Optimization of Area in Digital FIR Filters using Gate-Level Metrics

Levent Aksoy
Istanbul Technical University
Department of Electronics Eng.
Maslak, Istanbul, Turkey
levent@ehb.itu.edu.tr

ABSTRACT

In the paper, we propose a new metric for the minimization
of area in the generic problem of multiple constant multiplica-
tions, and demonstrate its effectiveness for digital FIR filters.
Previous methods use the number of required additions or sub-
tractions as a cost function. We make the observation that
not all of these operations have the same design cost. In the
proposed algorithm, a minimum area solution is obtained by
considering area estimates for each operation. To this end,
we introduce accurate hardware models for addition and sub-
traction operations in terms of gate-level metrics, under both
signed and unsigned representations. Our algorithm not only
computes the best design solution among those that have the
same number of operations, but is also able to find better area
solutions using a non-minimum number of operations. The re-
sults obtained by the proposed exact algorithm are compared
with the results of the exact algorithm designed for the min-
imum number of operations on FIR filter instances and it is
shown that the area of the design can be reduced by up to
18%.

Categories and Subject Descriptors
B.2.0 [Arithmetic and Logic Structures]: General.

General Terms
Algorithms, design.

Keywords

Multiple constant multiplication, FIR, area optimization.

1. INTRODUCTION

Finite impulse response (FIR) digital filters are widely used in
digital signal processing by virtue of stability and easy imple-
mentation. The problem of designing FIR filters has received
a significant amount of attention during the last decade, as
the filters require a large number of multiplications, leading
to excessive area, delay, and power consumption even if imple-
mented in a full custom integrated circuit. Previous works have
focused on the design of filters with minimum area by replac-
ing the multiplication operations with constant coefficients by
addition, subtraction, and shifting operations. Since shifts are

Eduardo Costa
Universidade Catolica de Pelotas
Rua Félix da Cunha, 412, Centro

Pelotas-RS, Brazil
ecosta@ucpel.tche.br

Paulo Flores Jose Monteiro
INESC-ID/IST
Rua Alves Redol, 9, 1000-029
Lisbon, Portugal
{pff, icm}@inesc-id.pt

free in terms of hardware, the design problem can be defined
as the minimization of the number of addition/subtraction op-
erations to implement the coefficient multiplications. This is
in fact applicable to several other problems in digital signal
processing and is generically known as the multiple constants
multiplication (MCM) problem.

There have been a number of algorithms proposed for the op-
timization of the number of operations. These methods range
from the graph based coefficient synthesis techniques [1, 2] and
exhaustive enumeration of all possible digit patterns [7] to the
sharing of common digits [4]. To further reduce the complexity
of the design, the coefficients can be expressed in canonical sign
digit (CSD) or represented in minimal sign digit (MSD). Both
representations use the signed digit system with the digit set
{1,0,1}, where T denotes -1, and have a common property that
the number of non-zero digits is minimal. The CSD representa-
tion provides a unique representation for every constant, since
two non-zero digits are not adjacent in CSD. A constant can
have several MSD representations, because non-zero digits can
be consecutive in MSD. In [6], it is shown that using MSD repre-
sentation yields better solutions than CSD in the optimization
of the number of operations, since it has the same number of
non-zero digits as CSD, but provides multiple alternative repre-
sentations for a constant. Recently, we have proposed an exact
algorithm that maximizes the sharing of partial terms using 0-1
Integer Linear Programming (ILP) [3].

