
A highly scalable algorithm for the extraction of cis-regulatory

regions

Alexandra M. Carvalho∗ Ana T. Freitas
INESC-ID IST/INESC-ID

Rua Alves Redol, 9 Rua Alves Redol, 9
1000-029 Lisboa, Portugal 1000-029 Lisboa, Portugal

asmc@algos.inesc-id.pt atf@inesc-id.pt

Arlindo L. Oliveira Marie-France Sagot †‡

IST/INESC-ID Inria Rhône-Alpes
Rua Alves Redol, 9 Université Claude Bernarde, Lyon I

1000-029 Lisboa, Portugal 43 Bd du 11 Novembre 1918
aml@inesc-id.pt 69622 Villeurbanne Cedex, France

Marie-France.Sagot@inria.fr

Abstract

In this paper we propose a new algorithm for identifying cis-regulatory modules in
genomic sequences. In particular, the algorithm extracts structured motifs, defined as a
collection of highly conserved regions with pre-specified sizes and spacings between them.
This type of motifs is extremely relevant in the research of gene regulatory mechanisms
since it can effectively represent promoter models. The proposed algorithm uses a new
data structure, called box-link, to store the information about conserved regions that
occur in a well-ordered and regularly spaced manner in the dataset sequences. The com-
plexity analysis shows a time and space gain over previous algorithms that is exponential
on the spacings between binding sites. Experimental results show that the algorithm
is much faster than existing ones, sometimes by more than two orders of magnitude.
The application of the method to biological datasets shows its ability to extract relevant
consensi.

1 Introduction

In this large-scale genome sequencing era, the main bottleneck to the progress in molecular
biology is data analysis. The aim of this analysis is the extraction of biological information
from genome sequence data. An important task in this context consists in the detection
of regulatory signatures in DNA sequences as well as the prediction of the corresponding

∗Partially supported by FCT grant SFRH/BD/18660/2004 and FCT Project FEDER
POSI/SRI/47778/2002 BioGrid

†Visiting Research Fellow at King’s College London, UK.
‡Partially supported by CNRS-INRIA-INRA-INSERM action BioInformatique and Wellcome Trust Foun-

dation.

1

promoter. An important part of gene regulation is mediated by specific proteins, called the
transcription factors (TF), which influence the transcription of a particular gene by binding
to sequence specific sites on the DNA sequence, called transcription factor binding sites. Such
binding sites are located in promoter regions. In prokaryotic organisms, the binding sites are
predominantly in the immediate vicinity of the gene. However, in higher eukaryotes, the
binding sites of cooperating TFs are organized into short sequence units called cis-regulatory

modules (CRM). We refer the reader to [13] for additional details.
The first methods for detecting promoter regions in DNA sequences [7, 11] looked only for

a unique binding site – single motif. In the search for more complex promoter models methods
have appeared that extract promoter regions composed by two binding sites [3, 12]. The first
attempts to identify several binding sites – multiple motif – consisted on crossing compatible
single motifs [2, 5, 4], which takes time at least quadratic in the number of single motifs
and their occurrences. To address this problem, the lists for single motifs were trimmed by
statistical significance before the crossing operation. However, a motif composed by several
binding sites may be statistically significant even though none of the sites taken individually
are. Indeed, one of the main interests in seeking for multiple motifs directly lies in this fact.

There are few realistic methods in the literature which attempt to find a modular organi-
zation of binding sites for TFs that cooperate in the regulation of genes. Some probabilistic
methods were proposed to identify CRMs and their component TFs using only the raw se-
quence data as input [9, 8]. The main problem of these methods is that in the attempt to
reduce false positives they also eliminate true positive motifs. Moreover, an exact algorithm
[6] was also proposed to flexibly identify motifs composed of any number of binding sites,
possibly distributed over different CRMs. The main drawback of this method is its incapac-
ity to deal with large genomic data since it explodes both in time and in space. The prime
objective of this paper is to attack the explosion problem of this approach.

