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ABSTRACT

Several non-supervised machine learning methods have
been used in the analysis of gene expression data obtained
from microarray experiments. Recently, biclustering, a non-
supervised approach that performs simultaneous clustering on
the row and column dimensions of the data matrix, has been
shown to be remarkably effective in a variety of applications.

The goal of biclustering is to find subgroups of genes
and subgroups of conditions, where the genes exhibit highly
correlated behaviors. In the most common settings, bicluste-
ring is an NP-complete problem, and heuristic approaches
are used to obtain sub-optimal solutions using reasonable
computational resources.

In this work, we examine a particular setting of the problem,
where we are concerned with finding biclusters in time series
expression data. In this setting, we are interested in finding
biclusters where the columns are consecutive in time. For this
particular version of the problem, we propose an algorithm
that finds and reports all relevant biclusters in time linear on
the size of the data matrix.

This impressive reduction in complexity is obtained by mani-
pulating a discretized version of the data matrix and by
using advanced string manipulation techniques based on suf-
fix trees. We report results in both synthetic and real world
datasets that show the effectiveness of the approach.

1 INTRODUCTION

of the relative abundance of the mRNA of the gene under the
specific condition. Gene expression matrices have been exten-
sively analyzed in both the gene dimension and the condition
dimension. These analyses correspond, respectively, to ana-
lysis of the expression patterns of genes or analysis of the
expression patterns of samples.

A number of different objectives are pursued when this type
of analysis is undertaken. Among these, relevant examples are
the classification of genes, the classification of conditions and
the identification of regulatory processes. Clustering techni-
ques have been extensively applied towards these objectives.
However, applying clustering algorithms to gene expression
data runs into a significant difficulty. Many activation pat-
terns are common to a group of genes only under specific
experimental conditions. In fact, our general understanding
of cellular processes leads us to expect subsets of genes to be
co-regulated and co-expressed only under certain experimen-
tal conditions, but to behave almostindependently under other
conditions. Discovering such local expression patterns may be
the key to uncovering many genetic mechanisms that are not
apparent otherwise. Researchers have therefore moved past
this simple idea of row or column clustering and have turned
to biclustering in their quest for the discovery of local patterns
in microarray data.

The term biclustering was first used by Cheng and Church
[3] in gene expression data analysis. It refers to a distinct
class of clustering algorithms that perform simultaneous row-
column clustering. The goal of biclustering techniques is

Recent developments in DNA chips now enable the simultato identify subgroups of genes and subgroups of conditi-
neous measure of the expression level of a large number @hs, by performing simultaneous clustering of the rows and
genes (sometimes all the genes of an organism) for a givegolumns of the gene expression matrix. Unlike clustering algo-
experimental condition [1]. The samples may correspond teithms, biclustering algorithms identify groups of genes that
different time points, different environmental conditions, dif- show similar activity patterns under a specific subset of the
ferent organs or different individuals. Simply visualizing this experimental conditions.

kind of data, which is widely callegene expression data  Many approaches to biclustering gene expression matrices
or simply expression datas challenging. Using it to extract have been proposed to date [7]. In its general form, the pro-
biologically relevant knowledge is even harder [6]. blem is known to be NP-complete. In fact, even when the

Most commonly, gene expression data is arranged in a dat@atrix contains only two distinct values, the problem of fin-

matrix, where each gene corresponds to one row and each coffing a maximal constant bicluster, i.e., a maximal sub-matrix

dition to one column. Each element of this matrix representsyith constant values, is NP-complete, since there exists a
the expression level of a gene under a specific condition, and

is represented by a real number, which is usually the logarithm
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straightforward reduction from the problem of finding amaxi- Table 2 represents a possible discretization of the gene
mal biclique in a bipartite graph [10]. Given this result, almostexpression values in Table 1. In this discretization, an expres-
all the approaches to biclustering presented to date are hesion level was considered B®Changsf it falls in the range
ristic and obtain only approximate results. In a few cases|—0.3 : 0.3].
exhaustive search methods have been used, but limits are
imposed on the size of the biclusters that can be found, in
order to obtain reasonable runtimes.