Although these heuristic and exact algorithms find best so-
lutions for the optimization of the number of operations, these
solutions may prove sub-optimal when implemented at the gate
level. In this work, we consider gate-level metrics in the se-
lection of an operation to be implemented. We introduce ar-
chitectures based on half adders (HAs) and full adders (FAs)
for addition and subtraction operations under unsigned and
signed input models. We implemented an exact algorithm that
is based on the exact algorithm of [3], but it is modified in order
to take into account the gate-level metrics of the operations. In
the proposed algorithm, the objective function is defined as a
linear combination of optimization variables representing oper-
ations with their cost values used in the synthesis environment.
Note that the area of an operation implemented at the gate-
level depends on:

e the type of the operation (addition or subtraction),

e the shifted input (minuend or subtrahend) in a subtraction,
e the number of shifts at the inputs,

e the position of the operation in the architecture (that influ-
ences the number of bits),

e the range and type of numbers considered (unsigned or signed).

The rest of the paper is organized as follows. In Section 2,
the exact algorithm is described. The cost of addition and sub-
traction operations, signed and unsigned, considering gate-level
metrics is derived in Section 3. Experimental results are given
in Section 4 and the paper concludes with Section 5.

2. THE EXACT ALGORITHM

In this section, we present the implementation of the exact al-
gorithm designed for the minimization of area and describe the
Booelan network constructed by the algorithm that represents
the optimization problem. The implemented algorithm can be
used for any type of coefficient representation: binary, CSD,
or MSD. Initially, we describe the MSD implementation of the
algorithm and then, we summarize the changes for binary and
CSD representations.

In the preprocessing phase of the algorithm, we convert all
filter coefficients to positive and then make odd by successive
divisions by 2. Each new resulting coefficient is added to a set
called Iset that includes the minimum number of coefficients
necessary to be synthesized. For each element i in [Iset, all
MSD representations are determined using [log,(i)] + 1 bits
and inserted in Cset. Although Cset begins with all the MSD
representations of the coefficients, C'set will be augmented with
MSD representations of partial terms during the execution of
our algorithm. In the main algorithm loop, an element ¢, rep-
resenting a number i, is removed from C'set and is processed
to determine its covers in the following way: 1) compute all
partial term pairs that covers the element c; 2) convert each
element of the cover pair to positive and make it odd; 3) add
each cover pair to the corresponding set of covers of the ele-
ment being processed, Aset;; 4) add the MSD representations
of each cover to Cset, if the representation has not been pro-
cessed yet and it is not already in Cset. Covers with only one
non-zero digit are skipped. This loop is repeated until there are
no more elements in Cset. The pair of elements in each Aset;
represents all possible implementations of a value i based on
its MSD representations.

The final 0-1 ILP optimization model is generated in three
steps: 1) for each pair element in Aset;, generate the corre-
sponding AND gate, with an additional input that represents
an optimization variable for the AND gate. Generate an OR
gate for the value i with the outputs of all the ANDs resulting
from Aset;; 2) identify all the OR gate outputs that represent
a coefficient (values belonging to Iset) and set their outputs
to value 1; 3) generate the objective function to be minimized.
This function is a linear combination of the optimization vari-
ables at inputs of the AND gates.

As described in the first step, the network constructed by the
algorithm only includes AND and OR gates. In this network,
an AND gate represents an addition/subtraction operation and
an OR gate combines the possible ways of implementation of
a filter coefficient or a partial term. The primary inputs of the
network represent the filter input or its shifted versions. The
primary outputs of the network are the OR gate outputs that
generate the filter coefficients. The number of inputs for each
AND gate is three: two are either primary inputs or OR gate
outputs and the third is an optimization variable. The inputs
of an OR gate are the outputs of AND gates associated with
the partial term. As an example, suppose that the value 51
(1010101 in CSD) is a coefficient of the filter to be synthesized.
The Boolean network generated by the exact algorithm is given
in Figure 1 with the elimination of 1-input OR gates for 3, 17,
and 63 partial terms. The type of each operation (adder or
subtracter) is given inside of each AND gate. Observe that the
coefficient 51 can be implemented in 7 different ways including
additions and subtractions.

Note that the algorithm can be easily adapted to obtain the
0-1 ILP optimization model with different coefficient represen-
tations. In this case, the Cset starts with the binary or CSD

Figure 1: The network for the coefficient 51 in CSD.

representations of the filter coefficients.

