
INESC-ID Tec. Rep. 4/2005, Mar 2005

A Linear Time Biclustering Algorithm for Time
Series Gene Expression Data

Sara C. Madeira and Arlindo L. Oliveira

INESC-ID / University of Beira Interior (smadeira@di.ubi.pt)
INESC-ID / IST (aml@inesc-id.pt)

ABSTRACT
Several non-supervised machine learning methods have

been used in the analysis of gene expression data obtained
from microarray experiments. Recently, biclustering, a non-
supervised approach that performs simultaneous clustering on
the row and column dimensions of the data matrix, has been
shown to be remarkably effective in a variety of applications.

The goal of biclustering is to find subgroups of genes
and subgroups of conditions, where the genes exhibit highly
correlated behaviors. In the most common settings, bicluste-
ring is an NP-complete problem, and heuristic approaches
are used to obtain sub-optimal solutions using reasonable
computational resources.

In this work, we examine a particular setting of the problem,
where we are concerned with finding biclusters in time series
expression data. In this setting, we are interested in finding
biclusters where the columns are consecutive in time. For this
particular version of the problem, we propose an algorithm
that finds and reports all relevant biclusters in time linear on
the size of the data matrix.

This impressive reduction in complexity is obtained by mani-
pulating a discretized version of the data matrix and by
using advanced string manipulation techniques based on suf-
fix trees. We report results in both synthetic and real world
datasets that show the effectiveness of the approach.

1 INTRODUCTION
Recent developments in DNA chips now enable the simulta-
neous measure of the expression level of a large number of
genes (sometimes all the genes of an organism) for a given
experimental condition [1]. The samples may correspond to
different time points, different environmental conditions, dif-
ferent organs or different individuals. Simply visualizing this
kind of data, which is widely calledgene expression data
or simplyexpression data, is challenging. Using it to extract
biologically relevant knowledge is even harder [6].

Most commonly, gene expression data is arranged in a data
matrix, where each gene corresponds to one row and each con-
dition to one column. Each element of this matrix represents
the expression level of a gene under a specific condition, and
is represented by a real number, which is usually the logarithm

of the relative abundance of the mRNA of the gene under the
specific condition. Gene expression matrices have been exten-
sively analyzed in both the gene dimension and the condition
dimension. These analyses correspond, respectively, to ana-
lysis of the expression patterns of genes or analysis of the
expression patterns of samples.

A number of different objectives are pursued when this type
of analysis is undertaken. Among these, relevant examples are
the classification of genes, the classification of conditions and
the identification of regulatory processes. Clustering techni-
ques have been extensively applied towards these objectives.
However, applying clustering algorithms to gene expression
data runs into a significant difficulty. Many activation pat-
terns are common to a group of genes only under specific
experimental conditions. In fact, our general understanding
of cellular processes leads us to expect subsets of genes to be
co-regulated and co-expressed only under certain experimen-
tal conditions, but to behave almost independently under other
conditions. Discovering such local expression patterns may be
the key to uncovering many genetic mechanisms that are not
apparent otherwise. Researchers have therefore moved past
this simple idea of row or column clustering and have turned
to biclustering in their quest for the discovery of local patterns
in microarray data.

The term biclustering was first used by Cheng and Church
[3] in gene expression data analysis. It refers to a distinct
class of clustering algorithms that perform simultaneous row-
column clustering. The goal of biclustering techniques is
to identify subgroups of genes and subgroups of conditi-
ons, by performing simultaneous clustering of the rows and
columns of the gene expression matrix. Unlike clustering algo-
rithms, biclustering algorithms identify groups of genes that
show similar activity patterns under a specific subset of the
experimental conditions.

