applied to the
program to activate those paths.

Several approaches exist for obtaining test cases. Dynamic
test data generation [9] is one. In dynamic test data genera-
tion an instrumented version of the program is executed. The
execution flow is thus monitored. This information helps in
the guidance of the search for new and better inputs to cover
a specified program path. Another approach is evolutionary
testing [16, 13] where the test cases are sought by formulating
an optimization problem.

Our work is motivated by recent work on functional vector
generation for an hardware description language (hdl) [4].
In this work an algorithm is presented that is an integration
of linear programming (lp) techniques and 3-satisfiability (3-
SAT) checking [6]. Given a path in the hdl model, an input
stimuli that exercises that path is obtained.

In our work, we develop a method for obtaining the inputs
that allow an embedded software program written in a high-
level language to execute a specified path. Given the path
to be executed, our method extracts from statements in that
path a set of lp constraints. The solution of the lp problem
gives us the necessary inputs or sequence of inputs to exercise
that path.

This process can be repeated until all the paths selected
for testing have been exercised. The paths to be executed
depend on the test thoroughness defined by the designer and
on the type of metric to measure that thoroughness. There
are several metrics that can be used, such as path coverage,
branch coverage, statement coverage [1], pie analysis [15], im-
pact analysis [5] or code coverage [2] to name a few.

In the case of embedded systems its validation is hard be-
cause of their heterogeneity. Software and hardware should
be simulated simultaneously, and furthermore hardware and
software simulations must be kept synchronized, so that they
behave as close as possible to the physical implementation.
Several methods have been proposed for co-simulation [7, 8,
11, 12, 14].

INPUT a,b

x=a-b

x>0

y=by=a

OUTPUT y

noyes

Figure 1: Example flowgraph for the max function.

Integrating our method with a vector generator for hard-
ware will give us a complete vector generation methodology
applicable to embedded systems. This should not be too hard
since our method is already based on a functional vector gen-
erator for hardware.

This paper is organized as follows. In Section 2, we give
an overview of the software testing field and the simulation
vector generation from an hdl description. Our method for
obtaining the input vectors for path coverage is presented in
Section 3. Some examples are presented in Section 4. Finally,
some conclusions and future work are presented in Section 5.

2. RELATED WORK

2.1 Software testing
The most commonly used methods for software testing are

based on path testing. To give a measure of the test thorough-
ness using path testing, several metrics have been developed.
These metrics make use of the concept of control flowgraph.

2.1.1 Control flowgraph
A control flowgraph is a graphical representation of a pro-

gram’s control structure [1]. A control flowgraph consists of
processes, decisions, and junctions. A process is a sequence
of statements such that if any statement is executed, then
all other statements are executed. Thus, a process block is
a sequence of statements uninterrupted by either decisions or
junctions. A decision is a program point at which the control
flow can diverge. A junction is a point in the program where
the control flow can merge. Figure 1 shows the flowgraph of
a program.

A path in the program is a sequence of statements that
starts at an entry, junction, or decision and ends at another,
or possibly the same, junction, decision, or exit. A path may
go through several junctions, processes, or decisions, once or
more than once.

2.1.2 Software path testing
Path testing corresponds to the input stimuli of the program

exercising a selected set of paths through it. There are several
metrics that can give us a measure of the test thoroughness
for some input stimuli [1]. The most important ones are path,
statement and branch coverage.

Path coverage is the most complete of all the path testing
methods. We achieve 100% path coverage when every possi-
ble path in the program is executed. This means that from

the beginning of the program all possible ways of getting to
the end were followed and executed. Reaching 100% path
coverage is very often impractical due to the great number of
possible paths.

Statement coverage targets the execution of every statement
in the program. Although this metric is easily achieved, it is
a very weak one. Many possible buggy conditions are not
tested.

Between the two, in terms of test thoroughness, we have
branch coverage. Branch coverage consists of exercising all
the alternatives of every branch. This metric is only a little
better than statement coverage. It executes every statement
and also tests every branch in each condition, including those
branches that do not have any statement.