In [3], since the maximization of the partial term sharing is
realized, each optimization variable represents a partial term
and its cost value is assigned to 1. In our algorithm, since we
focus on the minimization of the area in a digital filter, an op-
timization variable is assigned to each operation and the cost
value of each optimization variable in the objective function is
determined using gate-level metrics as described in Section 3.
Note that an exact algorithm for the minimization of the num-
ber of operations can be designed, when the cost value of each
optimization variable, representing an operation, is assigned to
1. To obtain an exact solution, we use an efficient SAT-based 0-
1 ILP solver [5] that incorporates several advanced optimization
techniques and has been applied to several classes of problems.

3. THE PROPOSED MODELS

In this section, we describe the implementation of addition and
subtraction operations in the design and determine the cost
of each operation in terms of HAs, FAs and logic gates in a
given technology library. Since the shifts are free in terms of
hardware, the filter coefficients and partial terms are considered
as odd numbers. There are three different types of operations
that we can consider:

A«s, + Bgsy (an adder where Sy =0, S = 5)
A«s, — B«sy (asubtracter where S4 = S, Sp = 0)
A«s, — Bgsy (a subtracter where S4 =0, Sg = 5)

In given operations, A and B represent the numbers at the in-
puts of the operation, S4 and Sg denote the number of shifts
on the numbers A and B respectively. The following parame-
ters are considered during the computation of each operation
cost.

S: the number of shifts

na: the number of bits of A in the input

np: the number of bits of B in the input

Nm: minimum number of bits: min(na + Sa,ne + SB)

nar: maximum number of bits: maz(na + Sa,n + SgB)

We note that the number of the bits at the inputs of an op-
eration depends on the bit width of the filter input that is

Table 1: Implementation cost of addition and subtraction operations (left) and experimental data (right).

Operation A+ Bgs Ags — B A— Bgs Area Max Delay | Delay Carry

Parameter Unsigned Signed Unsigned Signed Unsigned Signed (um?) (ns) (ns)
#FA Ny —S —1 ny—S—1 npg—=S na ng—1 ny—S—1 58 0.261 0.194
#HA Ny —Nm+1 1 S—1 S—1 0 0 32 0.185 0.137
#HA 0 0 na+S—np 0 na—np—S+1 1 35 0.185 0.085
#inv 0 0 npg npg npg ng 6 0.06 —

denoted by N and the inputs that are represented by the filter
coefficients or partial terms. The cost of each operation is de-
termined considering unsigned and signed numbers, since these
lead to different implementations due to the sign extension and
is formulated by considering the overlap between inputs and
taking into account specific cases.

3.1 Addition operation A + B¢

The implementation cost of an addition operation in terms of
HAs and FAs are given in Table 1. In Figure 2, examples on
unsigned input models are given. Observe that larger number
of shifts at the input achieves smaller area, since shifts are
implemented with only wires in the design. Note that when
the number of FAs is negative in the unsigned input case, no
hardware is needed and the operation can be implemented with
only wires as illustrated in the second example. This situation
occurs, when the number of shifts of the operand B is equal
to or higher than the number of bits of the operand A. In the
signed input case, this situation never occurs, due to the sign
extension of the operand A.

A+ Bga A+ Bgs
S =4 nag =38 Nypm = 8 S =8 ng =38 Nym = 8
ng =6 ny = 10 ng =3 ny = 11
:HA : FA :HA: wire 1 wire wire
' '
'
N s S TR s ra—
'
'

5[30 Jo0o0o00000

#FA=8-4—-1=3
#HA=10-8+1=3

#FA=8 -8 — 1= —1
(no operators needed)

Figure 2: Examples on the computation of the cost of
an A + Bgs operation under unsigned input.