Many approaches to biclustering gene expression matrices
have been proposed to date [7]. In its general form, the pro-
blem is known to be NP-complete. In fact, even when the
matrix contains only two distinct values, the problem of fin-
ding a maximal constant bicluster, i.e., a maximal sub-matrix
with constant values, is NP-complete, since there exists a

1

Sara C. Madeira and Arlindo L. Oliveira

straightforward reduction from the problem of finding a maxi-
mal biclique in a bipartite graph [10]. Given this result, almost
all the approaches to biclustering presented to date are heu-
ristic and obtain only approximate results. In a few cases,
exhaustive search methods have been used, but limits are
imposed on the size of the biclusters that can be found, in
order to obtain reasonable runtimes.

There exists, however, one particular restriction to the pro-
blem that has not been considered before, and that leads to
a tractable problem and, indeed, to a surprisingly efficient
linear time algorithm for the problem of finding all maxi-
mal biclusters. This restriction is applicable when the gene
expression data corresponds to snapshots in time of the expres-
sion level of the genes. Under this experimental setup, the
researcher is, in many cases, particularly interested in bic-
lusters with contiguous columns, that correspond to samples
taken in consecutive instants in time. We show, in this paper,
that in this case it is possible to have a linear time algorithm
that finds all maximal consecutive column biclusters, under
specific assumptions.

The remainder of this paper is organized as follows. Section
2 defines the problem and describes the relevant related work
and the basic concepts needed to understand the approach.
Section 3 derives the central result of this work and pres-
ents the algorithm. Section 4 illustrates the efficiency of the
algorithm with synthetic data and presents some preliminary
results obtained with real data. Finally, Section 5 presents the
conclusions and some open research problems.

2 DEFINITIONS AND RELATED WORK
2.1 Finding biclusters in genomic expression data
LetA′ be ann row bym column matrix, whereA′ij represents
the expression level of genei under conditionj.

Table 1. Toy example of a gene expression matrix

Cond.1 Cond.2 Cond.3 Cond.4 Cond.5
Gene1 0.07 0.73 -0.54 0.45 0.25
Gene2 -0.34 0.46 -0.38 0.76 -0.44
Gene3 0.22 0.17 -0.11 0.44 -0.11
Gene4 0.70 0.71 -0.41 0.33 0.35

In this work, we are interested in the case where the gene
expression levels can be discretized to a set of symbols of
interest,Σ, that represent distinctive activation levels. In the
simpler case,Σ may contain only three symbols,{U,D, N}
meaningUpRegulated, DownRegulatedor NoChange. In
other applications, the values in matrixA′ may be discreti-
zed to a larger set of values. The discretized version of matrix
A′ is matrixA. Therefore,Aij ∈ Σ represents the discretized
value of the expression level of genei under conditionj.

Table 2 represents a possible discretization of the gene
expression values in Table 1. In this discretization, an expres-
sion level was considered asNoChangeif it falls in the range
[−0.3 : 0.3].

Table 2. Discretized toy
example of gene expression
matrix

1 2 3 4 5

1 N U D U N
2 D U D U D
3 N N N U N
4 U U D U U

Such a matrixA, with n rows andm columns, is defined
by its set of rows,R, and its set of columns,C. Let I ⊆ R
andJ ⊆ C be subsets of the rows and columns, respectively.
Then,AIJ = (I, J) denotes the sub-matrix ofA that contains
only the elementsaij belonging to the sub-matrix with set of
rowsI and set of columnsJ . We will useAiC to denote row
i of matrixA andARj to denote columnj of matrixA.

A bicluster is a subset of rows that exhibit similar beha-
vior across a subset of columns, and vice-versa. The bicluster
AIJ = (I, J) is thus a subset of rows and a subset of columns
where I = {i1, ..., ik} is a subset of rows (I ⊆ R and
k ≤ n), andJ = {j1, ..., js} is a subset of columns (J ⊆ C
ands ≤ m). A bicluster(I, J) can be defined as ak by s
sub-matrix of the matrixA.

