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Abstract

Power dissipation has recently emerged as one the most
critical design constraints. A wide range of techniques has
already been proposed for the optimization of logic circuits
for low power. Power management methods are among the
most effective techniques for power reduction. These meth-
ods detect periods of time during which parts of the circuit
are not doing useful work and shut them down by either
turning off the power supply or the clock signal.

Several methods have been presented that perform shut-
down on a clock-cycle base. Depending on the input con-
ditions at the beginning of a clock-cycle, the clock driving
some of the registers in the circuit can be inhibited, thus
reducing the switching activity in the fanout of those regis-
ters. These techniques are referred to as data-dependent or
dynamic power management techniques.

In this tutorial we will describe some of the most rep-
resentative data-dependent power management techniques
that have recently been proposed, namely: precomputa-
tion, guarded evaluation, gated-clock finite state machines
(FSM)’s and FSM decomposition. Each of these techniques
uses a different approach to identify the input conditions
for which the circuit (or part of) can be disabled. These
techniques are put into perspective and recent results are
discussed.

1 Introduction

Power consumption has become a primary concern in the
design of integrated circuits. Two independent factors have
contributed for this. On one hand, low power consumption
is essential to achieve longer autonomy for portable devices.
On the other hand, increasingly higher circuit density and
higher clock frequencies are creating heat dissipation prob-
lems, which in turn raise reliability concerns and lead to
more expensive packaging.

During normal operation of well designed CMOS cir-
cuits, power consumption is determined by the switching
activity in the circuit [5]. Under a generally accepted sim-
plified model, the power dissipation at the output of a gate
g in a logic circuit is given by:

Pg =
1

2
· Cg · V 2

DD · f · Ng (1)

where Pg denotes power, VDD the supply voltage, and f

the clock frequency. Cg represents the capacitance gate g

is driving and Ng is the switching activity at the output of
gate g, i.e., the average number of gate output transitions
per clock cycle. The product Cg · Ng is called switched
capacitance.

In the last few years, research on techniques for low
power at various levels of design has intensified. Most
power optimization techniques at different levels of abstrac-
tion target the minimization of the switched capacitance in
the circuit [7].

Techniques based on disabling the input/state registers
when some input conditions are met have been proposed
and shown to be among the most effective in reducing the
overall switching activity in sequential circuits. The dis-
abling of the input/state registers is decided on a clock-cycle
basis and can be done either by using a register load-enable
signal or by gating the clock. A common feature in these
methods is the addition of extra circuitry that is able to iden-
tify input conditions for which some or all of the input/state
registers can be disabled. This class of techniques is some-
times referred to as logic level or dynamic power manage-
ment.

In this paper, we review these logic level power man-
agement techniques. The different approaches to identify
the input conditions for which the circuit (or part of) can be
disabled are analyzed and compared.



2 Power Management

So called power management techniques shutdown
blocks of hardware for periods of time in which they are
not producing useful data. Shutdown can be accomplished
by either turning off the power supply or by disabling the
clock signal. A system-level approach is to identify idle pe-
riods for entire modules and turn off the clock lines for these
modules for the duration of the idle periods ([5], Chapter
10).

However, there still is no real methodology for system
level power management. It is up to the designer to devise a
strategy for power management for a particular project. One
first attempt at the register-transfer level is given in [8]. A
scheduling algorithm that tries to maximize the shutdown
period of execution units is proposed. Given throughput
constraints and the number of execution units available, op-
erations are scheduled such that those that generate control-
ling signals are computed first, thus indicating the flow of
data through the circuit. Power is saved by only activat-
ing hardware modules involved in computing the final result
and shutting down all other modules.

In contrast, a few techniques has been proposed at the
gate level. These techniques are based on disabling the in-
put/state registers when some input conditions are met, ei-
ther by using a register load-enable signal or by gating the
clock. In this situation there will be zero switching activ-
ity in the logic driven by input signals coming from the
disabled registers. The main difference from system-level
power management is that the shutdown of hardware is de-
cided on every clock cycle, hence the name dynamic power
management.