3.2 Subtraction operations A.s — Band A - B.s
A subtraction operation is implemented using 2’s complement,
i.e., A+ B+ 1. So, the inverter (inv) is included in the cost
of subtraction operations. Additionally, a different type of HA
block denoted by HA’ is introduced. HA’ block is the special
implementation of FA block when one of the inputs is 1 (as
opposed to HA, another special implementation of FA when
one of the inputs is 0). Suppose the input B; is 1, the addition
(sum) and carry output (Cout) are the functions of the input
A; and the carry input (Cin) given as sum = Cin ® A; and
Cout = Cin + A;. The implementation cost of these subtrac-
tion operations are given in Table 1. In Figure 3, examples on
unsigned input models are given for both subtraction opera-
tions. For the A«s — B operation, observe that the inverter
accounted for the first bit is required not to generate the first
bit of the result (since this is always equal to the first bit of the
operand B), but to generate the carry taken to the second bit.
For the A — B« s operation, we note that the shifts can be fully
utilized by starting addition with the first digit of the inverted

operand B resulting in a smaller area. Observe that the cost
of the operation is computed without HA blocks as opposed to
the A«s — B subtraction operation.

inverted
' HA' 1FAL HA H
Aga—B | I o : S =4
W mloook) | S
H nag =38
sign extension _:—* et o ‘ ng =5
(negative) Bl 11111 1)|lbs 3b 1p nm =5
' : T . ny =12
for 2’s complement 1
operation
#HFA=5—-4=1, #HA=4-1=3, #HA' =8+4-5=7, #nv=>5
+ HA’1 FA 1HAN { ' wire
TR
A — Bga =

< a[20! 4o '1b'lb 5=

. £ . 1 eeedeeaas [FIRT R—— na =8

sign ex ?nSlOn [S Lee 1 npg =5

(negative) Bl 1) 4b . 1blO0 Nm =6

N R num =38

for 2’s complement 1
operation inverted

#FA=5—-1=4, #HA'=8—-5-1+1=3, #Huw=5
Figure 3: Examples on the computation of the cost of
subtraction operations under unsigned input.

4. EXPERIMENTAL RESULTS

In this section, we present the results that are obtained with
the minimum number of operations and the minimum area ob-
jectives. The data associated with the HA, HA’, FA blocks
and an inverter were taken from UMC Logic 0.18um Generic
II library and are given in Table 1, on the right. We note that
while inv, HA, and FA are primitive gates of the library, HA’
was implemented using the gates in the library as defined in
Section 3.2.

As an experiment set, we used filter instances where the
coefficients were computed with MATLAB using the Remez
algorithm. The specifications of filters are given in Table 2
where pass and stop are the normalized passband and stop-
band frequencies respectively; #tap is the number of coeffi-
cients; and width is the bit-width of the coefficients. The filter
coefficients are defined in MSD representation, since MSD gives
more promising solutions than binary and CSD.

The exact solutions with minimum number of operations
and minimum area objectives are obtained on filter instances

Table 2: Filter specifications.
[Filter | pass [stop | #tap [width |

1 0.20 | 0.25 120 8
2 0.10 | 0.25 100 10
3 0.15 | 0.25 40 12
4 0.20 | 0.25 80 12
5 0.24 | 0.25 120 12
6 0.15 | 0.25 60 14
7 0.15 | 0.20 60 14
8 0.15 | 0.20 100 16
9 0.10 | 0.15 60 14
10 0.10 | 0.15 100 16

Table 3: Experimental results on unsigned (top) and signed (bottom) models.