The main contribution of this work is a new algorithm to identify cis-regulatory modules
from a set of promoter regions of co-regulated genes. The new method achieves an exponential
time and space gain, in the worst case analysis, relatively to [6]. Clearly, time and space
savings of this magnitude are of the utmost importance when searching through genomic
data. In practice, the exponential gain reflects that the extraction remains independent of
the distances between the binding sites that build up the multiple motif. This improvement
is very important to find eukaryotic TFs since the promoter model can be very complex with
consensus sequences observed over very large and variable distances. The most important
acceleration element of the proposed algorithm is a new data structure, called box-link, which
stores the information about how to jump within the DNA sequences from site to site in the
multiple motif. The algorithm uses a factor tree [1], which is a suffix tree [10] built only up
to a certain level, leading to an important space saving.

We demonstrate our results on simulated and real data. In the first case, the goal was to
test the ability of the algorithm to deal with large amounts of human simulated data. In the
second case, we wanted to verify the accuracy of the algorithm in recovering known single
and multiple motifs in yeast, and to apply it to discover novel motifs.

2 Model overview

A single model, or simply a model, is a non-empty string over the alphabet Σ={A,C,T,G}.
From this point on, we denote the length of a single model m by k. A model m is said to have

2

an e-occurrence in the input sequences if there is one word u of length k in the input sequences
such that the Hamming distance between u and m is less than or equal to e. Recall that
the Hamming distance between two sequences of the same length is the minimum number of
substitutions needed to transform one sequence into another. A model is said to be a valid

model, or simply a motif, if it has an occurrence in at least q input sequences, where q is called
the quorum. Motifs are used to describe highly conserved strings in a set of DNA sequences
which, in the case of sequences from co-regulated genes, are candidates for binding sites.

A structured model is a pair (m, d) where m is a p-tuple (mi)1≤i≤p of single models and
d is a (p − 1)-tuple of pairs (dmini

, dmaxi
)1≤i<p, denoting p − 1 intervals of distance between

the p single models. Each element mi of the structured model (m, d) is called a box and we
denote its length by ki. Given a p-tuple (ei)1≤i≤p of allowed substitutions, a structured model
(m, d) is said to have an (ei)1≤i≤p-occurrence in the input sequences if, for all 1 ≤ i ≤ p, there
is an ei-occurrence ui of mi such that: (i) u1, . . . , up are in the same input sequence; (ii) the
end position of ui and the start position of ui+1 in the sequence is in [dmini

, dmaxi
], for all

1 ≤ i < p. A structured model is said to be a valid structured model, or a structured motif, if
it has an (ei)1≤i≤p-occurrence in at least q input sequences. As expected, structured motifs
try to capture highly conserved complex regions in a set of DNA sequences which, in the case
of sequences from co-regulated genes, simulate functional combinations of TF binding sites.

3 Factor tree

In this section we restrict our attention to a basic data structure upon which our algorithm is
based. A factor tree is a data structure used to index strings, proposed by Allali and Sagot [1],
which is very similar to suffix trees [10]. A factor tree, also called the k-factor tree, indexes the
substrings of a string whose length does not exceed k. As for suffix trees, the time complexity
for constructing a factor tree is linear in the length of the string. However, compared with a
suffix tree, the k-factor tree offers a substantial gain in terms of space complexity for small
values of k.

As an example, consider the 5-factor tree for a string s=AGACAGGAGGC$ presented in
Figure 1 ($ is commonly used as a termination character to guarantee that all substrings of
s which match a prefix of a substring of s have a path from the root that ends at a leaf, e.g.,
the substring C of s matches a prefix of the substring CAGGA). All substrings up to size

A
C

A G

A
G

C
$

$
CA

G
G

C

G

CAGG

C
A
G

A G

$

G C $

A
G

G
$

A
G
G
A

C

1

2

3

4

5

6

7

8

9

1011

12

A $
CA

G

G

CA

C

A G

$

G C

A$

A
G

C

11

12

3

1

G

(5,8) 4
2 7

10
6

9

Figure 1: The 5-factor tree (on the left) and the 3-factor tree (on the right) for the string
AGACAGGAGGC$.