The specific problem addressed by biclustering algorithms
can now be defined. Given a data matrix,A′, or its dis-
cretized version,A, we want to identify a set of biclusters
Bk = (Ik, Jk) such that each biclusterBk satisfies some spe-
cific characteristics of homogeneity. The exact characteristics
of homogeneity vary from approach to approach, and will be
studied in Section 2.2.

2.2 Bicluster models and metrics
A large number of models and metrics have been proposed
for the selection of interesting biclusters [7]. When dealing
with the non-discretized matrixA, the most flexible measures
of interest identify highly correlated activity of genes under
a subset of conditions. To understand these measures, letaiJ

represent the mean of theith row in the bicluster,aIj the
mean of thejth column in the bicluster andaIJ the mean of
all elements in the bicluster:

aiJ = 1
|J|

∑
j∈J aij (1)

aIj = 1
|I|

∑
i∈I aij (2)

aIJ = 1
|I||J|

∑
i∈I,j∈J aij (3)

2

Linear Time Biclustering Algorithm

Constantbiclusters are then identified as biclusters where
the value of

V AR(I, J) =
∑

i∈I,j∈J (aij − aIJ)2 (4)

is as low as possible [5].
More interesting than constant biclusters are biclusters

where the activity of the genes varies in a highly correlated
way in different conditions, i.e., biclusters that minimize the
following expression:

V ARc(I, J) =
∑

i∈I,j∈J (aij − aIj)
2 (5)

The more general model seeks to find biclusters where the
activity of genei under conditionj can be obtained from the
sum of a factor due to the gene and a factor due to the column:

aij = µ + αi + βj (6)

It can be shown [7, 3] that such a bicluster minimizes the value
of the sum of the residues,

H(I, J) = 1
|I||J|

∑
i∈I,j∈J r(aij)

2 (7)

where the residuesr(aij) are given by

r(aij) = aij − aiJ − aIj + aIJ (8)

Many heuristic approaches have been proposed [7] have been
proposed for the selection of biclusters that minimize this type
of merit functions.

However, the inherent difficulty of this problem has led
many authors to a formulation based on a discretized version
of the gene expression matrix [2, 9, 12]. In the discreti-
zed versions, the objective is to find biclusters that exhibit
either constant rows (or constant columns) [2] or to find bic-
lusters that contain genes that jointly respond to the conditions
(columns) in the biclusters.

The model used in our work falls in the category of biclusters
with conserved columns. In particular, we are interested in
finding column coherent biclusters, i.e., biclusters that satisfy
the following definition:

DEFINITION 1. A column coherent biclusterAIJ = (I, J)
is a subsetI = {i1, . . . , ik} and a subset of columnsJ =
{j1, . . . , js} from the matrixA such thatAij = Alj for all
i, l ∈ I andj ∈ J .

With this definition, finding a set a maximal biclusters that
satisfy this coherence property remains an NP-complete pro-
blem. However, we are specially interested in the analysis of
time series expression data, and that leads to an important
restriction.

2.3 Biclusters in time series expression data
When analyzing time series expression data, with the objective
of isolating coherent activity between genes in a subset of

conditions, it is reasonable to restrict the attention to biclusters
with contiguous columns. We support this view by assuming
that the activation of a set of genes under specific conditions
corresponds to the activation of a particular biological process.
As time goes on, biological processes start and finish, leading
to increased (or decreased) activity of sets of genes that can
be identified because they form biclusters with contiguous
columns, as illustrated in Figure 1.

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � � � � � � �	 	 	 	 	 	 	 	 	 	 	

P2

P1 P3

P3G
en

es

Time

Fig. 1. Biclusters in time series expression data .

In this figure, the existence of three processes (P1, P2 and
P3) leads to increased activity of different sets of genes, repre-
sented by three biclusters. Note that, although the columns of
each of the biclusters are contiguous, the rows are in arbitrary
positions, and are represented as contiguous for processes P1
and P2 only for convenience. The identification of biological
processes that lead to the creation of the biclusters, together
with their relationship, is crucial for the identification of gene
regulatory networks and for the classification of genes.

