
Mining Patterns Using Relaxations of
User Defined Constraints

Cláudia Antunes and Arlindo L. Oliveira

Instituto Superior Técnico / INESC-ID,
Department of Information Systems and Computer Science,

Av. Rovisco Pais 1,
1049-001 Lisboa, Portugal

{claudia.antunes, arlindo.oliveira}@dei.ist.utl.pt

Abstract. The main drawbacks of sequential pattern mining have been its lack
of focus on user expectations and the high number of discovered patterns.
However, the solution commonly accepted – the use of constraints – approxi-
mates the mining process to a hypothesis-testing task. In this paper, we pro-
pose a new methodology to mine sequential patterns, keeping the focus on user
expectations, without compromising the discovery of unknown patterns. Our
methodology is based on the use of constraint relaxations, and it consists on
using them to filter accepted patterns during the mining process. We propose a
hierarchy of relaxations, applied to constraints expressed as context-free lan-
guages.

1 Introduction

Sequential Pattern Mining addresses the discovery of existing maximal frequent
sequences in a given database. This type of structure appears when the data to be
mined has some sequential nature, i.e., when each piece of data is an ordered set of
elements, like events in the case of temporal information, or nucleotides and amino-
acid sequences for problems in bioinformatics.

In general, we can see sequential pattern mining as an approach to perform inter-
transactional analysis, being able to deal with sequences of sets of items. Indeed, it
was motivated by the need to perform that kind of analysis, mostly in the retailing
industry, but with applications in other areas like the medical domain. The problem
was first introduced by Agrawal and Srikant, and in the last years, several sequential
pattern mining algorithms were proposed [11], [13], [9]. Despite the reasonable
efficiency of those algorithms, the lack of focus and user control has been prohibitive
for the generalized use of sequential pattern mining. Indeed, the large number of
discovered patterns makes the analysis of discovered information a difficult task.

In order to solve this problem, several authors have promoted the use of con-
straints to represent background knowledge and to filter the patterns of interest to the
final user. This approach has been widely accepted by the data mining community,
since it allows the user to control the mining process and reduces the search space,
which contributes significantly to achieve better performance and scalability levels.

The simplest constraint over the sequence content is to impose that only some items
are of interest – item constraints. An example of such constraint is the use of Boo-
lean expressions over the presence or absence of items [12]. When applied to sequen-
tial pattern mining, constraints over the content can be just a constraint over the
items to consider, or a constraint over the sequence of items. More recently, regular
languages have been proposed [3] and used to constrain the mining process, by ac-
cepting patterns that may be accepted by a regular language. The constrained algo-
rithms use a deterministic finite automaton (DFA) to define the regular language.
Generally, a finite automaton consists of a set of states and a set of transitions from
state to state that occur on symbols chosen from an alphabet. When applied to se-
quential pattern mining, strings (sequences of symbols) are replaced by sequences of
itemsets.

Although this approach has contributed to reduce the number of discovered pat-
terns and to match them to the user expectations, restricting the search approximates
the mining process to a simple hypothesis-testing task [4]. Indeed, using constraints
to filter the discovered sequential patterns prevents the discovery of unknown ones,
failing to accomplish one of the main goals of data mining – the discovery of novel
information This claim is even stronger when applied to sequential data, where more
restrictive constraints (like regular languages) have been used. By novel information,
we mean the information that is not trivially inferred from the constraint.

In this paper, we propose a new mining methodology to solve the trade-off be-
tween satisfying user expectations (by using background knowledge) and mining
novel information. Our methodology is based on the use of constraint relaxations,
and it assumes that the user is responsible for choosing the strength of the restriction
used to constrain the mining process. We propose a hierarchy of constraint relaxa-
tions (for constraints expressed as formal languages – either regular or context-free),
from conservative to non-conservative relaxations.

After a small description of the use of context-free languages to deal with se-
quences of itemsets (section 2), the new methodology is defined (section 3), present-
ing each of the relaxations (including the extension of the ones proposed in [3] –
Naïve, Legal and Valid). In section 4, we evaluate the use of constraint relaxations,
comparing the number of discovered patterns and the processing times for each re-
laxation, when mining a synthetic and a real-life dataset. Section 5 concludes the
paper with some discussion and ideas for future work.