3

5 are depicted in the factor tree (e.g. AGACA, GACAG, etc.) and the corresponding leaf
contains the positions where the substring occurs in the input string (the first position in the
string is position 1). Note that the 5-deep factor tree does not have any leaf with a collapsed
position, since there is no common substring of size 5 in the string s. However, with k = 3,
the substring AGG occurs twice in s, at positions 5 and 8, and we obtain a 3-factor tree with
collapsed positions, as depicted in Figure 1.

The factor tree construction for a set of N strings, called a generalized factor tree, can
be easily obtained by consecutively building the factor tree for each string of the set. The
resulting factor tree is built in time proportional to the sum of all the string lengths. An
usual way to distinguish the input strings is by storing at each tree node v a Boolean array,
called the Colorsv array [7] (usually implemented as a bit vector with dimension N). This
array indicates the strings in the input set that contain the substring labeling the path from
the root to the tree node v.

4 Structured motif extraction

In this section we introduce the main contribution of this paper. A new data structure, called
box-link, is proposed and used in a new algorithm for structured motif extraction. For the
sake of exposition, we consider only structured motifs with p boxes of the same size k, same
distance d between boxes, and a fixed number of allowed substitutions e for each box. The
general case was studied and implemented. Furthermore, all complexity results lift naturally,
but the full details are out of the scope of this paper.

4.1 Box-link

A box-link stores the information needed to jump from box to box in a structured model.
Its name comes from the fact that it links all p boxes of a structured model. Formally, a
box-link can be defined as follows. Let L be the set of leaves at depth k of a k-factor tree T
for a string s and Li

k denote all possible i-tuples over L. A box-link of size i, with 1 ≤ i < p,
is a (i + 1)-tuple in Li+1 such that there is a substring s′ of s where: (i) the length of s′ is
ik + (i− 1)d; (ii) the k-length substring of s′ ending at position jk +(j − 1)d, with 1 ≤ j ≤ i,
is the path in T spelled from the root to the j-th leaf of the box-link tuple.

As an example, consider the 3-factor tree for AGACAGGAGGC$ presented in Figure 2
with box-links depicted for 2 boxes distanced by a spacer of 4 nucleotides.

AGACAGGAGGC$
AGA AGG

GGCGAC
A

CA

G

G

CA

C

A G

$

G C

A$

A
G

C

G

$

Figure 2: The 3-factor tree for the string AGACAGGAGGC$ with box-link for p = 2 and
d = 4.

4

When considering a generalized factor tree for a set of N strings, a box-link b has to be
endowed with a Boolean array of dimension N , similar to the one associated with factor tree
nodes, defined as: Colorsb[i] = 1, if b links boxes of the i-th input sequence, and Colorsb[i] = 0,
otherwise, with 1 ≤ i ≤ N .

4.2 Box-links construction

In this section we present an algorithm to build box-links. The algorithm makes use of two
variables. First, the variable listleaf has the list of all leaves inserted in the factor tree, which
can be easily obtained during the factor tree construction. In fact, for the sake of exposition,
listleaf can be seen as a family of variables (listleaf i

)1≤i≤N (one for each input sequence),
where each listleaf i

has average length n (the average length of an input sequence). Observe
that the substring labeling the path from the root to the j-th leaf of listleaf i

corresponds to
the j-th at most k-length substring of the i-th input string. Second, the variable bj stores
the j-size box-links being built. Moreover, we have to set up the function AddBoxLink.
AddBoxLink(b,v,i) adds a box-link between an existing (j − 1)-size box-link b and a leaf v
for the i-th input sequence. However, it only creates a new box-link if there is not already a
box-link between box-link b and node v (merging in this way equivalent box-links). In either
way, creating or not a new box-link, the AddBoxLink function sets the Boolean array entry
i to 1. The pseudo-code of the algorithm to build box-links is presented in Algorithm 1.

Algorithm 1 BoxLink(Boxes p, BoxSize k, BoxDistance d, ListLeaf listleaf)

1. for i from 1 to N

2. while size of listleafi
≥ pk + (p − 1)d

3. b0 = AddBoxLink(nil, listleaf i
[0], i)

4. for j from 1 to p − 1

5. bj = AddBoxLink(bj−1, listleaf i
[jk + jd], i)

6. remove the first leaf of listleaf i

Next, we establish the time and space complexity for the BoxLink algorithm. We denote
by nl the number of nodes at depth l of the generalized suffix tree for the same input sequences
as the factor tree where the box-links are being constructed (note that this suffix tree is never
built, it only serves the purpose of providing us a value to establish the complexity analysis).
Moreover, we define bp(k, d) = min{np

k, npk+(p−1)d}.