This leads us to the definition of the type of biclusters that
are of interest in this work.

DEFINITION 2. A contiguous column coherent bicluster
(ccc-bicluster)AIJ = (I, J) is a subsetI = {i1, . . . , ik} and
a contiguoussubset of columnsJ = {r, r + 1, . . . , s− 1, s}
from the matrixA such thatAij = Alj for all i, l ∈ I and
j ∈ J .

For the remainder of this work, we will refer to a contiguous
column coherent bicluster simply as a ccc-bicluster. By defini-
tion, each row in matrix A is a ccc-bicluster. These are trivial
biclusters and will not be of interest, in general. The bicluster
with only one row or only on column will also be considered
as trivial.

Each ccc-bicluster defines a strings that is common to every
row in the ccc-bicluster, between columnsr ands of matrix
A. Figure 2 illustrates two ccc-biclusters that appear in the
matrix in Table 2. These two ccc-biclusters are maximal, in
the sense that they are not properly contained in any other
ccc-biclusters. This notion will be defined more clearly later
on.

3

Sara C. Madeira and Arlindo L. Oliveira

Bicluster 1: ({1,2,4),(2,3,4)}

N U D U N

D U D U D

N N N U N

U U D U U

Bicluster 2: ({1,3),(4,5)}

1

2

3

4

1 2 3 4 5

Fig. 2. Two ccc-biclusters for the matrix in Table 2 .

2.4 Suffix trees
A suffix tree is a data structure built over all the suffixes
of a string that exposes its internal structure of a string. It
has been extensively used to solve a large number of string
manipulation problems.

DEFINITION 3. A suffix treeof a |s|-character strings is
a rooted directed tree with exactly|s| leaves, numbered 1 to
|s|. Each internal node, other than the root, has at least two
children and each edge is labeled with a nonempty substring
of s. No two edges out of a node have edge-labels beginning
with the same character. The key feature of the suffix tree is
that for any leafi, the label of the path from the root to the
leaf i exactly spells out the suffix ofs that starts at positioni.

In order to enable the construction of a suffix tree obeying
this definition when one suffix of s matches a prefix of ano-
ther suffix of s, a character terminator, that does not appear
nowhere else in the string, is added to its end. For example, the
suffix tree for the strings=TACTAG is presented in Figure 3.

C T A G $
$ G

A
 T

G
 $

A

$
G

C T A
 G

 $

1 2

3

4 5

6

$
G

 A
 T

 C

Fig. 3. Suffix tree fors=TACTAG.

The suffix tree construction for a set of strings, called a
generalized suffix tree, can be easily obtained by consecu-
tively building the suffix tree for each string of the set. The
leaf number of the single string suffix tree can easily be conver-
ted to two numbers, one identifying the string and the other
identifying the starting position in that string. For example,
the generalized suffix tree for the stringss1=TACTAG and

s2=CACT is presented in Figure 4. When dealing with gene-
ralized suffix trees, each string is terminated with a different
terminator that is not in the original alphabet. In our case, the
terminator for stringsi is denoted by$i. There is a suffix link
from nodev to nodeu if the path-label of nodeu represents a
suffix of the path-label of nodev and the lenght of the path-
label ofu is exactly equal to the length of the path-label of
v minus 1. For a constant size alphabet, suffix trees can be

$2

A

A

C

$2 A
 G

 $1

C
 T$1

 G

G
 $1

$1
 G

 A
 T

 C

$1 G T

[2,4]

[1,4]

[1,1]

[1,5]

T

A
 C

 T
 $2

$2

A G $1

[1,6]

[2,1]

[2,2]

[1,2]

 [1,3]

[2,3]

Fig. 4. Generalized suffix tree forS1=TACTAG andS2=CACT.

built in time that is linear on the size of the string, using a
number of different algorithms [11, 8, 14]. Generalized suffix
trees can be built in time linear on the sum of the sizes of the
strings, that is, on time linear on the size of the input data.
This impressively low complexity result is at the root of many
efficient algorithms for string manipulation.