There exists, however, one particular restriction to the pro-

Table 2. Discretized toy
example of gene expression

blem that has not been considered before, and that leads to matrix

a tractable problem and, indeed, to a surprisingly efficient |1 2 3 4 5
linear time algorithm for the problem of finding all maxi- 1[N U D U N
mal biclusters. This restriction is applicable when the gene 2/buUu D UD
expression data corresponds to snapshots intime of the expres- Z E E g 3 S

sion level of the genes. Under this experimental setup, the

researcher is, in many cases, particularly interested in bic-

lusters with contiguous columns, that correspond to samples

taken in consecutive instants in time. We show, in this paper, Such a matrix4, with n rows andm columns, is defined

that in this case it is possible to have a linear time algorithnby its set of rows,R, and its set of columng}. Let] C R

that finds all maximal consecutive column biclusters, undeand.J C C be subsets of the rows and columns, respectively.

specific assumptions. Then,A;; = (I, J) denotes the sub-matrix ef that contains
The remainder of this paper is organized as follows. Sectioonly the elements,;; belonging to the sub-matrix with set of

2 defines the problem and describes the relevant related workws I and set of columnd. We will use A;- to denote row

and the basic concepts needed to understand the approacinf matrix A and Ar; to denote colump of matrix A.

Section 3 derives the central result of this work and pres- A biclusteris a subset of rows that exhibit similar beha-

ents the algorithm. Section 4 illustrates the efficiency of thevior across a subset of columns, and vice-versa. The bicluster

algorithm with synthetic data and presents some preliminaryl;; = (1, J) is thus a subset of rows and a subset of columns

results obtained with real data. Finally, Section 5 presents thehere I = {1, ...,4x} is a subset of rowsI( C R and

conclusions and some open research problems. k <n),andJ = {j1, ..., s} IS a subset of columnsg/(C C

ands < m). A bicluster (1, J) can be defined as iaby s
sub-matrix of the matrix.

2 DEFINITIONS AND RELATED WORK The specific problem addressed by biclustering algorithms

2.1 Finding biclusters in genomic expression data can now be defined. Given a data matrit/, or its dis-

Let A’ be anv: row bym column matrix, where/; represents cretized version A, we want to identify a set of biclusters

the expression level of gerieinder conditiory. By, = (Ix, Ji.) such that each biclustét;, satisfies some spe-
cific characteristics of homogeneity. The exact characteristics

of homogeneity vary from approach to approach, and will be

Table 1. Toy example of a gene expression matrix studied in Section 2.2.
| Cond.1 Cond.2 Cond.3 Cond.4 Cond.5 2.2 Bicluster models and metrics
Genel 0.07 073 -0.54 0.45 0.25 A large number of models and metrics have been proposed
Genez 0.34 0.46 0.38 0.76 -0.44 for the selection of interesting biclusters [7]. When dealing
Gene3 0.22 017  -0.11 044  -0.11 ) ) . : )
Gened 0.70 071  -0.41 0.33 0.35 with the non-discretized matri®, the most flexible measures

of interest identify highly correlated activity of genes under
a subset of conditions. To understand these measures; let
represent the mean of theh row in the biclustera;; the
In this work, we are interested in the case where the genmean of thejth column in the bicluster and; ; the mean of

expression levels can be discretized to a set of symbols dfll elements in the bicluster:

interest,>, that represent distinctive activation levels. In the

simpler caseX. may contain only three symbol§l/, D, N} a;y = ﬁ ZJEJ a;j Q)

meaning UpRegulated DownRegulatedor NoChange In

other applications, the values in matti¥ may be discreti-

R -
zed to a larger set of values. The discretized version of matrix arj = 1 Lier % @)
A’ is matrix A. Therefore A;; € X represents the discretized
value of the expression level of gehander conditiory. ary = ﬁ Ziel,jg aij 3)
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Constantbiclusters are then identified as biclusters whereconditions, itis reasonable to restrict the attention to biclusters

the value of with contiguous columns. We support this view by assuming
) that the activation of a set of genes under specific conditions
VAR(IL,J) =} i1 jes (aij — ars) (4)  correspondsto the activation of a particular biological process.