Variants of branch coverage such as multicondition cover-
age and loop coverage are also used as coverage metrics. In
multicondition coverage every condition is required to take
every possible value. Loop coverage requires that every loop
is executed zero, one or two times.

2.2 HDL functional vector generation
Sensitization of a program path is not very different from

that of a circuit path. In hardware, sensitizing a path implies
that the value at the input of the path should affect the value
at the output of the path. In software, sensitizing a path
means that the value at the input of the path will permit the
execution of every statement in that path.

Sensitization of a circuit path corresponds to sensitize ev-
ery single module in that path. In the case of software path
sensitization it corresponds to sensitize every single statement
in that path.

The algorithm to circuit path sensitization proposed by Fal-
lah et al [4] is an hybrid algorithm for satisfiability check-
ing that seamlessly integrates lp feasibility and 3-satisfiability
checking. This integration is necessary due to the correlation
between word-level variables and boolean variables.

The word-level variables and its constrains are specified as
a linear programming problem. A linear program (lp) is a
problem that can be expressed as:
minimize cx subject to Ax = b

x >= 0
where x is the vector of variables to be solved for, A is a
matrix of known coefficients, and c and b are vectors of known
coefficients. The expression cx is called the objective function,
and the equations Ax = b are called the constraints. The
constrains can also be expressed as b1 <= Ax <= b2 in most
lp solvers.

The 3-SAT checking consists in solving a boolean formula
which is in the 3-conjuntive normal form (3-CNF). A boolean
formula is in 3-CNF if it is the and of clauses of ors of ex-
actly 3 variables or their negations. This boolean formula is
satisfiable if there is some assigment of the values 0 and 1 to
its variables that causes it to evaluate to 1.

The algorithm that can be applied to integrated hardware
and software testing consists in:

1. write sensitization requirements on intermediate signal
values. For example in the case of an and gate, the side
inputs of the path must be set to 1.

2. for every module in the circuit a set of module-input
module-output relationships is written. In the case of
logical gates, 2-SAT or 3-SAT clauses are written. In the
case of word-level operators, lp constraints are written.

3. solve the satisfiability problem that corresponds to the
conditions obtained in 1 and 2.

For every module in the circuit there is a corresponding set
of lp constraints.

The modules corresponding to addition or subtraction are
translated into lp constraints like in these examples:

C = A + B : A + B − C ≤ 0 ∧ A + B − C ≥ 0
C = A + k : C − A ≤ k ∧ C − A ≥ k

(1)

In the case of scalar multiplication:

C = A × k : C − kA ≤ 0 ∧ C − kA ≥ 0 (2)

In the case of c = (A > B) where c is a boolean variable we
have:

A − B + U(1 − c) ≥ 1 ∧ A − B − Uc ≤ 0 (3)

with U is equal to 2n, where n is the maximum number of bits
in A or B. The lp constraints for the ≥, < and ≤ are similar.

The integer multiplication can be decomposed into linear
operators. Z = X × Y is decomposed into:

Z ≥

n−1∑

i=0

2i
pi Z ≤

n−1∑

i=0

2i
pi (4)

pi − Uxi ≤ 0, 0 ≤ i < n (5)

pi + U(1 − xi) − Y ≥ 0, 0 ≤ i < n (6)

0 ≤ pi < Y, 0 ≤ i < n (7)

lp expressions for the modulus operator and integer division
can also be obtained.

The algorithm then performs a satisfiability search on the 3-
SAT clauses where boolean variables are set to 0, 1. A search
is also done on the lp constraints. The constraints and the
3-SAT clauses are then modified accordingly and a new search
begins.

Since our method is applied to software, we will have very
few boolean variables, and in most cases, most of these are
conditions obtained from comparisons between other types of
variables. Thus, we do not have 3-SAT problem to solve. All
we have are lp constraints, where the boolean variables are
treated as lp variables restricted to the values 0 or 1.