In order to decide whether to load or not new values into
the registers, some extra logic has to be added to the origi-
nal circuit. Naturally, this is redundant circuitry, increasing
both area and power dissipation. In fact, logic-level power
management techniques tradeoff some area for lower power
consumption. The argument is that power is becoming the
main constraint and that area is no longer critical.

Even if area is of no concern, this extra logic, which
is active all the time, increases power consumption. The
power savings obtained by shutting down the registers must
compensate for this overhead. The more complex this logic
is, the larger the power overhead. Thus, on one hand, the
more input conditions that are targeted for register shut-
down, the larger the period of time during which the original
circuit is being powered down. On the other hand, the larger
the power penalty from the extra logic. In general, there is
an optimum size for the extra logic and the goal of the dif-
ferent power management techniques at the logic level is to
find this optimum.

The motto of logic-level power management is to have
a small amount of logic that is active most of the time, but
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Figure 1. Example of gated-clock FSM.
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Figure 2. FSM transformation: (a) Mealy, (b)
Locally Moore.

that is able to shutdown a much larger circuit during that
time.

3 Dynamic Power Management Techniques

The most representative power management techniques
that have been proposed are described in this section.

3.1 Exploiting Self-Loops in FSMs

The gated-clock finite state machines (FSMs) ap-
proach [4], depicted in Figure 1, is based on identifying
self-loops in a Moore FSM. If the FSM enters a state with
a self-loop, the signal Fa is asserted and the clock is turned
off. In this situation, the inputs to the combinational logic
block do not switch, and thus there is virtually zero power
dissipation in that block. When the input values cause the
FSM to make a state transition, the clock signal is again
enabled and the circuit resumes normal operation.

In order to achieve significant power savings, the pri-
mary input lines have to be blocked. Thus, this procedure is
only applicable to FSMs where the output lines do not de-
pend directly on the primary input lines (i.e., Moore FSMs).
This is a severe limitation of the method.

To overcome this problem, techniques to locally trans-
form a Mealy FSM into a Moore FSM are given in [4].
Consider the state transition graph (STG) of the Mealy FSM
of Figure 2(a). The self-loops of state s0 can be used di-
rectly since the output assumes the same value for all of
them. However, the output depends on the input values for
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Figure 3. FSM general decomposition: (a) tra-
ditional, (b) with power management.

the self-loops of state s1, therefore no clock-gating is pos-
sible. The STG can be transformed into an equivalent one
as shown in Figure 2(b), where state s1 has been split into
states s1a and s1b. Clock-gating is now possible for the
self-loops in each of these states.

3.2 FSM Decomposition

Decomposition of finite state machines targeted for low
power has been recently proposed [9, 6]. The basic idea is
to decompose the STG of original finite state machine into
two coupled STGs that together have the same functionality
as the original machine. Except for transitions that involve
going from one state in one sub-FSM to a state in the other,
only one of the sub-FSMs needs to be clocked.

The techniques described in [9] and [6] differ both in the
way the partitioning of the states is performed and in the
structure of the final circuit.

The technique of [9] follows the standard general decom-
position structure, as shown in Figure 3(a). The selection of
the states is such that only a small number is selected for
one of the sub-FSMs. This selection consists in searching
for a small cluster of states such that summation of the prob-
ability of transitions between states in the cluster is high
and with a very low probability of transition to and from
states outside of the cluster. The aim is to have a small
sub-FSM that is active most of the time, disabling the larger
sub-FSM. The reason for requiring a small number of tran-
sitions to/from the other sub-FSM is that this corresponds
to the worst situation when both sub-FSMs are active.

The power optimized structure is shown is Figure 3(b).
Each sub-FSM has an extra output that disables the state
registers of the other sub-FSM. This extra output is also
used to stop transitions at the inputs of the large sub-
FSM. To avoid the area/power overhead incurred by adding
latches, and since when this technique is effective the small
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sub-FSM is in operation most of the time, the inputs to the
small sub-FSM are not filtered.