2 Context-free Languages for Sequences of Itemsets

Recent work [1] has shown that regular expressions can be substituted by context-
free languages, without compromising the performance of algorithms, when dealing
with strings of items. This is useful because context-free languages are more expres-
sive than regular languages, being able to represent constraints that are more inter-
esting. In particular, the structure of constrained sequential pattern mining algo-
rithms does not need any change to use context-free languages as constraints. The
only adaptation is the substitution of the finite automaton by a pushdown automaton

(PDA), to represent the context-free language.

A pushdown automaton is a tuple M=(Q,Σ,Γ,δ,q0,Z0,F), where: Q is a finite set of
states; Σ is an alphabet called the input alphabet; Γ is an alphabet called the stack al-
phabet; δ is a mapping from Q×Σ∪{ ε} ×Γ to finite subsets of Q×Γ* ; q0∈Q is the initial
state; Z0∈Γ is a particular stack symbol called the start symbol, and F ⊆Q is the set of
final states [6].

The language accepted by a pushdown automaton is the set of all inputs for which
some sequence of moves causes the pushdown automaton to empty its stack and
reach a final state.

When applied to the process of mining sequential patterns from sequences of
itemsets instead of strings (sequences of symbols), pushdown automata have to be
redefined. The problem is related with the fact that existent algorithms manipulate
one item per iteration, instead of an entire itemset. In this manner, we need to per-
form partial transitions, corresponding to the item involved at the specific step itera-
tion. To illustrate this situation consider the pushdown automaton defined over item-
sets represented in Fig. 1 (left). This PDA generates sequences with the same num-
ber of baskets (a,b) on the left and right side of c, which means that it generates

q2q1

[(a,b),X]
�

pop

[ε, S]
�

pop

[(a,b), S]
�

push X

[(c), X]
�

no op

[(a,b), X]
�

push X

q2q1

[(a,b),XY]
�

pop

[ε, S]
�

pop

[(a,b), S]
�

push XY

[(c), XY]
�

no op

[(a,b), XY]
�

push XY

Fig. 1 Pushdown (left) and Extended Pushdown (right) automata

sequences like (a,b)c(a,b) or (a,b)(a,b)c(a,b)(a,b). Formally, it can be defined as the
tuple M=(Q, Σ, � Γ, � δ, � q1, S, F), with Q={ q1, q2} the set of states, � Σ={ a, b, c} its al-
phabet, � Γ={ S, X} the stack alphabet, q1 the initial state, S the initial stack symbol
and F={ q2} the set of final or accepting states. Finally, δ corresponds to the five
transitions illustrated in Fig. 1-left (for example "[(a,b),S]

�
pushX" represents the

transition from state q1 to state q2, when the stack has the symbol S in the top and we
are in the presence of (a,b)).

Consider for example that algorithm PrefixGrowth [10] is applied and it finds a, b
and c as frequent. Then it will have to proceed to discover which items are frequent
after a. At this point, there is already one problem: given that it has found a, which
operation should it perform over the stack? If it pushes X, then c will be accepted
after a, but if it only applies the push operation after finding b, then it will accept, as
"potentially accepted", sequences like aaa, aaaaa and so on, since S remains on the
top of the stack.

In order to deal with itemsets, we extend the notion of PDA.

An extended pushdown automaton (ePDA) is a pushdown automaton E=(Q, Σ, Γ, δ, q0,
Z0, F), where δ is a mapping function from Q×P (Σ)∪{ ε} ×Γ* to finite subsets of
Q×Λ* , with Λ equal to Γ* and P (Σ) representing the powerset of Σ

The difference to standard pushdown automata is the transition function, which
manipulates itemsets and strings of stack elements instead of items and stack ele-
ments, respectively. With this extension, it is possible to explore sequences of item-
sets with existing algorithms. Fig. 1-right illustrates an extension to the PDA illus-
trated before. Clearly, on one hand, by using extended pushdown automata, algo-
rithms such as SPIRIT or PrefixGrowth do not need any alteration on their structure.
On the other hand, their performances remain tightly connected to the number of
discovered patterns and almost nothing related to the complexity of the constraint.
Because the lack of space, those results are not presented in this paper.