As time goes on, biological processes start and finish, leading

is as low as possible [5]. to increased (or decreased) activity of sets of genes that can

rl:/lore r:nterelst.mg fthsn . _b'd,“SteLS_ ﬁlr e blclulster%e identified because they form biclusters with contiguous
where the activity of the genes varies in  highly correlated, o, 1n< o< illustrated in Figure 1.

way in different conditions, i.e., biclusters that minimize the
following expression:

Time
2
VAR.(1,J) = Eie[,je] (ai; —arj) (5)

The more general model seeks to find biclusters where the e
activity of genei under conditionj can be obtained from the T T
sum of a factor due to the gene and a factor due to the column: %

Y R3
aij = B+ a; + 3, (6)
It can be shown [7, 3] that such a bicluster minimizes the value
of the sum of the residues,
H(I,J) = \IlllJI Ziel,jeJ T(aij)2 ) Fig. 1. Biclusters in time series expression data .

where the residuega;;) are given by
In this figure, the existence of three processes (P1, P2 and
r(aij) = a;j —ay —arj +ary (8) P3) leads to increased activity of different sets of genes, repre-
o sented by three biclusters. Note that, although the columns of
Many heuristic approaches have been proposed [7] have begR ¢ of the biclusters are contiguous, the rows are in arbitrary
propos_ed for'_the selection of biclusters that m|n|m|zethlstypepositions, and are represented as contiguous for processes P1
of merit functions. - _ and P2 only for convenience. The identification of biological
However, the inherent difficulty of this problem has led qcesses that lead to the creation of the biclusters, together
many authors to a formulation based on a discretized versiofjiyh their relationship, is crucial for the identification of gene
of the gene expression matrix [2, 9, 12]. In the discreti-yoqy|at0ry networks and for the classification of genes.

zed versions, the ObjeCtiVE is to find biclusters that exhibit This leads us to the definition of the type of biclusters that
either constant rows (or constant columns) [2] or to find bic-5,¢ of interest in this work.

lusters that contain genes that jointly respond to the conditions

(columns) in the biclusters. DEFINITION 2. A contiguous column coherent bicluster

The model used in our work falls in the category of biclusters(ccc-bicluster)4; ; = (I, J) isasubsef = {i1,...,i;}and
with conserved columns. In particular, we are interested ira contiguoussubset of columng = {r,r +1,...,5s — 1,s}
finding column coherent biclusters, i.e., biclusters that satisffrom the matrixA such that4,; = A,; for all i,{ € I and
the following definition: jed.

DEFINITION 1. A column coherent biclustet;; = (1, J) For the remainder of this work, we will refer to a contiguous
is a subsetl = {i1,...,ix} and a subset of columné = column coherent bicluster simply as a ccc-bicluster. By defini-
{j1,-- -, js} from the matrixA such thatd;; = Aj; forall  tjon, each row in matrix A is a cce-bicluster. These are trivial
i,lelandjeJ. biclusters and will not be of interest, in general. The bicluster

With this definition, finding a set a maximal biclusters that With only one row or only on column will also be considered
satisfy this coherence property remains an NP-complete pras trivial.
blem. However, we are specially interested in the analysis of Each ccc-bicluster defines a strinthatis common to every
time series expression data, and that leads to an importaf@W in the ccc-bicluster, between columnands of matrix

restriction. A. F?gqre 2 illustrates two ccc—biclgsters that appear in the
) o ) ) matrix in Table 2. These two ccc-biclusters are maximal, in
2.3 Biclusters in time series expression data the sense that they are not properly contained in any other

When analyzing time series expression data, with the objectivecc-biclusters. This notion will be defined more clearly later
of isolating coherent activity between genes in a subset obn.
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$o=CACT is presented in Figure 4. When dealing with gene-
ralized suffix trees, each string is terminated with a different
terminator that is not in the original alphabet. In our case, the
terminator for strings; is denoted by:. There is a suffix link
from nodev to nodeu if the path-label of node represents a
suffix of the path-label of node and the lenght of the path-
label of u is exactly equal to the length of the path-label of
Bicluster 1: ({1,2,4),(2,3,4)} v minus 1. For a constant size alphabet, suffix trees can be

Bicluster 2: ({1,3),(4,5)}

c Z2 O Z2

A W N P

Fig. 2. Two ccc-biclusters for the matrix in Table 2 .

2.4 Suffix trees

A suffix tree is a data structure built over all the suffixes
of a string that exposes its internal structure of a string. It
has been extensively used to solve a large number of string
manipulation problems.

Fig. 4. Generalized suffix tree fa$; =TACTAG andS:=CACT.

DEerINITION 3. A suffix treeof a |s|-character string is
a rooted directed tree with exactly leaves, numbered 1 to
|s|. Each internal node, other than the root, has at least twhuilt in time that is linear on the size of the string, using a
children and each edge is labeled with a nonempty substringumber of different algorithms [11, 8, 14]. Generalized suffix
of s. No two edges out of a node have edge-labels beginnintjees can be built in time linear on the sum of the sizes of the
with the same character. The key feature of the suffix tree iStrings, that is, on time linear on the size of the input data.
that for any leafi, the label of the path from the root to the Thisimpressively low complexity resultis at the root of many
leaf i exactly spells out the suffix ofthat starts at position  efficient algorithms for string manipulation.