The target structure of the decomposition strategy of [6]
is not based on two different sub-FSMs. There is only one
set of state registers, but the combinational logic block they
drive is decided from the encoding of the present state. The
structure for a 2-way decomposition is depicted in Figure 4.

The states selected for sub-FSM 1 are all encoded such
that the present state line 0 (ps0) is always 0. Conversely,
all states in sub-FSM 2 have ps0=1. Then, for all transi-
tions within sub-FSM 1, only the combinational logic block
1 will be active and vice-versa.

In [6], the cost function used in the partitioning of the
states tries to maximize the probability of transitions within
one sub-FSM (with no constraint on the number of states)
and to minimize an estimate of the overhead involved.

These methods for FSM decomposition can be seen as an
extension of the gated-clock for FSM self-loops approach.
In FSM decomposition the cluster of states that are selected
for the one sub-FSM can be considered as a “super-state”
and then transitions between states in this cluster are no
more than self-loops in this “super-state”. The decision as
to what states make up the “super-block” basically gives the
opportunity to maximize the number of self-loops. Still, the
overheads of these techniques can be quite different.

3.3 Precomputation

The precomputation method was first proposed in [1,
10], and has been extended to be applicable to combina-
tional modules in [12]. In this method, a simple combi-
national circuit (the precomputation logic) is added to the
original circuit. Under certain input conditions, the precom-
putation logic disables the loading of all or a subset of the
input registers. Under these input conditions, no power is
dissipated in the portions of the original circuit with only
disabled registers as inputs.

The basic architecture of this method is shown in Fig-
ure 5. A is the original combinational logic. g1 and g2

constitute the precomputation logic and are designed such
that they are a function of a subset of the inputs to A. Power
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dissipation in the original circuit A is reduced when the out-
puts of either g1 or g2 evaluate to 1.

The choice and the number of inputs to use for the g1 and
g2 functions is critical. The more inputs used, the highest
the probability the precomputation logic will be active, thus
disabling logic in block A. However, the size of the precom-
putation logic increases, a circuitry overhead that is active
all the time, thus offsetting the gains obtained by disabling
A a larger fraction of the time.

Once the number of inputs to the precomputation logic
is fixed, the input selection is based on the probability that
the outputs can be computed without the knowledge of a
specific input, i.e., the size of the observability don’t-care
set (ODC):

ODCi = fxi
· fxi

+ fxi
· fxi

(2)

Inputs with lowest prob(ODCi) are selected to be in the
precomputation logic.

Guarded evaluation [13] identifies cones internal to the
circuit that can be shut down under certain input conditions.
In the process, it creates new transition barriers (guards) in
the form of additional latches or OR/AND gates. Instead of
adding the precomputation logic to generate the clock dis-
abling signal, guarded-evaluation uses signals already exist-
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Figure 7. CDFG and schedule for |a− b| using
2 control steps.

ing in the circuit.
This technique is depicted in Figure 6 where the transi-

tion guards are shown in grey. In this figure, only one of the
combinational logic blocks, either CL1 or CL2, will have
transitions at the inputs, defined by the the value of the se-
lect signal c. Therefore, there will be no power consumption
in the other logic block.

Yet another similar technique, named Computational
Kernel Extraction has been proposed recently [3]. This
method is applicable to Finite State Machines (FSM) and is
based on constructing an alternative logic block for a subset
of the next state function. Power is reduced by using this
simpler block and shutting down the original circuit when-
ever a transition in the selected subset is activated.

3.4 Scheduling to Enable Power Management

One first attempt at dynamic power management at the
register-transfer level was proposed in [8]. A scheduling
algorithm that tries to maximize the shutdown period of
execution units is proposed. Given throughput constraints
and the number of execution units available, operations are
scheduled such that those that generate controlling signals
are computed first, thus indicating the flow of data through
the circuit. Power is saved by only activating hardware
modules involved in computing the final result and shutting
down all other modules.