Proposition 4.1 Algorithm 1 takes O(N 2np) time and O(Nbp(k, d)) space.

Proof: Step 1 requires O(N) time. Step 2 requires O(n), where n is the average number of
leaves in listleaf i

. Step 4 requires O(p) time. Step 5 requires O(N) time, which corresponds
to the creation or update of Colors array. Hence, Algorithm 1 takes O(N 2np) time. Briefly,
the space complexity is given by the number of box-links (which is upper bounded by bp(k, d))
times its size (which is upper bounded by N). �

5

4.3 Structured motif extraction using box-links

In this section we introduce the algorithm to extract structured motifs from upstream se-
quences of co-regulated genes. The basic data structure used by the algorithm is a factor
tree. The first step is the construction of the generalized k-factor tree T for the input set of
DNA sequences (recall that k is the size of the boxes in the structured models). Next, the tree
is modified in order to store at each node the Colors array, as explained in Section 3. The
pre-processing phase ends with the construction of box-links, which are added to the leaves
of the factor tree. At this point we are in condition to start the extraction phase, but before
presenting the pseudo-code of the algorithm we need to introduce the following concept. A
e-node-occurrence of a model m is a pair (v, ev) such that: (i) v is a node in the factor tree
T ; (ii) ev is the Hamming distance between the label of the path from the root to v and m;
(iii) ev ≤ e. Whenever e is understandable from context we use node-occurrence instead of
e-node-occurrence. Clearly, when substitutions are allowed (e > 0) a model can have more
that one node-occurrence in T .

We now give a summary of the extraction process for p = 2. The pseudo-code for the
extraction is presented in Algorithm 2. The algorithm recursive process is initialized with
ExtractMotifs(m = ε, i = 1), where ε represents the empty model. The algorithm starts by
extracting single motifs m1 of length k, one at a time. The extraction of single motifs is done
by a simple depth-first traversal of the factor tree T (step (7)) [7]. Since i = 1 < p = 2 a
recursive call is made with ExtractMotifs(m = m1, 2) (step (8)). For each node-occurrence v
of a first box m1 (step (1)), box-links are followed to reach nodes z (step (2)) and the content
of the Boolean array Colors stored in these box-links is used to temporarily and partially
modify the Colors of the target nodes z (steps (3) to (6)). The extraction of the second box
m2 then proceeds in the same way, but only over this modified part of the tree (step (7)).
Once the extraction of all valid motifs 〈(m1,m2),d〉 has ended (step (9)), the factor tree is
restored to its previous state (step (10)). The construction of another single motif m1 follows
(step (7)), and the whole process unwinds in a recursive way until all structured motifs are
extracted.

Algorithm 2 ExtractMotifs(Motif m, Box i)

1. for each node-occurrence v of m

2. for each leaf z such that there is a box-link b〈v,z〉 from v to z

3. put z in L(i)

4. if (first time z is reached) set Colorsz to
−→
0 and put z in NextEnds

5. Colorsz = Colorsz + Colorsb〈v,z〉

6. UpdateTree(T ,NextEnds)

7. for each motif mi obtained by a depth-first traversal of T

8. if (i < p) ExtractMotifs(m = m1 . . . mi,i + 1)

9. else KeepMotif(m = 〈(m1, . . . ,mp),d〉)

10. RestoreTree(T ,L(i))

A proper appreciation of the algorithm needs some set up that follows. The UpdateTree

6

updates the Boolean arrays from the nodes in NextEnds to the root in the following way: if
nodes z and ẑ have the same parent z, then Colorsz = Colorsz + Colorsbz (Colors are usually
implemented as a bit vector, so this means the bitwise OR operation). Any arc from the root
that does not have a node in NextEnds is not part of the updated tree, nor are the subtrees
rooted at its node in NextEnds. Moreover, L(i) is an array that stores the state of the nodes
at level k for the (i− 1)-th box of a structured model. The RestoreTree restores the Boolean
arrays from the nodes in L(i) to the root in the following way: if nodes z and ẑ have the same
parent z, then Colorsz = Colorsz + Colorsbz. Any arc from the root is part of the restored
tree. Finally, KeepMotif stores all information concerning valid motifs.