3. INPUT GENERATION FOR PATH COV-
ERAGE

3.1 Overview
The proposed method of input generation for path cover-

age is done in three steps. First, we obtain all the lp con-
straints for the source program, with additional information
on the control structure of the program. Each statement in
the source program corresponds to one or more constraints.
Second, we specify the path that we want to exercise. Third,
with the path specification and the set of all constraints for
the program, we filter only the constraints relevant for the ex-
ecution of the selected path. Then, this subset of constraints
is applied to a lp solver to obtain the value of all the input
variables in the program.

3.2 LP constraints of the program
To obtain the lp constrains from the source program we

parse it extracting the constrains from all the source program

lines. Along with these constrains we maintain the entire con-
trol structure of the source program.

This extraction, despite using a different syntax, is a map-
ping, line by line, of the program source file. For each line
in the source file, we end up with one or more lp conditions.
These gives us, in this first step, the conditions for all the lines
of the source file plus additional information regarding func-
tions, if-then-else conditions and loops. All this information
is then used by a parser to extract only the conditions neces-
sary to execute specified branches in a path. This necessary
conditions depend on the path specified by the designer.

The parser used was c2c, which is a public-domain software
program. c2c works by constructing an Abstract Syntax Tree
(ast) of a c program. The ast can then be manipulated in
several ways, such as adding or deleting nodes in it. Finally,
after the ast has been modified, the c2c tool produces a c

program for that new ast.

3.2.1 Expressions
Before we extract the lp constraints from the source pro-

gram, we parse the source file and substitute every complex
expression by simpler ones, e.g.,

a = b + c + d; ⇒ temp1 = b + c;

a = temp1 + d;

and,

if (a < b + c) . . . ⇒ temp1 = b + c;

temp2 = a < temp1;

if (temp2) . . .

In the second example, we could leave the condition

if (a < temp1)

but using the method shown above we guarantee the same
treatment for all expressions regardless of the fact that they
are assignments, conditions, arithmetic operations, function
calls, etc.

At the same time that we are obtaining the simpler expres-
sions, we extract all the lp constraints.

3.2.2 Assignments
Each time a variable is assigned in the input program, it

must be a different variable in the lp program. Despite be-
ing the same variable in the source program, the fact is that
it has different values when considering the different time in-
stants of its assignment. So, each time an assignment is made
a lp variable is needed. The variable will correspond to the
program source variable and to the time instant of its assign-
ment. Thus, in the lp solver we have different variables that
correspond to the same variable in the source program only
for different time instants.

If we have,
a = b + c;

a = a + 1;

we get,
a 1 - b 1 - c 1 = 0;

a 2 - a 1 = 1;

When we solve this problem we get in a 1 the initial value
of a and in a 2 the final value of a.

3.2.3 Conditions
As shown before, conditions are transformed in this way:

if (a < b) . . . ⇒ temp1 = a < b;

if (temp1) . . .

Thus, for this branch to be executed we have the following
lp constraints:
a 1 - b 1 + (INT MAX+1)×temp1 <= INT MAX;

a 1 - b 1 + (INT MAX+1)×temp1 >= 0;

plus the conditions that specify that the lp variables a 1 and
b 1 are integers,
int a 1;

int b 1;

and the conditions that specify that the lp variable temp1 is
boolean,
temp1 >= 0;

temp1 <= 1;

int temp1;

3.2.4 Control expressions
The true and false conditions from the if-then-else expres-

sions or from the loops must also be translated into lp con-
straints. Both true and false constraints are specified in the
first extraction of the lp conditions along with the control
structure of the program. Choosing which one will be solved
when we solve the lp problem is done when we specify the
path to be executed.

If the path chosen has several executions of a loop then that
loop is unfold as many times as it is executed. When the loop
is unfold the lp conditions are extracted as explained before.

3.2.5 Functions
Since different functions can have variables with the same

name, we have to guarantee that the name of the lp vari-
able includes the information regarding the function. Thus,
in the extraction we guarantee that it is divided in functions
and inside each function we have the lp conditions for all the
branches of that function. As stated earlier, this extraction
has all the information regarding the control structure of the
source program.

