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Abstract

Unstructured P2P networks have been widely used to implement resource location systems that support com-
plex queries semantics. Unfortunately these systems usually rely on search algorithms based on some variant
of flooding, which generate a significant amount of duplicate messages. An effective way to minimize the cost
of query flooding in unstructured P2P networks is the use of super-peers.

On the other hand, super-peers may become overloaded or may fail, and have a negative impact on the perfor-
mance and connectivity of the overlay. These risks can be circumvented by replicating super-peers. Replica-
tion serves the dual purpose of supporting load distribution and fault-tolerance purposes. This paper proposes a
novel algorithm to construct an overlay network connecting replicated super-peers. We have called the resulting
overlay, Overnesia. The paper also proposes techniques to perform query routing that leverage on the unique
properties of Overnesia to effectively distribute the query processing load among replicas.
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Abstract—Unstructured P2P networks have been widely used
to implement resource location systems that support complex
queries semantics. Unfortunately these systems usually rely on
search algorithms based on some variant of flooding, which
generate a significant amount of duplicate messages. An effective
way to minimize the cost of query flooding in unstructured P2P
networks is the use of super-peers.

On the other hand, super-peers may become overloaded or
may fail, and have a negative impact on the performance and
connectivity of the overlay. These risks can be circumvented
by replicating super-peers. Replication serves the dual purpose
of supporting load distribution and fault-tolerance purposes.
This paper proposes a novel algorithm to construct an overlay
network connecting replicated super-peers. We have called the
resulting overlay, Overnesia. The paper also proposes techniques
to perform query routing that leverage on the unique properties
of Overnesia to effectively distribute the query processing load
among replicas.

I. INTRODUCTION

There are two main approaches to build peer-to-peer (P2P)
overlays: structured and unstructured approaches. Structured
approaches such as DHTs [13], [19] are very efficient to
support exact queries but may exhibit poor performance in
face of high dynamics in the number of participants, due to
the concurrent entry and departure/failure of multiple nodes
(a phenomena often known as churn [12], [16]). Additionally,
they do not bring significant advantages for very complex
queries [3], [6]. Unstructured approaches have the advantages
of having a simpler design due to the lack of constraints on
node location in the overlay topology. They also have the
potential to be more resilient, both to churn and node failures.
Usually, queries in unstructured P2P overlays are implemented
using search algorithms that rely on some sort of (blind or
informed) flooding [7], [11].

An efficient way to minimize the cost of query flooding in
unstructured P2P networks is the use of super-peers [6], [18].
An unstructured P2P network using super-peers has a two-tier
hierarchical structure: at the higher level, super-peers organize
themselves in an unstructured overlay; at the lower level,
regular peers connect to one or more super-peers. Typically,
each super-peer maintains a consolidated index for all the
regular peers that are attached to it. Therefore, queries only
need to be flooded in the super-peer overlay.

Unfortunately, the use of super-peers makes the overlay less
robust, as the recovery from a super-peer failure may have
a non-negligible cost: regular nodes must find new suitable
super-peers and, then, consolidate index(es) need to be be

rebuilt. Moreover, super-peer based overlays are less robust to
informed attacks, as it is enough to attack the super-peers to
disrupt the overlay operation. Finally, super-peers may become
bottlenecks in the system, as they have to process a large
number of queries.

One way to solve the problems mentioned above is to
replicate super-peers. If done appropriately, such replication
may bring several advantages. To start with, the overlay may
become more robust and harder to attack, as one needs to
disrupt all the replicas of a super-peer to cause that peer’s
consolidated index to be rebuilt from scratch. Secondly, query
processing may be shared among the different replicas of the
super-peers, increasing the capacity of the super-peer overlay.

A naive approach to construct an overlay of replicated
super-peers would be to depart from an overlay of non-
replicated super-peers (Figure 1(a)) and substitute each node
by a virtual super-peer (Figure 1(b)) constructed by replicating
the original node and the links to its neighbors (Figure 1(c)).
However, such naive approach is far from fully exploiting the
potential benefits of replication, as the extra redundancy in
terms of nodes is not leveraged to increase the connectivity
among virtual super-peers. If each replica is connected to
a different virtual super-peer, the resulting overlay becomes
more connected, as a result of the existence of additional
diverse paths among virtual nodes, which can help to increase
resilience, decrease the network diameter, and offer better
load-distribution during query processing. Such richer overlay
is depicted in Figure 1(d).