When the number of symbols inΣ, |Σ|, is large, then
the analysis of the time complexity of the tree construction
algorithms is slightly more elaborated [4], since it becomes
dependent on the data structure used at each node to maintain
a list of its children.

3 AN ALGORITHM FOR BICLUSTERING
TIME SERIES EXPRESSION DATA

3.1 Biclusters and suffix trees
We can now introduce the major results of this work, that lead
to the linear time biclustering algorithm. We first introduce
the concept of contiguous column maximal bicluster.

DEFINITION 4. A ccc-biclusterAIJ is maximal if no other
ccc-bicluster exists that properly containsAIJ , i.e., if for all
other ccc-biclustersALM , I ⊆ L and J ⊆ M ⇒ I =
L ∧ J = M .

We will also call a ccc-biclusterright-maximalif it cannot
be extended to the right by adding one more column at the
end, andleft-maximalif it cannot be extended to the left by
adding one more column at the beginning.

Stated more plainly, a ccc-bicluster is maximal if no more
rows nor contiguous columns (either at the right or at the left)
can be added to it while maintaining the coherence property
from Definition 2.

4

Linear Time Biclustering Algorithm

We will now consider a new alphabetΣ′ = Σ× {1 . . . m},
where each element of the new alphabetΣ′ is obtained
by concatenating one symbol inΣ and one number in the
range{1 . . .m} and a functionf : Σ × {1 . . . m} defi-
ned byf(a, k) = a|k wherea|k represents the character in
Σ′ obtained by concatenating the symbola with the num-
ber k. For example, ifΣ = {U,D, N} and m = 3,
thenΣ′ = {U1, U2, U3, D1, D2, D3, N1, N2, N3}. For this
case,f(U, 2) = U2 andf(D, 1) = D1. Consider now the
set of stringsS = {s1, . . . , sn} obtained by mapping each
row AiJ in matrix A to stringsi such thatsi(j) = f(aij , j).
Each of these strings hasm characters and corresponds to
the symbols in a row of matrixA after the above alphabet
transformation. As such, the matrix that we have been using
as example becomes, after the transformation, the matrix in
Table 3.

Table 3. Discretized toy example of
gene expression matrix, after alpha-
bet transformation

1 2 3 4 5

1 N1 U2 D3 U4 N5
2 D1 U2 D3 U4 D5
3 N1 N2 N3 U4 N5
4 U1 U2 D3 U4 U5

Consider now the generalized suffix treeT obtained from
the set of stringsS. Letv be an internal node ofT and letL(v)
denote the number of leaves in the sub-tree rooted at nodev.
Additionally, let P (v) be the path-length of nodev, that is,
the number of characters in the string that labels the path from
the root to nodev.

Is is easy to verify that every internal node of the generalized
suffix treeT corresponds to one ccc-bicluster of the matrixA.
This is so because an internal nodev in T corresponds to a
given substring that is common to every row that has a leaf
rooted inv. Therefore, nodev defines a ccc-bicluster that has
P (v) columns and a number of rows equal toL(v).

We will state with only sketches of proofs two lemmas that
lead to the main theorem.

LEMMA 1. Every right-maximal ccc-bicluster corresponds
to one node inT .

Proof: letB be a ccc-bicluster that cannot be extended to
the right, i.e., a right-maximal ccc-bicluster. SinceB is a ccc-
bicluster, every row inB shares the substring that definesB.
SinceB cannot be extended to the right, at least one of the
rows inB must have a character that differs from the character
in the other rows, in the first column to the right that is not
in B. Therefore, there is a node inT that matchesB and the
path-label of that node is the string that definesB.

LEMMA 2. Let nodev1 correspond to a ccc-biclusterB1

and nodev2 correspond to a ccc-biclusterB2. Then, if there
is a suffix link from nodev1 to nodev2, biclusterB2 contains
one less column than biclusterv1.