N 8 bits 16 bits 24 bits
Objectivd # Operations | Area # Operations || Area # Operations | Area
Filter oper | arca | delay || oper | area | delay || oper| area | delay || oper | area | delay || oper| area | delay || oper | area | delay
1 10 5114 4.2 10 4477 4.9 10 9994 7.3 10 9213 9.6 10 14874 | 10.4 10 13949 | 14.3
2 18 9465 7.1 18 7898 5.7 18 18249 | 11.7 18 16394 | 10.3 18 27033 | 16.4 18 24890 | 15.0
3 16 8847 6.7 17 8407 5.8 16 16751 | 11.4 16 16218 | 10.4 16 24655 | 16.0 16 23978 15.1
4 29 16462 | 6.9 29 13537| 6.0 29 30638 | 11.2 29 27410| 12.2 29 44814 | 16.2 29 41202 | 18.4
5 34 17645 | 7.1 34 15310 | 6.6 34 33949 | 11.7 34 31326 | 11.3 34 50253 | 16.4 34 47342 15.9
6 22 12673 | 8.4 23 12008 | 7.3 22 23457 | 14.6 22 22816 | 12.4 22 34241| 20.8 22 33456 | 17.1
7 34 20310| 7.5 35 17518 | 7.0 34 36854 | 12.2 34 33871 | 12.2 34 53398 | 16.8 34 50162 | 16.4
] 47 27798 | 7.8 51 24092| 7.3 A7 51003 | 14.1 47 47901 | 12.8 47 73819 | 20.3 47 70311| 19.0
9 33 20787| 8.2 35 16998 | 6.2 33 37140 | 14.4 35 34134| 10.8 33 53316 | 20.6 34 50769 | 16.2
10 49 29474 | 8.6 54 25497| 7.6 49 53714 | 15.6 49 50145| 15.5 49 77458 | 21.8 49 73649 | 21.7
Avg.(%) 100 100 100 104.8| 86.5 88.9 100 100 100 100.7| 92.8 94.7 100 100 100 100.3| 94.7 96.2
Min. (%) - — - 100.0| 81.8 75.5 — - — 100.0 89.5 75.1 - — - 100.0| 91.9 78.7
Max.(%) — — — 110.2| 95.0 117.3 — - — 106.1| 97.3 131.7(— — — 103.0| 97.7 136.9
1 10 5924 4.6 10 5152 4.1 10 10804 | 7.7 10 9888 7.2 10 15684 | 10.8 10 14624 | 10.3
2 18 11098 | 7.8 18 9050 5.7 18 19882 | 12.5 18 17546 | 10.4 18 28666 | 17.1 18 26042 | 15.1
3 16 10552 | 7.3 16 10054 | 6.1 16 18456 | 12.0 16 17814 10.8 16 26360 | 16.6 16 25574 | 15.4
4 29 19333 7.5 29 15944 | 6.2 29 33509 | 12.1 29 29736 | 12.5 29 47685| 16.8 29 43528 | 18.7
5 34 20682 | 7.9 34 17884 | 6.7 34 36986 | 12.5 34 33900 | 11.3 34 53290 | 17.2 34 49916 | 16.0
6 22 15396 | 9.4 23 14721 | 8.0 22 26180 | 15.6 22 25612 | 13.3 22 36964 | 21.9 22 36252 | 18.0
7 34 24625| 8.5 35 21248 7.3 34 41169 | 13.2 34 37762 | 13.2 34 57713| 17.8 34 54066 | 17.8
8 47 34149| 9.2 50 29950| 8.5 47 56965 | 15.4 47 52609 | 13.4 47 79781 | 21.6 47 74993 | 19.6
9 33 24375| 9.2 36 21216| 6.7 33 40551 | 15.4 34 37822 | 12.1 33 56727| 21.6 34 54078 | 16.8
10 49 36280| 10.5 52 31837| 8.5 49 60024 | 16.7 49 55719 | 16.2 49 83768 | 22.9 49 79223 | 22.4
Avg.(%) || 100 100 100 103.8| 87.5 82.9 100 100 100 100.3| 92.4 90.5 100 100 100 100.3| 94.2 92.3
Min. (%) — — — 100.0| 81.5 72.8 - — — 100.0| 88.3 78.9 - - - 100.0| 90.8 77.8
Max. (%) — - - 109.1] 95.6 93.3 — — — 103.0 96.5 102.6|| — — — 103.0| 98.1 111.1
Table 4: Effect of the bit widths of filter input over area on unsigned input model.