When the number of symbols iR, |X|, is large, then

In order to enable the construction of a suffix tree obeyinghe analysis of the time complexity of the tree construction
this definition when one suffix of s matches a prefix of ano-algorithms is slightly more elaborated [4], since it becomes
ther suffix of s, a character terminator, that does not appeatependent on the data structure used at each node to maintain
nowhere else in the string, is added to its end. For example, theelist of its children.
suffix tree for the string=TACTAG is presented in Figure 3.
3 AN ALGORITHM FOR BICLUSTERING

TIME SERIES EXPRESSION DATA

3.1 Biclusters and suffix trees

We can now introduce the major results of this work, that lead
to the linear time biclustering algorithm. We first introduce
the concept of contiguous column maximal bicluster.

DEFINITION 4. A ccc-biclusterd;; is maximal if no other
ccc-bicluster exists that properly contaids ;, i.e., if for all
Fig. 3. Suffix tree fors=TACTAG. other ccc-biclustersApy,, I € LandJ C M = I =
LANJ =M.

We will also call a ccc-biclusteiight-maximalif it cannot

The suffix tree construction for a set of strings, called abe extended to the right by adding one more column at the
generalized suffix tree, can be easily obtained by consecend, andeft-maximalif it cannot be extended to the left by
tively building the suffix tree for each string of the set. The adding one more column at the beginning.
leaf number of the single string suffix tree can easily be conver- Stated more plainly, a ccc-bicluster is maximal if no more
ted to two numbers, one identifying the string and the otherows nor contiguous columns (either at the right or at the left)
identifying the starting position in that string. For example, can be added to it while maintaining the coherence property
the generalized suffix tree for the strings=TACTAG and from Definition 2.
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We will now consider a new alphabEt = % x {1...m}, LEMMA 2. Let nodew; correspond to a ccc-biclustes;
where each element of the new alphab#tis obtained and nodev; correspond to a ccc-biclusteBs,. Then, if there
by concatenating one symbol M and one number in the is a suffix link from node; to nodev,, biclusterB; contains
range{l...m} and a functionf : ¥ x {1...m} defi- oneless column than bicluster.
ned by f(a, k) = alk wherea|k represents the character in
Y’ obtained by concatenating the symholvith the num-
ber k. For example, if> = {U,D,N} andm = 3, From these lemmas, we can now derive the theorem that is
theny’ = {U1,U2,U3,D1,D2,D3, N1, N2, N3}. Forthis  5ur main result.
case,f(U,2) = U2 and f(D,1) = D1. Consider now the
set of stringsS = {s,...,s,} obtained by mapping each  THEOREM1. Letv be an internal node in the generalized
row A;; in matrix A to strings; such thats;(j) = f(a;;,j).  Suffix treel’. Then corresponds to a maximal ccc-bicluster
Each of these strings has characters and corresponds to iff L(v) > L(u) for every node: such that there is a suffix
the symbols in a row of matrixd after the above alphabet link from « to v. Furthermore, every maximal ccc-bicluster
transformation. As such, the matrix that we have been usingorresponds to a node satisfying this condition.
as example becomes, after the transformation, the matrix in
Table 3.

Proof: follows directly from the definition of suffix links.

Proof: let B be a maximal ccc-bicluster. Letbe the string
that defined3. Now, s must lead to a node (by lemma 1). If
nodev does not have an incoming suffix link, the conditions of

Table 3. Discretized toy example of the theorem are met. Sinégis also left-maximal, every node
gene expression matrix, after alpha- u that defines a biclusteB’ with one more column thai
bet transformation (lemma 2) must havé(v) > L(u), sinceB’ cannot contain

all the rows inB (otherwise,B would not be left-maximal).

12 4 L i~
| 2 o Therefore, it is sufficient to check that every nadihat has a

N1 U2 D3 U4 N5

1
2| Di U2 D3 U4 D5 suffix link directed at hasL(u) < L(v) to ensure that node

3| N1 N2 N3 U4 N5 v corresponds to a maximal ccc-bicluster.