Next, we establish the complexity of Algorithm 2. The term ν(e, k) denotes the number
of distinct words that are at a Hamming distance at most e from a k-long word.

Proposition 4.2 Algorithm 2 takes O(Nbp(k, d)νp(e, k)) time and O(Nbp(k, d) + Npnk)
space.

Proof: We can parcel out the complexity into: (i) the number of operations needed to build
all p parts of structured motifs; (ii) the number of operations needed to update T ; (iii) the
number of operations needed to restore T . To compute (i) we have to calculate the cost of
all visits to nodes between the root and level k (the deeper level ever reached). Notice that
when spelling all parts of a motif we are working with nodes between the root and level k
only, and because factor trees are compact, being at least binary, there are at most 2nk such
nodes. Hence, the number of visits to nodes between the root and level k is upper bounded by
twice the number of visits to nodes at level k. Moreover, when no substitutions are allowed,
there are at most bp(k, d) ways of spelling all structured motifs. However, when up to e
substitutions are allowed, a node at level k may be visited O(νp(e, k)) times more. Hence, (i)
takes O(Nbp(k, d)νp(e, k)), where N accounts for the access to the Colors array. To compute
(ii) we need to count the number of operations necessary to modify the first k levels of T which
is upper bounded by O(Nbp(k, d)νp−1(e, k)). This corresponds to all visits made to nodes z
coming from b〈v,z〉 for all models mp−1. In addition, the propagation from z to the root R
for all models mp−1 is upper bounded by the same value. Finally, since (iii) is also upper
bounded by the time to update T , we conclude that Algorithm 2 takes O(Nbp(k, d)νp(e, k))
time. Briefly, the space complexity is given by the space required by box-links and the space
required by the factor tree and the L(i) arrays (1 ≤ i < p). �

This algorithm exhibits an exponential time and space gain relatively to the previous
approaches to extract structured motifs presented in [6], where the best algorithm takes
O(Nbp(k, d)νp(e, k) + Nnpk+(p−1)dν

p−1(e, k)) time1 and O(Nnpk+(p−1)d + Npnk) space. The
difference between the time complexity expressions occurs in the second term which is elimi-
nated by Algorithm 2. Observe that in the worst case scenario, the factor tree is complete and
we have bp(k, d) = min{|Σ|pk, |Σ|pk+(p−1)d} = |Σ|pk < npk+(p−1)d = |Σ|pk+(p−1)d which reflects

an exponential gain of the order |Σ|(p−1)d (we denote by |Σ| the cardinality of Σ, so for the
DNA alphabet case |Σ| = 4). The major gain of this new method, over previous approaches
for extracting structured motifs, is that in the worst case scenario the extraction time of
the motifs remains independent of the distances between them (recall that an exponential
factor on (p − 1)d disappears in the worst case analysis). A similar reasoning applies for the
exponential gain in space complexity.

1The time complexity presented herein differs from the one presented in [6]. Indeed, the authors of [6]
acknowledged a mistake in the time complexity and agree with the expression we present here.

7

5 Experimental results

This section presents results attained by RISO, the C implementation of the new algorithm
proposed in this paper, as well as benchmark comparisons with SMILE, the C implementation
of the algorithm presented in [6] made available by the authors. The results presented were
obtained using a Intel Pentium IV at 2.4GHz with 1GB of RAM.

The structured motifs extracted by RISO were classified according to their statistical
significance in order to give them some biological relevance [6]. The Z-score for a motif
was considered, indicating how far and in what direction the number of occurrences of the
motif deviates from its distribution mean. This score is especially useful when comparing
the relative occurrences of motifs from distributions with different means and different stan-
dard deviations. This difference clearly occurs for highly conserved regions on a set of DNA
sequences against ordinary uniformly distributed sequences (random background).