As an example, say we want to compute |a − b| and use
the approach shown in Figure 7. Assume that one control
step is required for each of the three operations (−, > and
MUX). The only precedence constraint for this example is
that the multiplexor operation can only be scheduled after
all other three operations. If only two control steps are al-
lowed to compute |a − b|, then necessarily the operations
a > b, a − b and b − a (we need two subtractors) have to
be executed in the first control step and the multiplexor in
the second control step as indicated in Figure 7. If instead
we are allowed three control steps, only one subtractor is
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Figure 8. Schedule for |a − b| using 3 control
steps.

required if the operations a − b and b − a are scheduled in
different control steps, one in the first control step and the
other in the second. Operation a > b can be scheduled in
any of these two control steps and the multiplexor will be in
the third control step, as shown in Figure 8(a). In both these
cases, both a− b and b− a are computed although only the
result of one of them is eventually used. This is obviously
wasteful in terms of power consumption.

The scheduling algorithm proposed in [8] attempts to as-
sign operations involved in determining the data flow (in
this case a > b) as early as possible in the initial control
steps, thus indicating which computational units are needed
to obtain the final result. Only those units that eventually get
used are activated. The algorithm chooses a schedule only
if the required throughput and hardware constraints are met.
In other words, the algorithm explores any available slack
to obtain a power manageable architecture. In the previous
example, assuming three control steps, the scheduling algo-
rithm will assign a > b to the first control step and a−b and
b − a to the second. Depending on the result of a > b, only
the inputs to one of a − b and b − a will be loaded, thus no
switching activity will occur in the subtractor whose result
is not going to be used. This situation is shown in Figure
8(b), where the dashed arrows indicate that the execution of
the ’−’ operations depends on the result of the comparator.

4 Results and Discussion

Results for some of the techniques described in the previ-
ous section are presented in Table 1, taken from the respec-
tive references. The area overhead is given under column
%A (= (

Aopt

Aorig
− 1) × 100) and the power savings under

column %P (= (1 −
Popt

Porig
) × 100). R is the ratio:R =

Aopt×Popt

Aorig×Porig
which can be used as a measure of the effective-

ness of the optimization procedure. Entries with ’–’ indicate

that either the technique is not effective for this example or
the result is not available.

From this table, several observations can be made. Pre-
computation [1] seems to be able to reduce power dissipa-
tion for most circuits, yet the power reduction is not very
significant for some. A reduction below 10% may be in the
noise of the error of the estimation tool. It is the technique
with the smallest area overhead.

The applicability of the self-loop technique [2] is more
restrict, it works well mainly for reactive systems. Nev-
ertheless, power reduction can be achieved for circuits for
which the FSM decompositions approaches are ineffective,
mostly because of the smaller circuitry overhead.

The FSM decomposition approaches [9, 6] allow for
the largest power savings. At the same time, these tech-
niques also present the largest area overhead. This overhead
makes these techniques not applicable to small FSMs. The
method using the traditional FSM decomposition [9] has
some power gain over the partitioning of state encodings [6]
because of the strategy to find a small sub-FSM that is the
one active most of the time. The method of [6] cannot be
tuned for this since it uses the same registers for both sub-
FSMs. However, this sharing reduces the area overhead.

One advantage of the precomputation method is that it
works at the circuit level. For the methods of [2, 6, 9], the
STG of the FSM, if not given, has to be extracted from the
circuit in order for the power optimization procedure to be
performed. This severely limits the size of the sequential
circuit to which these techniques can be applied. Research
work to extend these techniques so that the STG can be han-
dled implicitly is currently under way.

A final word on testing. Since all these methods add re-
dundant logic to the original circuit, the testing of the power
managed circuits is made more difficult because of all the
redundant faults. Some initial work on solving this problem
has been presented in [11].
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