Although, for simplicity, in the previous figures we have
used a replication degree of 2, we can generalize the idea for
larger replication degrees. The resulting overlay would then
look like the overlay illustrated in Figure 1(e): an overlay
consisting of islands of fully connected nodes (that constitute
virtual super-peers) and where islands are connect among each
other. We have called this overlay: Overnesia.

This paper has two main contributions. First, it presents
an algorithm to construct Overnesia. The algorithm is fully
decentralized and executed by each super-peer. It ensures
that the super-peers auto-organize to build a network of well
connected virtual super-peers. Moreover, the protocol achieves
a controlled distribution of super-peers in clusters, such that
each virtual super-peer has approximately the same number of
replicas. Overnesia can handle dynamic systems where nodes
can leave, join or fail at any moment. Second, it proposes
and analyzes different strategies to perform query routing over
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Fig. 1. An overlay of virtual super-peers

the resulting Overnesia. These strategies aim at ensuring that
queries cover all virtual super-peers, as a flood in a non-
replicated super-peer overlay would, but in such a way that the
query load is distributed among the super-peers that constitute
each virtual super-peer and among the links that connect them.

The remaining of the paper is organized as follows. The
algorithm to construct Overnesia is described in Section II
and the query routing strategies introduced in Section III. The
performance of all these algorithms is analyzed in Section IV
and later compared with related work in Section V. Finally,
Section VI concludes the paper and gives some pointers for
future work.

II. OVERNESIA

A. Rationale

The main goal of Overnesia is to build an overlay network
(of super-peers) with the following characteristics: i) each peer
belongs to a single cluster called a Nesos1 (each Nesos has
an identifier named cID); ii) each peer knows the identity
of all other members of its Nesos (denoted by nView ) and
maintains a link to each of these neighbors (thus, Nesoi
are fully connected); iii) each peer maintains links to other
Nesoi. The desired target size of each Nesos is a protocol
parameter; this allows our protocol to be used in a wide range
of applications with different fault tolerance requirements.

A key aspect of our design is that Overnesia does not
attempt to ensure that each Nesos has exactly the desired
target size. Such goal would be very hard to achieve in large
scale dynamic environments, where multiple joins, leaves, and
failures may happen concurrently. In fact, the behavior of
Overnesia is controlled by the following parameters:

• Target Nesos Size (NST ): The target desirable number
of Nesos neighbors kept by each node. Members of a Nesos
attempt to prevent the further growth of the Nesos as soon as
it reaches a size of NST + 1.
• Nesos Max Size (NSMAX ): If the size of a Nesos becomes

larger than threshold NSMAX +1, Nesos members coordinate
to split it into two distinct (smaller) Nesoi.
• Nesos Minimum Size (NSMIN ): If the size of a Nesos

becomes smaller than threshold NSMIN + 1, Nesos members
gradually try to abandon the Nesos to join a (larger) Nesos,
causing the graceful fading of the smaller Nesos.

Besides controlling the size of Nesos, Overnesia strives to
promote the creation of multiple, distinct, inter-Nesos con-
nections. The existence of these diverse connections has the
following advantages: makes the global overlay robust to node
and link failures, reduces the clustering among different Nesoi,
and lowers the diameter of the overlay (allowing queries to
be disseminated more efficiently). For this purpose, each peer
maintains an external view with identifiers of nodes located in
other existing Nesoi (called the eView, whose size θ is also a
protocol parameter). As it will become clear later in the text,
the fact that each Nesos has a (probabilistic) unique identifier

1Nesos is the Greek word for island, whereas Nesoi is the plural (islands).



eases the task of balancing inter-Nesos neighboring relations
among nodes of a given Nesos.

Each node maintains a link to all its internal (nView) and
external neighbors (eView). These links are maintained using
a TCP connection, that is used for all communication between
the two connecting peers. The use of TCP is motived by
two reasons: i) it allows the communication between peers
to be network friendly as we leverage in TCP flow control
mechanisms. Moreover, we can model the system without
considering message losses between peers; ii) TCP is used
as an unreliable failure detector, has it has been previously
proposed by the authors of [10]. The failure detector is used,
for instance, to improve the accuracy of queries, by allowing
to remove from the overlay the indexes of failed nodes in a
timely manner, and also to adapt the overlay in face of node
failures.