3 Constraint Relaxations

While the problems of representing background knowledge in sequential pattern
mining and the reduction of the number of discovered patterns can be solved using
formal languages, the challenge of discovering unknown information, keeping the
process centered on user expectations, remains open. At this point, it is important to
clarify the meaning of some terms. By novel information, we mean both the infor-
mation that cannot be inferred in the reference frame of the information system or of
the user himself. Centering the process in the user has essentially two aspects: the
management of user expectations and the use of user background knowledge in the
mining process. By expectation management, we mean that the results from the
process have to be in accordance with user expectations, with similarity measured by
comparing them to the user's background knowledge.

Considering these notions, we propose a new methodology to mine unknown pat-
terns, while keeping the process centered on the user. This methodology is based on
the use of constraint relaxations, instead of constraints themselves, to filter the dis-
covered patterns during the mining process. The notion of constraint relaxation has
been widely used when real-life problems are addressed, and in sequential pattern
mining, they were first used to improve the performance of the algorithm [3].

A constraint relaxation can be seen as an approximation to the constraint. While
the constraint represents the known information about the domain in analysis, the
relaxation encapsulates a method to extend that knowledge. Since they do not repre-
sent existing knowledge, they cannot be simple constraints.

When used instead of the constraint, relaxations can give rise to the discovery of
unknown information that will approximately match user expectations. If these re-
laxations are used to mine new patterns, instead of simply used to filter the patterns
that satisfy the imposed constraint, the discovery of unknown information is possible.
Given that the user may choose the level of relaxation allowed, it is possible to keep
the focus and the interactivity of the process, while still allowing for the discovery of
novel and unknown information. In this manner, the goal of data mining will be
achieved. Additionally, some of the unresolved challenges of pattern mining will be
addressed, namely: how to use constraints to specify background knowledge and user
expectations; how to reduce the number of discovered patterns by constraining the
search space, and how to reduce the amount of time in processing the discovery.

In order to achieve those results, we propose four classes of relaxations over con-
straints expressed as context-free languages, as illustrated in Fig. 2. Additionally,
each of these relaxations can be combined, creating compositions of relaxations,
imposing particular filters. Examples of such compositions are approximate-legal or
non-approximate.

Constraint
Relaxation

Legal Valid-
suffix

Approximate
Constraint

Non-
Accepted

Conservative
Relaxation

Valid-
prefix

Approx
-Legal

Approx
-Suffix

Approx
-Prefix

Non-
Legal

Non-
Suffix

Non-
Prefix

Naive
Relaxation

Approx
-Naive

Non-
Approx

Fig. 2 Hierarchy of constraint relaxations

The first class of relaxations is the Naïve relaxation used in SPIRIT. Conservative
relaxations group the other two already known relaxations (Legal and Valid-Suffix)
and a third one – Valid-Prefix. Approximate and Non-Accepted Relaxations are two
novel non-conservative relaxations, which introduce the ability to deal with unknown
models.

3.1 Conservative Relaxations

Conservative relaxations group the Legal and Valid relaxations, used in SPIRIT, and
a third one – Valid-Prefix, complementary to the Valid relaxation (called Valid-
Suffix in the rest of the paper). These relaxations impose a weaker condition than the
original constraint, accepting patterns that are subsequences of accepted sequences.
When used in conjunction with context-free languages, those relaxations remain
identical, but we have to redefine the related notions.

First of all consider the partial relation ψ, which maps from Q×S×Γ* to Q×Λ*
representing the achieved state q∈Q and top of the stack λ∈Λ* (with Λ equal to Γ*),
when in the presence of a particular sequence s∈S in a particular state q∈Q and a
string of stack symbols w∈Γ* . Also, consider that λ.top is the operation that returns
the first element on λ.