5.1 Human simulated data

As a basic test of RISO, we used a set of DNA sequences generated by a Markov chain
with order 5, calibrated on intergenic oligonucleotide frequencies for the human DNA. These
sequences were obtained taking advantage of the Regulatory Sequence Analysis (RSA) tools
(http://rsat.scmbb.ulb.ac.be/rsat/). In this context, two datasets were prepared, one with
1000 sequences of size 1000, and another with 2000 sequences of size 2000. Four sets of
experiments were performed by running RISO and SMILE over each dataset, requiring a
quorum of 20% (q = 200/1000) and 40% (q = 800/2000) for each data set, respectively. Each
set of experiments consisted on three searches for structured motifs of two boxes with sizes 3,
5, and 7, respectively, in all cases distanced by 15 nucleotides. Allowed substitutions varied
in the experiments: in the first search e1 = 0 and e2 = 0; in the second search e1 = 1 and
e2 = 1; in the third search e1 = 2 and e2 = 1. In Figure 3 we depict the results obtained in
these experiments. We emphasize that time results encompass the construction of the factor

0

50000

100000

150000

200000

3 4 5 6 7

T
i
m
e

(
s
e
c
o
n
d
s
)

Box size

SMILE1 1000 x 1000
RISO 1000 x 1000

SMILE1 2000 x 2000
RISO 2000 x 2000

0

50

100

150

200

250

300

350

400

450

500

3 4 5 6 7

M
e
m
o
r
y

(
M
B
)

Box size

SMILE1 1000 x 1000
RISO 1000 x 1000

SMILE1 2000 x 2000
RISO 2000 x 2000

Figure 3: Time (on the left) and space (on the right) comparison of RISO and SMILE.

tree with box-links (for the RISO case), which took, in the computationally most demanding
experiment, less than 5 seconds. In terms of time RISO was always much faster than SMILE
(with both RISO curves lying below SMILE curves). RISO showed to be scalable with respect
to dataset size increase (RISO performed 3.5 times slower when dataset size increased 4 times,
while SMILE performed 6 times slower with the same dataset size). In terms of space RISO
also showed a better performance. Moreover, SMILE was not able to cope with a dataset

8

of 4000 sequences of size 4000 in a 1GB memory machine, while RISO was able to perform
extractions over this dataset.

5.2 Cis-regulatory regions in yeast

In real data we evaluated the performance of the algorithm to recover known motifs in yeast,
as well as to discover new ones. As test sets we used a collection of 68 genes that are known to
be regulated by zinc cluster factors. The upstream sequences were retrieved from positions -1
to -1000 relative to the ORF (open-reading frame) start positions. To set up our data we took
advantage of the TRANSFAC database (http://www.gene-regulation.com/). We made several
extractions not allowing substitutions (e = 0) and requiring a quorum of 10% (q = 7/68) in
the collected data. Our method was able to detect 6 CRMs with very high significance out
of 9 that we looked for. The results are summarized in Table 1. The first column of the

Table 1: Regulons of Zn cluster proteins.

TF name Known motif Predicted motifs Z-score Ranking

GAL4 CGGn11CCG CGGn11CCG (GAL4) 7.05 1st

HAP1 CGGnnntanCGG GGGn3AGC 3.05 –
CGGn6CGG (HAP1) 2.08 –

LEU3 RCCggnnccGGY GCCn6GGT (LEU3) 4.82 6th

LYS wwwTCCrnyGGAwww TTCn4GGA 3.05 –

PDR tytCCGYGGary TCCGCG 3.58 –

PPR1 wyCGGnnwwykCCGaw CGGn6CCG (PPR1) 5.86 1st

PUT3 yCGGnangcgnannnCCGa CCGn11GCC 3.05 –

UGA3 aaarccgcsggcggsawt AGCCGCC 7.59 –
GGCGGCTAA 27.33 2nd

UME6 tagccgccga TAGCCGCC 12.52 11th
GCCGCCGA 12.52 12th

table lists the searched TFs, while the known consensus for each TF is presented in the next
column, using the standard IUPAC code. For known consensi, lowercase letters represent
uncertainty with respect to the corresponding nucleotide, whereas capital letters denote a
higher certainty. The third column presents the predicted motifs, where we emphasize the
TFs GAL4, LEU3 and PPR1 because they were perfect matches (with respect to the known
motifs) with very high significance. The Z-score is presented in the fourth column and its
position in the ordered list of the scored motifs is presented in the last column. When no
ranking is provided it means that the predicted motif was not in the fifteen best ranked. We
stress that all the extractions performed above took less than one minute with RISO, and in
the best case RISO was 375 times faster than SMILE.