Additionally, each node owns an additional view, named
pView, containing additional random peer identifiers. This
view is used as a backup list to cope with node failures.

B. Algorithm

Algorithm 1: Overnesia Protocol Overview
1: upon event Init do
2: trigger Join Procedure

3: every ∆T1+ random(π) do
4: if #nView > NSMAX then
5: trigger Divide Procedure
6: else if #nView ≤ NSMIN

7: trigger Collapse Procedure

8: every ∆T2 do
9: if # external neighbors < θ
10: trigger External Neighboring Procedure

11: every ∆T3 with a probability ρ do
12: trigger Anti-entropy Procedure

Overview We start by providing a macroscopic perspective
on the operation of the algorithm. The protocol to build
Overnesia can be explained by the combination of five com-
plementary sub-protocols: a Join Procedure used to join nodes
to the overlay; a Divide Procedure used to prevent the size of
Nesos to exceed the NSMAX threshold; a Collapse Procedure
used to gracefully eliminate Nesoi of very small size; an
External Neighboring Procedure in charge of promoting the
creation of good inter-Nesos links; and, finally, a Nesos
Anti-entropy Procedure used to maintain the consistency of
the intra-Nesos information. Algorithm 1 shows when these
components are invoked.

The reader should note that there are some dependencies
among these sub-protocols. To reduce the cost, and increase
the robustness and parallelism of the join procedure, the Nesos
size is allowed to temporarily exceed its upper threshold, in
face of multiple concurrent join requests. This will trigger
(at some random time, to avoid global synchronization) the
execution of the divide procedure. On the other hand, node
failures may bring a Nesos size below the lower threshold,

triggering the Nesos collapse procedure. Failures also affect
the number of active external neighbors maintained by each
node. In this case, the external neighboring procedure is used
to locate new external neighbors, such that each node reaches
the target external degree (θ). Finally, due to expected high
concurrency, nodes may have inconsistent views of their cur-
rent Nesos filiation. To address such scenarios, and also to help
Nesos members to balance their external neighboring relations,
periodically with a given probability ρ, every node executes an
anti-entropy procedure where it exchanges information with a
random Nesos neighbor.

In the following paragraphs we will describe in more detail
each component of the Overnesia protocol, illustrating its
operation with simplified pseudo-code, when adequate.

Join Procedure In order to join the overlay, a new node
a sends to a node that already belongs to the overlay (called
the contact2 node) a JOIN request. This request is forwarded
in the overlay using a limited length random walk, using
preferably links to distinct Nesoi. The random walk terminates
when a Nesos with size smaller than NST is found. If no such
Nesos is found before the random walk time to live expires,
the new element is added to the Nesos where the random
walk ends, regardless of its size. When a is accepted into
a Nesos, a JOINREPLY message is sent to a, that uses the
information on the message to update its cID identifier and
to establish neighboring relations with all remaining members
of the Nesos by sending NEIGHBORINGREQUEST messages.
This procedure is depicted in Algorithm 2.

Divide Procedure This procedure is executed when the size
of a Nesos exceeds the threshold NSMAX and its purpose is
to split a Nesos into two smaller Nesoi. The intuition behind
the division of Nesos as a mechanism to generate new Nesoi
is that it avoids the creation of a large number of small
(potentially unitary) Nesoi. By dividing a large Nesos in two,
similar to what living cells do, one can generate two stable
and independent Nesoi, with a low impact on the overlay
connectivity.

The algorithm, depicted in Algorithm 3, is initiated by the
Nesos member with smaller identifier when, after a periodic
test, it detects that the size of its local nView is equal or
above the parameter NSMAX . The initiator generates two new
random Nesos identifiers (namely IDa and IDb) and divides
the current Nesos membership in two ordered sets a and b,
sending this information to the remaining Nesos members in
a NESOSDIVISION message.

When a NESOSDIVISION message is received it is put
in quarantine, for a period of time greater than twice the
maximum RTT. The message is stored in a set named pending
division vector, or simply pdv. The quarantine period aims at
avoiding that multiple concurrent Nesos divisions are initiated
when the Nesos view is not fully consistent (and more than one
node believes to have the lower identifier). At the end of the
quarantine period, the NESOSDIVISION message is accepted if

2The first node to join the overlay is an obvious exception: it only has to
generate a random Nesos identifier.