ψ(qi, s=<s1…sn>, w) is defined as follows:
i. (qi, λ), if |s|=0 ∧ ∃ λ∈Λ* : λ=w

ii. (qj, λ), if |s|=1 ∧ ∃ qj∈Q; λ∈Λ* : δ(qi,s1,w) ⊃ (qj, λ)
iii. ψ(qj,<s2…sn>,λ.top), if |s|>1 ∧ ∃ qj∈Q; λ∈Λ* : δ(qi,s1,w) ⊃ (qj,λ)

Additionally, consider that the elements on each itemset are ordered lexicographi-
cally (as assumed by sequential pattern mining algorithms). In this manner, it is
possible to define two new predicates:

Given two itemsets a=(a1…an) and b=(b1…bm), with n<m: a is a prefix of b if for all
1� i � n ai is equal to bi and a is a suffix of b if for all 1� i � n ai is equal to bi+(m-n)

Legal. The Legal relaxation requires that every sequence is legal with respect to
some state of the automaton, which specifies the constraint language. The extension
of legal relaxation to context-free languages is non-trivial, since the presence of a
stack (on the automaton) makes the identification of legal sequences more difficult.
However, it is possible to extend the notion of legality of a sequence with respect to
any state of a pushdown automaton.

A sequence s=<s1…sn> is legal with respect to state qi with the top of the stack w, iff
i. |s|=1 ∧ ∃� sk∈Σ∗;qj∈Q;λ∈Λ* :δ(qi,sk,w)⊃(qj,λ)∧ s1⊆sk

ii. |s|=2 ∧ ∃� sk,sk'∈Σ∗;λ,λ'∈Λ* ;qj,qj'∈Q: δ(qi,sk,w)⊃(qj',λ) ∧ s1 suffixOf sk
∧ δ(qj',sk',λ.top)⊃(qj,λ')∧ s2 prefixOf sk'

ii i. |s|>2 ∧ ∃ sk,sk'∈Σ∗;λ,λ',λ''∈Λ* ;qj,qj',qj''∈Q: δ(qi,sk,w)⊃(qj',λ)∧ s1 suffixOf sk
∧ ψ(qj',s2…sn-1,λ.top)=(qj'',λ') ∧ δ(qj'',sk',λ'.top)⊃(qj,λ'')∧sn prefixOf sk'

This means that any sequence with one itemset is legal with respect to an ex-
tended pushdown automaton state, if there is a transition from it, defined over a
superset of the itemset (i). When the sequence is composed of two itemsets, it is legal
with respect to a state, if the first itemset is a suffix of a legal transition from the
current state, and the second itemset is a prefix of a legal transition from the
achieved state (ii). Otherwise, the sequence is legal if the first itemset is a suffix of a
legal transition from the state, and the last one is a prefix of a legal transition from
the state reached with s2…sn-1. Using the PDA in Fig. 3, (ab)ca or bca are examples
of legal sequences. Note that ψ is only defined for non-empty stacks. Indeed, in order
to verify the legality of some sequence s, it is necessary to find a sequence of itemsets
t that can be concatenated to s, creating a sequence ts accepted by the automata.

Valid-Suffix. The Valid-Suffix relaxation only accepts sequences that are valid
suffixes with respect to any state of the automaton. Like for legal relaxation, some
adaptations are needed when dealing with context-free languages.

A sequence s=<s1…sn> is a valid-suffix with respect to state qi with top of the stack w, iff
i. |s|=1 ∧ ∃� sk∈Σ∗;λ∈Λ* ;qj∈Q: δ(qi,sk,w)⊃(qj,λ) ∧ s1suffixOf sk ∧ λ.top=ε

ii. |s|>1 ∧ ∃� sk',sk''∈Σ∗;λ',λ''∈Λ* ;qj,qj',qj''∈Q: δ(qi,sk,w)⊃(qj',λ)∧s1 suffixOf sk
∧ ψ(qj',s2…sn,λ.top)=(qj,λ')∧ λ.top=ε

This means that a sequence is a valid-suffix with respect to a state if it is legal
with respect to that state, achieves a final state and the resulting stack is empty. In
particular, if the sequence only has one itemset, it has to be a suffix of a legal transi-
tion to an accepting state. For the same example, b and bc(ab) are examples of valid-
suffixes.

Note that, in order to generate valid-suffix sequences with respect to any state, it
is easier to begin from the final states. In order to avoid this difficulty, using prefix
instead of suffix validity could represent a more useful relaxation, when dealing with
context-free languages. Note that valid-suffixes are not prefix-monotone, and could
not be easily used by pattern-growth methods [9].

Valid-Prefix. The valid-prefix relaxation is the counterpart of valid-suffix, and
requires that every sequence is legal with respect to the initial state.