3.3 Specifying the execution path
In this second step, the path to be exercised is specified.

This specification is done by defining all the branches to be
executed. The specified paths are chosen depending on the
type of coverage the designer wants. For every path specified,
we obtain a lp problem and consequently a set of input values
that allow the program to execute the path. The process of
specifying the execution path is done manually. In the future
we plan to do this automatically by specifying the desired
coverage level [2].

3.4 Obtaining the input test vectors
With the path specification and all the lp constraints for

the input program, we get the lp constraints for that specific
path. Those lp conditions that we obtained in the extraction
are saved into a file. Next, those conditions are applied to a
lp solver and the input values for the program that allow the
execution of the selected path are obtained.

3.4.1 Parsing the lp file
The file with the constraints is parsed according to the

branch specification. For each branch, all the lp constraints
for that branch are extracted along with the constraints cor-
responding to the condition that allows the branch to be ex-

ecuted. The constraints in the file are almost ready to be
submitted to a lp solver. Two issues need to be taken into
account before the set of lp constraints becomes ready to be
sent to a lp solver:

• for every variable, an index is added. This index cor-
responds to the instant of assignment of the variable.
When a variable is assigned, its index is incremented;

• for every variable, the name of the function to which it
corresponds is added to its name. This allows for the
same variable name in different functions;

• whenever a function is called, lp conditions are added to
reflect the substituting of actual for formal parameters.

When the parsing of the file is complete, we end up with
the lp constraints. Next we submit those constraints to a lp

solver.

3.4.2 Solving the lp conditions
For solving the lp conditions, we are using lp solve which

is a Mixed Integer Linear Program solver based on the Simplex
algorithm [3].

If the problem is feasible, we obtain all the values of all
variables in all functions and in all time instants of the source
program execution. We can then select the variables that de-
pend only on external values from the source program. Those
are the input values for the program that allow the execution
of the selected path.

4. RESULTS
To show in more detail how our method works we present

an example using a string match program. At the end of this
section we present some statistics for some of the examples
tested.

4.1 String matching
The string match program reads a stream of characters from

a file and detects the occurrence of a specific string. The
program activates the output only when there is a match. In
the example that follows, whose code is depicted in Figure 2,
the string that we are after is ’ack’.

Suppose that we want to execute line 13. There is a large
number of paths that include line 13, but to make things sim-
ple we choose the shorter path. We want the path that exe-
cutes lines 7, 8, 10, 11, 12 and 13. We do not take into account
variable f since it is only an index to a file. The relevant value
is the value read from the file, which in this case is the variable
c. So, the following conditions must be met:
line 8: i 0 = 0;
line 10: c 0 != -1;
line 11: i 0 = 0;
line 12: c 0 = 97;
where the index of the variables corresponds to the index of
the assignment, the value −1 corresponds to the EOF and the
value 97 corresponds to the character ’a’. The fact that we
have the condition in line 8 will become clear in the next
example. The lp constraints for these conditions are (see Sec-
tions 2 and 3):

line 8:
i 0 = 0;

line 10: since we do not have the inequality operator in the
lp constraints accepted by the lp solver, we have to transform
this into:

1: main()
2: {
3: FILE *f;
4: char c;
5: int i;
6:
7: f = fopen("string.dat", "r");
8: i = 0;
9:
10: while((c = fgetc(f)) != EOF){
11: if (i == 0){
12: if (c == ’a’)
13: i = 1;
14: }
15: else if (i == 1){
16: if (c == ’c’)
17: i = 2;
18: else if (c == ’a’)
19: i = 1;
20: else
21: i = 0;
22: }
23: else if (i == 2){
24: if (c == ’k’)
25: printf("Found String\n");
26: else if (c == ’a’)
27: i = 1;
28: else
29: i = 0;
30: }
31: }
32: }

Figure 2: C code for the string matching program.

tmp1 = (c_0 > -1);

tmp2 = (c_0 < -1);

tmp3 = tmp1 || tmp2;

tmp3 = 1;