4|UL U2 D3 U4 Us Figure 5illustrates the generalized suffix tree obtained from

the strings that correspond to the rows of the matrix in Table
3. This figure does not contain the leaves that represent string
) ) _ ) terminators that are direct daughters of the root. Each non-
Consider now the generalized suffix tréeobtained from  tarminal node, other than the root, is labeled with the value of
the setof strings’. Letv be aninternal node df and letL(v) 1,14, the number of leaves in its subtree. Also shown in this
denote the number of leaves in the sub-tree rooted atnode yree are the suffix links between nodes. For clarity, leaves that

Additionally, let P(v) be the path-length of node thatis,  haye as parent the root are not shown. Also not shown are the
the number of characters in the string that labels the path frorgtfix links that end at the root.

the root to node.
Isis easy to verify that every internal node of the generalized

suffix treeT” corresponds to one ccc-bicluster of the mattix $3N5UAN3 '\:\\ Ulluz D3U4 U5 34
This is so because an internal nod& 7" corresponds to a nsV K (bo'” § 52030405
given substring that is common to every row that has a leaf S Qvo/,, 3> \¢ %59 2
rooted inv. Therefore, node defines a ccc-bicluster that has > 4 3 o@@ %4
P(v) columns and a number of rows equallitv). ch S o&g §‘° Z w2

We will state with only sketches of proofs two lemmas that & \o 2 oY % %
lead to the main theorem. § Q’% 4 &

> o
LEmMMA 1. Everyright-maximal ccc-bicluster corresponds 7 ®
to one node i7",

] Fig. 5. Generalized sulffix tree for matrix A3
Proof: let B be a ccc-bicluster that cannot be extended to

the right, i.e., a right-maximal ccc-bicluster. SinBés a ccc-

bicluster, every row irB shares the substring that defings Figure 5 shows that there are 6 non-terminal nodes, other
Since B cannot be extended to the right, at least one of théhan the root. Each one of these nodes corresponds to one
rows in B must have a character that differs from the characteccc-bicluster. However, some of them are trivial (nodes with
in the other rows, in the first column to the right that is notedge labelgV1, U4 and N5, since they have edge labels with

in B. Therefore, there is a node inthat matched3 and the  only one character). Others are non maximal (nodes with edge
path-label of that node is the string that defidgs labels D3U4 and N5), since they have an incoming suffix
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link from a node with the same number of leaves. This leavesolumns. The size of the matrices varied frdbd x 50 (rows
nodes with edge label$2D3U 4 andU4 N5 as maximal, non-  x columns) up tol000 x 250. We used a three character
trivial ccc-biclusters. These nodes correspond to the maximallphabety = {U, D, N}.

ccc-biclusters({1,2,4},{2,3,4}) and ({1,3},{4,5}) (see In all cases, we recovered thglanted ccc-biclusters,
Figure 2). The rows in each ccc-bicluster are obtained frontogether with a large number of artifacts that result from ran-
the terminators in the leaves in the subtree of each npde dom coincidences in the data matrix. Figure 7 shows a plot
while the columns in each ccc-bicluster are obtained fronof the variation of the CPU time with the size of the input
the value ofP(v) and the information on the edge-label that data matrix. A clear linear relationship over several orders of
connects to its parent. magnitude is apparent from this plot. It is also clear from this

3.2 Finding and reporting biclusters

Theorem 1 directly implies thatthere is a linear time algorithm I ' ' ' " cPUTIme —
that lists all maximal contiguous column coherent biclusters
in matrix A. This algorithm is shown in Figure 6. With appro- 12000 -

10000

Map each row in matri¥4, A;; to a strings; using f
Build a generalized suffix tre€ for the setS
ComputeP(v) for each node in T'
ComputeL(v) for each node in 7" and marky as Valid
For each node in T 4000 -
If there is a suffix link(v, v) and L(v) >= L(u)
Mark u as Invalid

8000 [

CPU (ms)

6000 |

2000 |

For each node in T’ 0 50000 100000 150000 200000 250000
Matrix Size (Columns x Rows)
If vis Valid
Report the ccc-bicluster that corresponds to Fig. 7. CPU time versus size of the synthetic input data .