A sequence s=<s1…sn> is said to be prefix-valid iff:
i. |s|=1� ∧� ∃� sk∈Σ* ; λ∈Λ* : δ(q0,sk,Z0) ⊃ (qj,λ) ∧ s1 prefixOf sk

ii. |s|>1� ∧� ∃� sk∈Σ* ; λ,λ'∈Λ* ;qj,qj'∈Q: ψ(q0,s1…sn-1,Z0)=(qj',λ')∧ δ(qj',sk,λ'.top) ⊃ (qj,λ)
∧ sn prefixOf sk

This means that a sequence is prefix-valid if it is legal with respect to the initial
state and the first itemset is a prefix of a transition from the initial state. Sequences
with valid prefixes are not difficult to generate, since the simulation of the stack
begins with the initial stack: the stack containing only the stack start symbol. The
benefits from using the suffix-validity and prefix-validity are similar. When using
the prefix-validity to generate the prefix-valid sequences with k elements, the fre-
quent k-1-sequences are extended with the frequent 1-sequences, in accordance with
the constraint. Examples of valid-prefixes are (ab) and (ab)ca.

Note that the legal relaxation accepts all the patterns accepted by valid-suffix and
valid-prefix relaxations. In this manner, it is a less restrictive relaxation than the
other two. Although these relaxations have considerable restrictive power, which
improves significantly the focus on user expectations, they do not allow for the exis-
tence of errors. This represents a strong limitation in real datasets, since little devia-
tions may exclude many instances from the discovered patterns.

3.2 Non-Conservative Relaxations

Non-conservative relaxations permit to discover patterns that are not subsequences of
accepted patterns, by accepting any sequences with a specific alphabet (Naïve), by
allowing some errors (Approx) or just by considering only the sequences that are not
accepted by the constraint (Non-Accepted).

Naïve Relaxation. The first class of non-conservative relaxations is the Naïve
relaxation, which corresponds to a simple item constraint. For example, in the
context of the SPIRIT algorithm, it only accepts patterns containing the items that
belong to the language alphabet. However, this relaxation prunes a small number of
candidate sequences, which implies a limited focus on the desired patterns. Any
sequence composed of items a, b and c would be accepted by naïve relaxation.

Approximate Constraints. Approximate matching at a lexical level has been
considered an extremely important tool to assist in the discovery of new facts, but
ignored in most of the approaches on pattern mining. It mainly consists of
considering two sequences similar if they are at an edit distance below a given
threshold. An exception to this generalized frame is AproxMAP [6], which uses this
distance to count the support for each potential pattern. However, to our knowledge,
edit distance has not been applied to constrain the pattern mining process.

To address the need to identify approximate matching we propose a new class of
relaxations – the Approx Constraints, that accepts sequences that have a limited
number of errors. If it is possible to correct those errors with a limited cost, then the
sequence will be accepted. In other words, approx-constraints only accept sequences
that are at a given edit distance for an accepted sequence. This edit distance reflects

the cost of operations that have to be applied to a given sequence, so that it would be
accepted as a positive example of a given formal language, and it will be called the
generation cost. This cost is similar to the edit distance between two sequences, and
the operations to consider can be the Insertion, Deletion and Replacement [8].

Given a constraint C, expressed as a context-free language, and a real number ε which
represents the maximum error allowed, a sequence s is said to be approximate-
accepted by C, if its generation cost

�
(s, C) is less than or equal to ε. The generation

cost
�
 (s, C) is defined as the sum of costs of the cheapest sequence of edit operations

transforming the sequence s into a sequence r accepted by the language C.

Examples of approximate accepted sequences with one error would be ac(ab) by
the deletion of a b in the first itemset and (abc)c(ab) by the insertion of a c in the
first itemset.

The other four classes of approximate constraints are defined by replacing the ac-
ceptance by legality and validity notions. In this manner, an Approx-Legal relaxation
accepts sequences that are approximately legal with respect to some state. Approx-
Suffix and Approx-Prefix relaxations are defined in a similar way. Finally, Approx-
Naïve accepts sequences that have ε items (with ε the maximum error allowed) that
do not belong to the language's alphabet.