Proof: follows directly from the definition of suffix links.

From these lemmas, we can now derive the theorem that is
our main result.

THEOREM 1. Letv be an internal node in the generalized
suffix treeT . Then,v corresponds to a maximal ccc-bicluster
iff L(v) > L(u) for every nodeu such that there is a suffix
link from u to v. Furthermore, every maximal ccc-bicluster
corresponds to a nodev satisfying this condition.

Proof: letB be a maximal ccc-bicluster. Lets be the string
that definesB. Now,s must lead to a nodev (by lemma 1). If
nodev does not have an incoming suffix link, the conditions of
the theorem are met. SinceB is also left-maximal, every node
u that defines a biclusterB′ with one more column thanB
(lemma 2) must haveL(v) > L(u), sinceB′ cannot contain
all the rows inB (otherwise,B would not be left-maximal).
Therefore, it is sufficient to check that every nodeu that has a
suffix link directed atv hasL(u) < L(v) to ensure that node
v corresponds to a maximal ccc-bicluster.

Figure 5 illustrates the generalized suffix tree obtained from
the strings that correspond to the rows of the matrix in Table
3. This figure does not contain the leaves that represent string
terminators that are direct daughters of the root. Each non-
terminal node, other than the root, is labeled with the value of
L(v), the number of leaves in its subtree. Also shown in this
tree are the suffix links between nodes. For clarity, leaves that
have as parent the root are not shown. Also not shown are the
suffix links that end at the root.

U1 U2 D3 U4 U5 $4$3 N5 U4 N3 N2

$4
 U

5 D
5 $2

$4
 U

5

D
5 $2

U
4

D
3

U
2

U
2 D

3 U
4 N

5 $1

$3
 N

5
U

4
N

3
N

2

U
4

$1

N5

D1 U2 D3 U4 D5 $2D5 $2

2

3

2

2

$2
 D

5

$4
 U

5 $3$1

3 4

D
3 U

4
N

5 $1

$1
 N

5

N1

$4 U5$3 N5 U4 N3

N
5

$3

Fig. 5. Generalized suffix tree for matrix A3

Figure 5 shows that there are 6 non-terminal nodes, other
than the root. Each one of these nodes corresponds to one
ccc-bicluster. However, some of them are trivial (nodes with
edge labelsN1, U4 andN5, since they have edge labels with
only one character). Others are non maximal (nodes with edge
labelsD3U4 andN5), since they have an incoming suffix

5

Sara C. Madeira and Arlindo L. Oliveira

link from a node with the same number of leaves. This leaves
nodes with edge labelsU2D3U4 andU4N5 as maximal, non-
trivial ccc-biclusters. These nodes correspond to the maximal
ccc-biclusters({1, 2, 4}, {2, 3, 4}) and ({1, 3}, {4, 5}) (see
Figure 2). The rows in each ccc-bicluster are obtained from
the terminators in the leaves in the subtree of each nodev,
while the columns in each ccc-bicluster are obtained from
the value ofP (v) and the information on the edge-label that
connectsv to its parent.

3.2 Finding and reporting biclusters
Theorem 1 directly implies that there is a linear time algorithm
that lists all maximal contiguous column coherent biclusters
in matrixA. This algorithm is shown in Figure 6. With appro-

Map each row in matrixA, AiJ to a stringsi usingf

Build a generalized suffix treeT for the setS

ComputeP (v) for each nodev in T

ComputeL(v) for each nodev in T and markv as Valid

For each nodev in T

If there is a suffix link(v, u) andL(v) >= L(u)
Mark u as Invalid

For each nodev in T

If v is Valid

Report the ccc-bicluster that corresponds tov

Fig. 6. Linear time algorithm for the extraction of all maximal ccc-
biclusters in a discretized and transformed gene expression matrix.

priate data structures at the nodes, each of the four first lines
and the final two iterations over all nodes in the tree are exe-
cuted in time linear on the size of the input matrix. A more
detailed analysis shows that the increase in the alphabet size
does not have an impact on this linear time complexity. In fact,
only two types of nodes have more than|Σ| children: the root
node and nodes that have as children only leaf nodes. In both
cases, it is easy to devise a data structure that enables constant
time manipulation of these nodes.