6 Conclusion

We presented a new algorithm and data structure for the extraction of structured motifs in
DNA sequences. The new algorithm exhibits an exponential time and space gain, in the worst
case analysis, relatively to existing algorithms for extracting structured motifs [6]. The only
added cost comes from the computation of box-links but this time is negligible in comparison
with the time required to perform the extraction of the structured motifs. Moreover, the

9

proposed algorithm only requires the creation of a suffix tree pruned at the level of the
largest box of the structured motif (called a factor tree [1]), saving much space in comparison
with the algorithms proposed in [6] that are based on the full suffix tree. Experimental results
show that the new algorithm is much faster than the SMILE algorithm [6], in some cases,
more than two orders of magnitude faster. The application of RISO to biological datasets
shows the ability of the method to extract relevant consensi.

Future work can progress in several directions. First, we are refining RISO in order
to have a trade-off between computing some box-links and having others stored in memory,
reducing even more the space used by the algorithm. Second, it would be valuable to combine
our approach with probabilistic ones, possibly by modeling each motif within a structured
motif using the standard position specific scoring matrix (PSSM) representation. Finally,
we are exploring the use of our algorithm as part of a framework to unveil the complex
gene regulatory network underlying the yeast response to the 2,4-D herbicide and to a new
antimalarial/antitumor drug artesunate.

References

[1] J. Allali and M.-F. Sagot. The at most k-deep factor tree. Submitted for publication,
2003.

[2] T. L. Bailey and C. Elkan. The value of prior knowledge in discovering motifs with
MEME. In Proc. ISMB’95, pages 21–29, 1995.

[3] L. R. Cardon and G. D. Stormo. Expectation Maximization algorithm for identifying
protein-binding sites with variable length from unaligned DNA fragments. J. Mol. Bio.,
223(1):159–170, 1992.

[4] E. Eskin, U. Keich, M. S. Gelfand, and P. A. Pevzner. Genome-wide analysis of bacterial
promoter regions. In Proc. PSB’03, pages 29–40, 2003.

[5] E. Eskin and P. A. Pevzner. Finding composite regulatory patterns in DNA sequences.
Bioinformatics, 18(1):354–363, 2002.

[6] L. Marsan and M.-F. Sagot. Algorithms for extracting structured motifs using a suffix
tree with an application to promoter and regulatory site consensus identification. J.

Comp. Bio., 7(3-4):345–362, 2000.

[7] M.-F. Sagot. Spelling approximate repeated or common motifs using a suffix tree. In
C. Lucchessi and A. Moura, editors, Proc. Latin’98, volume 1380 of LNCS, pages 111–127.
Springer-Verlag, 1998.

[8] E. Segal, Y. Barash, I. Simon, N. Friedman, and D. Koller. A discriminative model for
identifying spatial cis-regulatory modules. In Proc. RECOMB’04, pages 141–149, 2004.

[9] R. Sharan, I. Ovcharenko, A. Ben-Hur, and R. M. Karp. Creme: a framework for
identifying cis-regulatory modules in human-mouse conserved segments. Bioinformatics,
19(Suppl 1):i283–i291, 2003.

[10] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

10

[11] J. van Helden, B. André, and J. Collado-Vides. Extracting regulatory sites from the
upstream region of yeast genes by computational analysis of oligonucleotide frequencies.
J. Mol. Bio, 281(5):827–842, 1998.

[12] J. van Helden, A. F. Rios, and J. Collado-Vides. Discovering regulatory elements in non-
coding sequences by analysis of spaced dyads. Nuc. Ac. Res., 28(8):1808–1818, 2000.

[13] T. Werner. Models for prediction and recognition of eukaryotic promoters. Mamm. Gen.,
10(2):168–175, 1999.

11