Recent work has proposed a new algorithm � –accepts [2] to verify if a sequence
was approximately generated by a given deterministic finite automata (DFA). Fortu-
nately, the extension to deal with context-free languages is simply achieved by re-
placing the use of a DFA by the use of an ePDA.

Non-accepted Relaxation. Another important issue is related with the discovery of
low frequency behaviors that are still very significant to the domain. Fraud detection
is the paradigm of such task. Note that the difficulties in fraud detection are related
with the explosion of discovered information when the minimum support decreases.

Suppose that there is a model (expressed as a context-free language) able to de-
scribe the frequent patterns existent on a huge database (say for example that the
minimum support allowed is 10%). If there are 3% of clients with a fraudulent be-
havior, it is possible that they are not discovered neither by using the unconstrained
mining process, neither by using any of the proposed relaxations. However, the
model of non-fraudulent clients may be used to discover the fraudulent ones: the
fraudulent clients are known to not satisfy the model of non-fraudulent clients.

To address the problem of low frequency behaviors discovery, we propose an addi-
tional class of relaxations – the Non-accepted relaxation. If L is the language used to
constrain the mining process, Non-accepted relaxations will only accept sequences
that belong to the complementary language of L.

A sequence s=<s1…sn> is said to be non-accepted by the language if it is not gener-
ated by that language.

In fact, this is not really a relaxation, but another constraint (in particular the con-
straint that only accepts sequences that belong to the language that is the comple-
ment of the initial constraint). However, since they are defined based on the initial
constraint, we choose to designate them as relaxations.

The benefits from using the non-accepted relaxation are mostly related to the pos-
sibility of not rediscovering already known information, which may contribute sig-
nificantly to improve the performance of sequential pattern mining algorithms.
Moreover, since context-free languages are not closed under complementation [6]
(which means that the complement of a context-free language is not necessarily a
context-free language), the use of the complement instead of the non-accepted re-
laxation could be prohibitive.

Note that using this new approach, it is possible to reduce the search space, and
consequently to reduce the minimum support allowed. The non-accepted relaxation
will find all the patterns discovered by the rest of the introduced relaxations, repre-
senting a small improvement in the focus on user expectations. In fact, it finds all the
patterns discovered by unconstrained patterns minus the ones that are accepted by
the constraint. Like for approx relaxations, an interesting improvement is to associ-
ate a subset of the alphabet in conjunction with non-accepted relaxation. This con-
junction focus the mining process over a smaller part of the data, reducing the num-
ber of discovered sequences, and contributing to achieve our goal.

As before, the sub-classes of Non-Accepted relaxations result by combining the
non-acceptance philosophy with each one of the others relaxations. While non-
accepted relaxation filters only a few patterns, when the constraint is very restrictive,
the non-legal relaxation filters all the patterns that are non-legal with respect to the
constraint. With this relaxation is possible to discover the behaviors that completely
deviate from the accepted ones, helping to discover the fraudulent behaviors.

3.3 Discussion: novelty and expectedness

The discussion about the concept of novel information is one of the most difficult in
pattern mining. While the concept is clear in the reference frame of a knowledge
acquisition system, the same is not true in the reference frame of the final user. In-
deed, several interestingness measures have been proposed for the evaluation of the
discovered patterns [4].

Moreover, this issue is more critical with the introduction of constraints in the
mining process. In fact, in the presence of constraints the concept of novel patterns
becomes unclear even in the reference frame of information systems, since they are
then able to deal with that knowledge, represented as the constraint.

In order to bring some light into the discussion, consider that, given a model C as
constraint, a pattern A is more novel than a pattern B, if the generation cost of A in
order to C is larger than the generation cost of B in order to C (with the generation
cost defined in the previous section). With this concept, it is now possible to under-
stand the reason why non-accepted patterns can be more novel than the patterns
discovered by conservative relaxations. It is now clear that, despite the differences
between relaxations, all of them allow for the discovery of novel information. Indeed,
the conservative relaxations are able to discover failure situations, this is, situations
when for, some reason, the given model is not completely satisfied (Valid- Prefix and
Valid-Suffix identify failures in the beginning and ending of the model, respectively,
and Legal identifies problems in the middle of the model).