Algorithm 2: Join Procedure
1: upon event Init do
2: cID ←− ⊥
3: trigger Send(JOIN, contact)

4: upon event Receive(JOIN, newNode) do
5: if #nView < NST then
6: trigger Send(JOINREPLY, sender, cID, nView )
7: nView ←− nView ∪ sender
8: else
9: n ←− n ∈ eView or n ∈ nView
10: trigger Send(FORWARDJOIN, n, sender, TTL)

11: upon event Receive(FORWARDJOIN, sender, newNode, ttl) do
12: ttl ←− ttl −1
13: if #nView < NST or ttl = 0 then
14: trigger Send(JOINREPLY, newNode, cID, nView )
15: nView ←− nView ∪ newNode
16: else
17: n ←− (n in eView or n in nView) and n '= sender
18: trigger Send(FORWARDJOIN, n, newNode, TTL)

19: upon event Receive(JOINREPLY, sender, id, view) do
20: cID ←− id
21: ∀ n ∈ view do
22: trigger Send(NEIGHBORINGREQUEST, n, cID)
23: nView ←− nView ∪ n

24: upon event Receive(NEIGHBORINGREQUEST, sender, id) do
25: if cID = id then
26: nView ←− nView ∪ sender
27: else
28: trigger Send(DISCONNECTREQUEST, sender)

29: upon event Receive(DISCONNECTREQUEST, sender) do
30: if sender ∈ nView then
31: nView ←− nView \ sender
32: else if sender ∈ eView then
33: eView ←− eView \ sender
34: if sender /∈ pView then
35: pView ←− pView ∪ sender

no other NESOSDIVISION message has been received from a
node with smaller identifier. Notice that the quarantine period
might be hard to calculate in highly dynamic environments.
However in situations were this mechanism fails, it only results
in the temporary disconnection of a very small number of
nodes. These nodes can rejoin the overlay, for instance relying
in the pView (which we describe later).

When a NESOSDIVISION message is accepted by a node d,
it adopts the Nesos division proposal included in the message.
Thus, it updates its local cluster identifier. Moreover, d sends
NESOSUPDATE messages to all nodes of its new Nesos to
speed the convergence of the algorithm (in case they have
not adopted yet the originating NESOSDIVISION message).
Finally, node d sends a DISCONNECTREQUEST to all nodes
that do not belong to its new Nesos, except to the node d′

that occupies the same position in the complementary Nesos
filiation set in the NESOSDIVISION message. To node d′, d
sends a request to establish a inter-cluster link; this ensures
that the two new Nesoi remain well connected to the rest of
the overlay.

Collapse Procedure This procedure is used to gracefully
disband a Nesos whose size has fallen below the threshold
parameter NSMIN + 1, by migrating its members to other,
more suitable, Nesoi. This procedure is decentralized. Each

Algorithm 3: Divide Procedure
1: upon event CHECKNESOSSIZE TIMER do
2: if cID '= ⊥ and pdv = ∅ then
3: if #nView ≥ NSMAX and ' ∃ n: n ∈ nView: n.nID < nID then
4: IDa ←− get new unique id
5: IDb ←− get new unique id
6: a ←− {myself} ∪ SelectHalf(nView )
7: b ←− nView \ a
8: pdv ←− NESOSDIVISION (myself , cID, IDa, IDb, a, b)
9: ∀ n ∈ nView do
10: trigger Send(NESOSDIVISION, n, cID, IDa, IDb, a, b)
11: setup timer (EXECUTENESOSDIVISION TIMER, RTT ∗2)

12: upon event EXECUTENESOSDIVISION TIMER do
13: if pdv '= ∅ then
14: s ←− s ∈ pdv → ' ∃ x: x ∈ pdv ∧ x.sender.nID < s.sender.nID
15: if myself ∈ s.a then
16: ∀ n ∈ nView do
17: if n ∈ s.a then
18: trigger Send(NESOSUPDATE, n, cID, s.IDa, true)
19: else if position(myself,s.a) = position(n, s.b) then
20: trigger Send(NESOSUPDATE, n, cID, s.IDa, false)
21: nView ←− nView \ n
22: eView ←− eView ∪ n
23: else
24: trigger Send(DISCONNECTREQUEST, n)
25: nView ←− nView \ n
26: cID ←− s.IDa