[Fiter | DS | Dig | D3y [[D" [Dyg | Dof || DS' | Dig | D3
Avg. (%) [[100 [102.1 | 102.7]| 101.7 [100 [100.2]| 102.3 | 100.02 | 100
Min. (%) || - | 100.0 | 100.0 || 100.0 | — | 100.0 || 100.0 | 100.0 | —
Max. (%) || —] 105.7 | 106.0 || 108.9 | — | 101.1 || 105.1 | 100.1 | -

for unsigned and signed input models, when the bit widths of
the filter inputs, i.e., N, are 8, 16, and 24. The results on un-
signed and signed models are given in Table 3, top half and
bottom half respectively. In this table, oper denotes the num-
ber of operations, and area and delay denote the total area and
the delay of the multiplier block of the filter, respectively.

In this experiment, we observe that a minimum solution in
terms of the number of operations may not give the minimum
area design (e.g., Filter 10 with 8 bits), and the area of the
design can be improved using the proposed approach. As can
be seen from experimental results, the reduction in area can be
13.5% and 12.5% on average for unsigned and signed models
respectively. Since the optimization of area yields the opti-
mization of the number of half and full adders, the delay of the
design is decreased on most of the filter instances.

As discussed in the previous section, the cost of each op-
eration is a function of the input bit-width, N. In order to
analyse the impact of this parameter, we first computed the
set of operations that lead to the best area solutions using a
given value for N (represented as DY, and this is optimized
bit-width, opt). We then used this set of operations in the im-
plementation of a filter with a different input bit-width (value
imp) and obtained its area, the value D", Table 4 presents
the maximum, minimum and average difference between the
area D" and DZEy (opt,imp € {8,16,24}), giving us a mea-
sure how much we loose by not using the correct value of N.
In this experiment, we observed that parameter N affects the
minimum area solution only slightly, with an average penalty
between 2% and 3% and a maximum penalty of 6%, over our
set of instances.

5. CONCLUSIONS

In this work, an exact algorithm that minimizes the area of the
multiplier block of a digital filter is proposed. The area esti-
mate of each operation is defined in terms of gate-level metrics
and is used in the objective function to weight the cost of the
operation. We present results indicating that if these issues are
ignored, i.e., if the objective function is limited to the number
of operations, the actual hardware implementation can be far
from optimum. Although these results focus on FIR filters,
our method can be directly applied to any system that uses
multiple constant multiplications.

6. REFERENCES

[1] D. R. Bull and D. H. Horrocks. Primitive Operator Digital
Filters. IEE Proceedings G, 138(3):401-412, 1991.

[2] A. Dempster and M. Macleod. Use of minimum-adder

multiplier blocks in FIR digital filters. IEEE TCAS II,

42(8):569-577, 1995.

P. Flores, J. Monteiro, and E. Costa. An Exact Algorithm for

the Maximal Sharing of Partial Terms in Multiple Constant

Multiplications. In Proc. of ICCAD, pages 13-16, 2005.

R. Hartley. Subexpression Sharing in Filters using Canonic

Signed Digit Multipliers. IEEE TCAS 11, 43(10):677-688, 1996.

V. Manquinho and J. Marques-Silva. Effective Lower Bounding

Techniques for Pseudo-Boolean Optimization. In Proc. of

DATE, pages 660-665, 2005.

I.-C. Park and H.-J. Kang. Digital Filter Synthesis Based on

Minimal Signed Digit Representation. In Proc. of DAC, pages

468-473, 2001.

R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and

D. Durackova. A New Algorithm for Elimination of Common

Subexpressions. [EEE TCAD, 18(1):58-68, 1999.

(3]

(4]
(5]

[6]

[7]