However, the great challenge of pattern mining is to discover novel information in
accordance to user expectations. It is clear from the definition of the novel relation,
that an unexpected pattern is more novel than an expected one. In fact, the challenge
resides in the balance between the discovery of novel but expected patterns. The
proposed relaxations cover a wide range of this balance, giving the user the option of
which is the most relevant issue for the problem in hands: to discover novel informa-
tion or to satisfy user expectations.

4 Experimental Results

In this section, our goal is to validate the claim that the use of relaxations enables the
discovery of unknown information, keeping the mining process centered on the user
and to demonstrate that the use of context-free languages does not impair the per-
formance of the process of sequential pattern mining. In order to achieve this goal
we have applied this new approach to discover the common sequences of subjects
under a graduate program in computer science. In particular, we have applied the
different relaxations to identify the common curricula in three different tasks: dis-
covery of frequent patterns inside each scientific area, determination of which are the
optional courses chosen by different students and identification of the sequences of
subjects of students in specialty areas with few enrollments. While the two last tasks
were accomplished with the use of a regular language that specify the curricula es-
tablished in the graduate program, the first one was accomplished by using a con-
text-free language that filters the sequences of subjects in each scientific area, where
students have failed at most once (Fig. 3).

2 3[(X2), sa(X2)] � noop [(X3), sa(X3)] � pop 41 [(X1), S] � push(sa(X1))

5

[(~X1), S] � push(sa(X1))

6[(X2), sa(X2)] � push(sa(X2))

7

[(~X2), sa(X2)] � push(sa(X2))
[(X1,X3), sa(X1X3)] � pop

8

[(X2), sa(X2)] � pop
[(X1,X3), sa(X1X3)] � pop[(~X2), sa(X2)] � push(sa(X2))

9 [(X3), sa(X3)] � pop

2

3

5

4

(M,AD,IHM,PC)

(AD,VLSI,EI,FTD)
(AD,VLSI,RC2,RDBL)

(Rac,Apr,LN,IHM)

(AD,M,PAC,Rob)

6 7

(V,SP,SR,PA)

(SoD,AA,CDSP,ARGE)
(SoD,AA,SBM,MPSD)

(EP,SoD,AA,TP3)

(EP,FAC,SFF,SDAI)

(TFC1) (TFC2) 81

Fig. 3 PDA1 used in the first task (left) and DFA used in the second task
(right)

As expected, by using the constraints directly, we only discover a few patterns,
which constitute already known information, since they satisfy the imposed lan-
guages. Therefore, these results are not enough to invalidate Hipp's arguments [4].

However, the situation is different in the presence of relaxations. First, the use of
the approx relaxation allowed the discovery of which students choose each optional

1 In this graph, each transition represents four transitions, one per scientific area. For exam-

ple, [(~X2),sa(X2)]
�

push(sa(X2)) represents [(~F1),F]
�

push(F), [(~AM2),AM]
�

push(AM)
[(~AED),MTP]

�
push(MTP), [(~AC),ASO]

�
push(ASO).. X1, X2 and X3 represent the first, sec-

ond and third subjects on each scientific area; sa is a function from the set of subjects to
their scientific area, for example sa(F1)=F and sa(AM1)=AM.

subjects, with students only identified by their own curricula. Indeed, it was possible
to discover that students in different specialty areas chose different subjects, and that
students at a specific specialty area when have failed in at least one subject in the
fourth curricular year, choose two subjects on Management as their optional subjects.
This last discovery is very hard to achieve with the use of queries or constraints be-
cause all non-common subjects can be chosen as optional by some student. A simple
count of each subject support does not give the expected answer, since most of the
subjects are required to some percentage of students. The approach of querying the
dataset to count the support of each subject, knowing that students have followed
some given curriculum, is also unable to answer the question, since a considerable
number of students (more than 50%) have failed one or more subjects, following a
slightly different curriculum.

The third task is also difficult to solve, and indeed, is similar to fraud detection,
where just a small percentage of total entities have a specific behavior. The use of
constraints does not help, since we do not know the model behind the behaviors, but
the use of unconstrained pattern mining is not possible because of the extremely
large number of discovered patterns. The identification of the common curricula of
specialty area with few students (IIN and IAR) is one of these cases, since have 13%
of students, and like the others, less than 50% of those have not failed in any subject.
The use of Non-Accepted relaxations discovers those curricula if we use a constraint
that specifies the proposed curriculum for the other specialty areas and an item con-
straint corresponding to the subjects of the specialty area in analysis.