27: else if myself ∈ s.b then
28: ∀ n ∈ nView do
29: if n ∈ s.b then
30: trigger Send(NESOSUPDATE, n, cID, s.IDb, true)
31: else if position(myself,s.b) = position(n, s.a) then
32: trigger Send(NESOSUPDATE, ( n), cID, s.IDb, false)
33: nView ←− nView \ n
34: eView ←− eView ∪ n
35: else
36: trigger Send(DISCONNECTREQUEST, n)
37: nView ←− nView \ n
38: cID ←− s.IDb

39: pdv ←− ∅

40: upon event Receive(NESOSUPDATE, sender, IDold, IDnew , isNesos) do
41: if isNesos = true then
42: if cID '= IDnew then
43: if pdv = ∅ or cID '= IDold then
44: trigger Send(DISCONNECTREQUEST, sender)
45: nView ←− nView \ sender
46: else
47: if sender ∈ eView then
48: if sender.cID '= IDnew then
49: if IDnew = cID then
50: eView ←− eView \ sender
51: nView ←− nView ∪ sender
52: else
53: update local information on cID of sender
54: if pdv = ∅ or sender /∈ nView then
55: trigger Send(DISCONNECTREQUEST, sender)
56: nView ←− nView \ sender
57: if pdv '= ∅ then
58: trigger EXECUTENESOSDIVISION TIMER

59: upon event Receive(NESOSDIVISION, sender, ID, IDa, IDb, a, b ) do
60: if cID = ID then
61: if pdv = ∅ then
62: setup timer (EXECUTENESOSDIVISION TIMER, RTT ∗2)
63: pdv ←− pdv ∪ NESOSDIVISION (sender, cID, IDa, IDb, a, b)

node makes a periodic test and if it notices that its cluster
size is too small it takes the initiative to relocate itself to
another Nesos, resulting in the collapse of its older Nesos. To
avoid abrupt collapse of a Nesos, nodes only decide to initiate
the procedure with a given probability p, which increases
as the size of the Nesos decreases. Algorithm 4 depicts this
procedure. A RELOCATEREQUEST message is propagated in



a manner similar to the join procedure described before.
Notice however that, if the local Nesos size has become stable
meanwhile, the source of the relocation request cancels its
relocation by issuing a DISCONNECTREQUEST message to
the node that replies with a RELOCATEREPLY message.

Algorithm 4: Collapse Procedure
1: upon event CHECKNESOSSIZE TIMER do
2: if #nView < NSMIN then
3: with a probability of: (1−#nV iew/NSMIN ) do
4: n ←− n ∈ eView or n ∈ pView or n ∈ nView
5: trigger Send(RELOCATEREQUEST, n, myself , cID, TTL)

6: upon event Receive(RELOCATEREQUEST, sender, node, ID, ttl) do
7: ttl ←− ttl −1
8: if cID '= ID and #nView ≤ NST then
9: nView ←− nView ∪ node
10: if ttl > 0 then
11: trigger Send(RELOCATEREPLY, node, cID, nView )
12: else if ttl > 0 then
13: n ←− n ∈ eView or n ∈ nView
14: trigger Send(RELOCATEREQUEST, n, node, ID, ttl)

15: upon event Receive(RELOCATEREPLY, sender, id, reloc view) do
16: if #nView < NSMIN then
17: ∀ n ∈ nView do
18: trigger Send(DISCONNECTREQUEST, n)
19: nView ←− nView \ n
20: ∀ n: n ∈ eView ∧ n.cID = id do
21: trigger Send(NESOSUPDATE, n, cID, id, false)
22: eView ←− eView \ n
23: nView ←− nView ∪ n
24: cID ←− id
25: ∀ n: n ∈ reloc view ∧ n /∈ nView do
26: trigger Send(NEIGHBORINGREQUEST, n, cID)
27: else
28: trigger Send(DISCONNECTREQUEST, sender)

External Neighboring Procedure To ensure that Overnesia
remains connected, the protocol attempts to maintain, at each
peer, a pre-defined number θ of external neighbors, i.e., links
to other Nesoi. Thus, a node that has less than θ external
neighbors actively tries to establish external links by sending
an EXTERNALREQUEST message to the overlay. This message
is propagated using a fixed-length random walk, that tries
to find a suitable neighbor in another Nesos. An external
neighbor is considered suitable if it also has less than θ
external neighbors and does not belong to the Nesos of the
sender, nor to other Nesoi to which the sender is already
connected.