Fig. 6. Linear time algorithm for the extraction of all maximal ccc-

biclusters in a discretized and transformed gene expression matrixPIOt that the algorithm runs even in the larger matrices used

in the synthetic data in less than 15 seconds.

priate data structures at the nodes, each of the four first ling&-2 Experiments with real data

and the final two iterations over all nodes in the tree are exe¥o validate the approach, we used the time-series data from
cuted in time linear on the size of the input matrix. A more yeast described in [13]. This represents a dataset with 2884
detailed analysis shows that the increase in the alphabet sigenes and 17 conditions, corresponding to 17 successive
does not have animpact on this linear time complexity. In factjnstants of time.

only two types of nodes have more thatj children: the root The original data was processed to a range between 0 and
node and nodes that have as children only leaf nodes. In bo#600 (as in [3]) and then discretized to an alphabet=
cases, itis easy to devise a data structure that enables constébt D, N}. Gene expression levels were considered to be in

time manipulation of these nodes. the N range if they did not deviate more thars standard
deviations from the average value.
4 EXPERIMENTAL RESULTS The resulting matrix was processed by our algorithm and

with both synthetic data and real data, using a prototype impleRrocess took 28.3 seconds. o
mentation of the algorithm, coded in Java. All experiments Due to time limitations, we present only very preliminary
were performed in a a 3GHz Pentium-4 machine, running€Sults on this data. Removal of uninteresting ccc-biclusters

Linux with 1GB of memory. (e.g., constantV ccc-biclusters, trivial ccc-biclusters with
] ] ] only one column) still left us with more than 5000 ccc-
4.1 Experiments with synthetic data biclusters. Many other criteria can be applied to filter irrelevant

To evaluate the efficiency of the algorithm, and validate expeecc-biclusters, but were not used in these experiments.
rimentally the predicted linear time complexity, we generated The results obtained with some ccc-biclusters of moderate
matrices with random values, on which 10 biclusters were hidsize that exhibit correlated gene activity are shown in Figure
den, with dimensions ranging froir$ — 25 rows and8 — 12 8.
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380 T T T 450

10 1‘1 1‘2 1‘3 14 1 ‘2 3 ll ‘5 6 ‘7 ‘8 ‘9 1‘0 1‘1 1‘2 1‘3 1‘4 1‘5 1‘6 17
(a) Bicluster 471
Fig. 9. Expression level of genes in bicluster 1014 .

and is very important in the identification of relevant genomic
regulation mechanisms.

5 CONCLUSIONS

In this work, we presented a linear time algorithm for the
identification of all maximal contiguous column biclustersina
discretized gene expression matrix, obtained from time series
7 o E 10 u genomic expression data.

(b) Bicluster 1014 By discretizing the gene expression values, and manipu-
w0 ‘ ‘ ‘ ‘ lating the strings that correspond to each row using string
manipulation techniques, we have been able to demonstrate
that there is a correspondence between the maximal ccc-
biclusters and the internal nodes of the generalized suffix tree
that represents the rows of the matrix. This leads to a very effi-
cient algorithm for the extraction of ccc-biclusters, that runs
in a few seconds even for matrices with thousands of genes
and hundreds of conditions.

AV We have demonstrated the correctness of the algorithm and
1 sketched the complexity analysis. We have also presented
X experimental results with synthetic data and very preliminary
results with real data from yeast.

6 7 8 9 10 11

(c) Bicluster 2490 This work opened many promising directions for future
research, both in the short and in the long term. In the short
Fig. 8. Expression level of genes in selected ccc-biclusters . term, we are working on the selection and evaluation of crite-

ria for filtering the ccc-biclusters obtained by the algorithm.

In fact, although the algorithm generates only ccc-biclusters

thatare maximal (and, inthat sense, as interesting as possible),

These figures show that the methodology proposed in thisther criteria of interest need to be developedin order to reduce

work is able to identify highly correlated expression patternghe number of potentially interesting ccc-biclusters. Additio-
of genes, under a given subset of conditions. It is worthwhilenally, we are interested in the development of generalizations
to note that the highly correlated activity under this subset obf these algorithm to deal with imperfect ccc-biclusters. Many
columns does not necessarily translate into highly correlatetechniques developed by the string processing community
activity under all conditions. For example, the genes in ccccan be applied to this problem, and are likely to derive very
bicluster 1014 do not exhibit good correlation except betweerrfficient solutions to that more general problem.
time instants 7 and 11, as a comparison of Figure 9 and Figure In the long term, it is interesting to apply this and related
8(b) clearly shows. This ability to identify highly correlated techniquesto the identification of candidate regulatory mecha-
behaviors under specific subsets of conditions is inherent toism, related with the processes that are potentially causing
biclustering approaches (and not, in particular, to our methodhe appearance of each bicluster.
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