Finally, it is important to note that although the use of context-free languages in-
creases the time spent per discovered pattern, in general, it does not increase the
overall performance, as seen in Fig. 4. Additionally, it is clear that the use of non-
conservative relaxations enables the discovery of more patterns than conservative
ones, but that the number of patterns is still acceptable when compared with the

PerformancevsSupport

0

1

1

2

2

3

3

60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%
Support

T
im

e
(s

)

Unconstrained DFA PDA

Average Time Spent for Each Pattern

0

50

100

150

200

250

60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

support

T
im

e
(m

s)

Unconstrained DFA PDA

Nr. of Discovered Patterns

0

1

2

3

4

5

6

7

8

60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

support

N
r.

 o
f

P
at

te
rn

s

DFA PDA

Fig. 4. Comparison of the impact of the use of DFAs and PDAs

number of discovered patterns by unconstrained processes.

5 Conclusions

In this paper, we show that the use of constraint relaxations allows for the discovery
of novel information, centered on user expectations, when mining sequential pat-
terns. A constraint relaxation imposes a weaker restriction, relaxing the constraint
chosen to represent user background knowledge. Experimental results show that the
use of relaxations reduces the number of discovered patterns when compared to un-
constrained processes, but enables the discovery of unexpected patterns, when com-
pared to constrained processes. Additionally, they show that the processing times
spent in the mining process can be reduced if constraint relaxations are used. The
experiments also show that the use of relaxations is of great help when there is not a
precise knowledge about the behaviors shown.

One important challenge is to apply this methodology to the extraction of intra-
transactional patterns, where there are no constraints to specify the structure of the
transactions.

References

1. Antunes, C. and Oliveira, A.L., "Inference of Sequential Association Rules Guided by
Context-Free Grammars", in Int. Conf. Grammatical Inference, Springer (2002) 1-13

2. Antunes, C. and Oliveira, A.L., "Sequential Pattern Mining with Approximated Con-
straints", Int. Conf Applied Computing, IADIS (2004) 131-138

3. Garofalakis, M., Rastogi, R. and Shim, K., “SPIRIT: Sequential Pattern Mining with
Regular Expression Constraint” , in Int. Conf. Very Large Databases, Morgan Kaufmann
(1999) 223-234,

4. Hilderman, R and Hamilton, H., "Knowledge discovery and interestingness measures: a
survey", Technical Report CS 99-04, Dep. Computer Science, University of Regina, 1999.

5. Hipp, J. and Güntzer, U., "Is pushing constraints deeply into the mining algorithms really
what we want?". SIGKDD Explorations, vol. 4, no. 1, ACM (2002) 50-55

6. Hopcroft, J. and Ullman, J., Introduction to Automata Theory, Languages and Computa-
tion. Addison Wesley. 1979.

7. Kum, H.-C., Pei, J., Wang, W. and Duncan, D., "ApproxMAP: Approximate Mining of
Consensus Sequential Patterns", in Int. Conf on Data Mining, IEEE (2003).

8. Levenshtein, V., "Binary Codes capable of correcting spurious insertions and deletions of
ones", in Problems of Information Transmission, 1, Kluwer (1965) 8-17

9. Pei J, Han J et al: “PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected
Pattern Growth” , in Int. Conf Data Engineering, IEEE (2001), 215-226

10. Pei, J., Han, J. and Wang, W., "Mining Sequential Patterns with Constraints in Large
Databases", in Conf Information and Knowledge Management, ACM (2002) 18-25

11. Srikant R, Agrawal R.: “Mining Sequential Patterns: Generalizations and Performance
Improvements” , in Int. Conf Extending Database Technology, Springer (1996) 3-17

12. Srikant R, Agrawal R, "Mining association rules with item constraints" in Int. Conf.
Knowledge Discovery and Data Mining, ACM (1997) 67-73

13. Zaki, M.“Efficient Enumeration of Frequent Sequences” , in Int. Conf. Information and
Knowledge Management, ACM (1998) 68-75