In lp constraints we get:

c_0-(INT_MAX+1)temp1 >= -INT_MAX-1;

c_0-(INT_MAX+1)temp1 <= -1;

c_0+(INT_MAX+1)temp2 <= INT_MAX-1;

c_0+(INT_MAX+1)temp2 >= -1;

tmp3-tmp1 >= 0;

tmp3-tmp2 >= 0;

-tmp3+tmp1+tmp2 >= 0;

tmp3 = 1;

and finally, we have to state that tmp1 and tmp2 are boolean:

tmp1 >= 0;

tmp1 <= 1;

tmp2 >= 0;

tmp2 <= 1;

int tmp1;

int tmp2;

For lines 11 and 12 we have:

i_0 = 0;

c_0 = 97;

Solving this lp problem we get:

i_0 = 0

c_0 = 97

tmp1 = 1

tmp2 = 0

tmp3 = 1

Examining the results, we see that for the execution of the
specified path we have to have as an initial condition the value
of c to be ’a’. The remaining results are of no interest.

Let us consider another example. Assume we want to ex-
ecute line 17. We could choose the path that executes lines
7, 8, 10, 15, 16, 17. The following conditions are necessary to
execute that path:
line 8: i 0 = 0;
line 10: c 0 != -1;
line 11: i 0 != 0;
line 15: i 0 = 1;
line 16: c 0 = 99;

This gives us the following lp constraints corresponding to
the conditions above:

i_0 = 0;

c_0-(INT_MAX+1)temp1 >= -INT_MAX-1;

c_0-(INT_MAX+1)temp1 <= -1;

c_0+(INT_MAX+1)temp2 <= INT_MAX-1;

c_0+(INT_MAX+1)temp2 >= -1;

tmp3-tmp1 >= 0;

tmp3-tmp2 >= 0;

-tmp3+tmp1+tmp2 >= 0;

tmp3 = 1;

tmp1 >= 0;

tmp1 <= 1;

tmp2 >= 0;

tmp2 <= 1;

int tmp1;

int tmp2;

i_0-(INT_MAX+1)temp4 >= -INT_MAX;

i_0-(INT_MAX+1)temp4 <= 0;

i_0+(INT_MAX+1)temp5 <= INT_MAX;

i_0+(INT_MAX+1)temp5 >= 0;

tmp6-tmp4 >= 0;

tmp6-tmp5 >= 0;

-tmp6+tmp4+tmp5 >= 0;

tmp6 = 1;

tmp4 >= 0;

tmp4 <= 1;

tmp5 >= 0;

tmp5 <= 1;

int tmp4;

int tmp5;

i_0 = 1;

c_0 = 99;

Solving this lp problem we get an answer indicating that
this is an infeasible problem. We could see that just by looking
at the expressions for each line. The value i could not be equal
to 0, different from 0 and equal to 1 at the same time. From
this example it becomes clear that the condition for line 8
needs to be there to ensure that some invalid branch is not
executed.

Thus, a good path to execute line 17 would be path 7, 8,
10, 11, 12, 13, 10, 15, 16, 17. In this case we would get two

different lp variables for the variable i. One with the value
0, corresponding to the first run of the loop and another with
value 1 corresponding to the second run of the loop. Also in
this case we would have two different values to c. The first
one corresponding to the character ’a’ and the second one
corresponding to ’c’.

4.2 Statistics for some examples
We present results of our method using three examples. One

of the programs is the string matching shown before, one com-
putes Fibonacci numbers without using recursion and one is a
program that simulates an elevator with five floors. All three
were implemented using the c language.

In Table 1 we present some statistics for the three programs.
It gives us the number of lines of the source program and the
number of lp constraints after parsing the source program.

Table 1: Size of the programs in number of lines and

number of constraints.
Program # lines # lp constraints

String match 42 216
Fibonacci 28 72
Elevator 298 1377

In Table 2 we present the complexity of the lp problem
and the CPU time to solve it. All reported CPU times are
in seconds and were obtained on a Sparc Ultra 60 with 1G of
main memory. In the case of the program for string matching
the results correspond to a 100% statement coverage. In the
case of the Fibonacci program the results shown correspond
to executing the main loop an hundred times.