4 EXPERIMENTAL RESULTS
In order to validate the approach, we performed experiments
with both synthetic data and real data, using a prototype imple-
mentation of the algorithm, coded in Java. All experiments
were performed in a a 3GHz Pentium-4 machine, running
Linux with 1GB of memory.

4.1 Experiments with synthetic data
To evaluate the efficiency of the algorithm, and validate expe-
rimentally the predicted linear time complexity, we generated
matrices with random values, on which 10 biclusters were hid-
den, with dimensions ranging from15− 25 rows and8− 12

columns. The size of the matrices varied from250×50 (rows
× columns) up to1000 × 250. We used a three character
alphabet,Σ = {U,D,N}.

In all cases, we recovered theplanted ccc-biclusters,
together with a large number of artifacts that result from ran-
dom coincidences in the data matrix. Figure 7 shows a plot
of the variation of the CPU time with the size of the input
data matrix. A clear linear relationship over several orders of
magnitude is apparent from this plot. It is also clear from this

0

2000

4000

6000

8000

10000

12000

14000

0 50000 100000 150000 200000 250000

C
P

U
 (

m
s)

Matrix Size (Columns x Rows)

CPU Time

Fig. 7. CPU time versus size of the synthetic input data .

plot that the algorithm runs even in the larger matrices used
in the synthetic data in less than 15 seconds.

4.2 Experiments with real data
To validate the approach, we used the time-series data from
yeast described in [13]. This represents a dataset with 2884
genes and 17 conditions, corresponding to 17 successive
instants of time.

The original data was processed to a range between 0 and
600 (as in [3]) and then discretized to an alphabetΣ =
{U,D, N}. Gene expression levels were considered to be in
the N range if they did not deviate more than0.8 standard
deviations from the average value.

The resulting matrix was processed by our algorithm and
all maximal 5967 ccc-biclusters were extracted. The whole
process took 28.3 seconds.

Due to time limitations, we present only very preliminary
results on this data. Removal of uninteresting ccc-biclusters
(e.g., constantN ccc-biclusters, trivial ccc-biclusters with
only one column) still left us with more than 5000 ccc-
biclusters. Many other criteria can be applied to filter irrelevant
ccc-biclusters, but were not used in these experiments.

The results obtained with some ccc-biclusters of moderate
size that exhibit correlated gene activity are shown in Figure
8.

6

Linear Time Biclustering Algorithm

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 10 11 12 13 14

(a) Bicluster 471

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 400

 7 8 9 10 11

(b) Bicluster 1014

 220

 240

 260

 280

 300

 320

 340

 360

 6 7 8 9 10 11

(c) Bicluster 2490

Fig. 8. Expression level of genes in selected ccc-biclusters .

These figures show that the methodology proposed in this
work is able to identify highly correlated expression patterns
of genes, under a given subset of conditions. It is worthwhile
to note that the highly correlated activity under this subset of
columns does not necessarily translate into highly correlated
activity under all conditions. For example, the genes in ccc-
bicluster 1014 do not exhibit good correlation except between
time instants 7 and 11, as a comparison of Figure 9 and Figure
8(b) clearly shows. This ability to identify highly correlated
behaviors under specific subsets of conditions is inherent to
biclustering approaches (and not, in particular, to our method)

 150

 200

 250

 300

 350

 400

 450

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fig. 9. Expression level of genes in bicluster 1014 .

and is very important in the identification of relevant genomic
regulation mechanisms.

5 CONCLUSIONS
In this work, we presented a linear time algorithm for the
identification of all maximal contiguous column biclusters in a
discretized gene expression matrix, obtained from time series
genomic expression data.

By discretizing the gene expression values, and manipu-
lating the strings that correspond to each row using string
manipulation techniques, we have been able to demonstrate
that there is a correspondence between the maximal ccc-
biclusters and the internal nodes of the generalized suffix tree
that represents the rows of the matrix. This leads to a very effi-
cient algorithm for the extraction of ccc-biclusters, that runs
in a few seconds even for matrices with thousands of genes
and hundreds of conditions.

We have demonstrated the correctness of the algorithm and
sketched the complexity analysis. We have also presented
experimental results with synthetic data and very preliminary
results with real data from yeast.

This work opened many promising directions for future
research, both in the short and in the long term. In the short
term, we are working on the selection and evaluation of crite-
ria for filtering the ccc-biclusters obtained by the algorithm.
In fact, although the algorithm generates only ccc-biclusters
that are maximal (and, in that sense, as interesting as possible),
other criteria of interest need to be developed in order to reduce
the number of potentially interesting ccc-biclusters. Additio-
nally, we are interested in the development of generalizations
of these algorithm to deal with imperfect ccc-biclusters. Many
techniques developed by the string processing community
can be applied to this problem, and are likely to derive very
efficient solutions to that more general problem.

In the long term, it is interesting to apply this and related
techniques to the identification of candidate regulatory mecha-
nism, related with the processes that are potentially causing
the appearance of each bicluster.

7

Sara C. Madeira and Arlindo L. Oliveira

REFERENCES
[1]P. Baldi and G. W. Hatfield. DNA Microarrays and Gene

Expression. From Experiments to Data Analysis and Modelling.
Cambridge University Press, 2002.

[2]A. Califano, G. Stolovitzky, and Y. Tu. Analysis of gene expres-
sion microarays for phenotype classification. InProceedings
of the International Conference on Computacional Molecular
Biology, pages 75–85, 2000.

[3]Y. Cheng and G. M. Church. Biclustering of expression data. In
Proceedings of the 8th International Conference on Intelligent
Systems for Molecular Biology (ISMB’00), pages 93–103, 2000.

[4]D. Gusfield.Algorithms on strings, trees, and sequences: com-
puter science and computational biology. Cambridge University
Press, 1997.

[5]J. A. Hartigan. Direct clustering of a data matrix.Journal of
the American Statistical Association (JASA), 67(337):123–129,
1972.

[6]L. Lazzeroni and A. Owen. Plaid models for gene expression
data. Technical report, Stanford University, 2000.

[7]S. C. Madeira and A. L. Oliveira. Biclustering algorithms for
biological data analysis: a survey.IEEE/ACM Transactions on

Computational Biology and Bioinformatics, 1(1):24–45, Jan-
Mar 2004.

[8]E. McCreight. A space economical suffix tree construction
algorithm.Journal of the ACM, 23:262–272, 1976.

[9]T. M. Murali and S. Kasif. Extracting conserved gene expression
motifs from gene expression data. InProceedings of the Pacific
Symposium on Biocomputing, volume 8, pages 77–88, 2003.

[10]R. Peeters. The maximum edge biclique problem is NP-
complete. Discrete Applied Mathematics, 131(3):651–654,
2003.

[11]P.Weiner. Linear pattern matching algorithms. InProceedings of
the 14th IEEE Symposium on Switching and Automata Theory,
pages 1–11, 1973.

[12]A. Tanay, R. Sharan, and R. Shamir. Discovering statistically
significant biclusters in gene expression data. InBioinformatics,
volume 18 (Suppl. 1), pages S136–S144, 2002.

[13]S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and
G. M. Church. Systematic determination of genetic network
architecture.Nature Genetics, 22:281–285, 1999.

[14]E. Ukkonen. On-line construction of suffix trees.Algorithmica,
14:249–260, 1995.

8