Table 2: Size of the lp problems.

lp # lp

Program constraints variables CPU (s)
String match 602 114 0.51

Fibonacci 1261 612 7.13

5. CONCLUSIONS
We developed a method for obtaining the inputs that allow

an embedded software program written in a high-level lan-
guage to execute a specified path. This is accomplished by
constructing a set of lp constraints with all the conditions
that are necessary for the different branches is that path to
be exercised. The solution to this lp problem gives us the
input variables, or sequence of variables, we need.

In this version, the specification of the paths to be executed
is still performed manually. The aim of this research is to
have in the future a methodology for automatic path selection,
guaranteeing some specified code coverage based on a given
metric.

The final objective is to integrate this software validation
method with hdl functional vector generation to give us a
complete input vector generation methodology applicable to
embedded systems.

6. REFERENCES
[1] B. Beizer. Software Testing Techniques. Van Nostrand

Rheinhold, New York, second edition, 1990.

[2] J. Costa, S. Devadas, and J. Monteiro. Observability
analysis of embedded software for Coverage-Directed
validation. In Proceedings of the International

Conference on Computer Aided Design, pages 27–32,
2000.

[3] G. B. Dantzig. Application of the Simplex Method to a
Transportation Problem. Activity Analysis and
Production and Allocation, pages 359–373, 1951.

[4] F. Fallah, S. Devadas, and K. Keutzer. Functional
vector generation for HDL models using linear
programming and 3-satisfiability. In Design Automation
Conference, pages 528–533, 1998.

[5] T. Goradia. Dynamic Impact Analysis: A Cost Effective
Technique to Enforce Error Propagation. In Proceedings
of Int’l Symposium on Software Testing and
Applications, March 1993.

[6] J. Gu, P. Purdom, J. Franco, and B. Wah. Algorithms
for Satisfiability (SAT) Problem: A Survey. In Discrete
Mathematics and Theoretical Computer Science:
Satisfiability (SAT) Problem, volume 35, pages 19–152.
American Mathematical Society, 1997.

[7] R. K. Gupta, C. N. C. Jr, and G. D. Micheli. Synthesis
and Simulation of Digital Systems Containing
Interacting Hardware and Software Components. In
Proceedings of the Design Automation Conference, June
1992.

[8] A. Kalavade and E. A. Lee. Hardware/Software
Co-design Using Ptolemy - a Case Study. In Proceedings
of the International Workshop on Hardware-Software
Codesign, September 1992.

[9] B. Korel. Automated software test data generation.
IEEE Transactions on Software Engineering,
16(8):870–879, 1990.

[10] E. A. Lee. Embedded Software - An Agenda for
Research. ERL Technical Report UCB/ERL M99/63,
University of California, Berkeley, CA, USA 94720,
December 1999.

[11] S. Lee and J. M. Rabaey. A Hardware-Software
Co-simulation Environment. In Proceedings of the
International Workshop on Hardware-Software
Codesign, October 1993.

[12] J. Rowson. Hardware/Software Co-simulation. In
Proceedings of the Design Automation Conference, pages
439–440, 1994.

[13] R. Sagarna, J. A. Lozano, R. Murga, and L. M.
Gonzlez. Dealing with software testing via estimation of
distribution algorithms: a preliminary research. In
Proceedings of the Second Spanish Conference on
Metaheuristics, Evolutive and Bioinspired Algorithms,
pages 70–77, Spain, 2003.

[14] K. ten Hagen and H. Meyr. Timed and Untimed
Hardware/Software Cosimulation: Application and
Efficient Implementation. In Proceedings of the
International Workshop on Hardware-Software
Codesign, October 1993.

[15] J. M. Voas. PIE: A Dynamic Failure-Based Technique.
IEEE Transactions on Software Engineering,
18(8):717–727, August 1992.

[16] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary
test environment for automatic structural testing.
Information and Software Technology Special Issue on
Software Engineering using Metaheuristic Innovative
Algorithms, 43(14):841–854, 2001.