In the particular case when the source of the EXTERNAL-
REQUEST message has no external neighbor, a special flag
(named empty) is set to true in the random walk. In this
case, if the random walk terminates before a suitable neighbor
is found, the last visited node becomes a neighbor of the
source, even if it already has θ external neighbors (and needs
to disconnect from a random external neighbor in order to
maintain a number of external neighbors equal to θ).

Anti-entropy Procedure In face of concurrent joins and
crashes, the nView maintained by different nodes in the same
Nesos may diverge. To increase the intra-Nesos consistency, a
simple gossip-based anti-entropy procedure is executed inside
the Nesos. Periodically, with a given probability ρ, every node
n selects another peer p in the Nesos and sends to it a message

Algorithm 5: External Neighboring Procedure
1: upon event CHECKEXTERNALCONNECTIVITY TIMER do
2: if #eView < θ then
3: k ←− ∅
4: ∀ n ∈ eView do
5: k ←− k ∪ n.cID
6: d ←− d ∈ eView or d ∈ nView or d ∈ pView
7: if eView = ∅ then
8: trigger Send(EXTERNALREQUEST, d, myself , cID, k, true, TTL)
9: else
10: trigger Send(EXTERNALREQUEST, d, myself , cID, k, false, TTL)

11: upon event Receive(EXTERNALREQUEST, sender, node, ID, k, empty, ttl) do
12: ttl ←− ttl −1
13: if cID '=ID and cID /∈ k and #eView < θ and ' ∃ n ∈ eView: n.cID=ID do
14: eView ←− eView ∪ node
15: trigger Send(EXTERNALREPLY, node, cID, ID)
16: else if ttl > 0
17: d ←− d ∈ eView or d ∈ nView
18: trigger Send(EXTERNALREQUEST, d, node, ID, k, empty, ttl)
19: else if empty = true
20: n ←− n ∈ eView
21: trigger Send(DISCONNECTREQUEST, n)
22: eView ←− eView \ n
23: eView ←− eView ∪ node
24: trigger Send(EXTERNALREPLY, node, cID, ID)

25: upon event Receive(EXTERNALREPLY, sender, ID, IDk) do
26: if #eView = θ then
27: trigger Send(DISCONNECTREQUEST, sender)
28: else
29: eView ←− eView ∪ sender
30: if IDk '= cID then
31: trigger Send(NESOSUPDATE, sender, IDk , cID, false)

containing its own view of the Nesos current filiation3. This
allows p to detect missing peers in its nView. Moreover if p
detects some missing nodes in n’s nView it replies to n with
a similar message.

Additionally, anti-entropy is also used to balance the exter-
nal neighbors, by lowering the number of nodes in a Nesos
that hold external connections to a same remote Nesos. When
sending the gossip message, n also sends the list of the Nesos
identifiers of his external neighbors. If a node receives two
consecutive gossip messages that refer to a Nesos of one
of its external neighbors, it simply disconnects from that
external neighbor, using a DISCONNECTREQUEST message.
The reception of two gossips is required to promote some
stability in the overlay network topology. The anti-entropy
mechanism is only executed by nodes with an empty pdv set.
This prevents the mechanism from being activated on a Nesos
that is about to execute a divide procedure.

C. Increasing the Fault-Tolerance

To increase the fault-tolerance of Overnesia, we use an
approach similar to the one described in [10], i.e., we augment
the state of each peer with a random, unbiased, partial view
of the entire overlay. This view, called pView is maintained
using a low cost background protocol, based on the exchange
of shuffle messages. Moreover, whenever a node has to remove
a correct peer from its nView or eView, or when it receives a

3ρ can be small; in our experiments we determined that a ρ value of 0.1
is adequate.



request sent by a peer which is not in one of those sets, that
peer identifier can be added to the pView.

D. Replication of Consolidated Indexes

For simplicity we omitted from the description of Overnesia
the mechanisms to replicate the consolidated indexes among
peers that belong to the same Nesos. Such mechanisms are
orthogonal to the main contributions of our paper and can
be trivially implemented using either push or anti-entropy
mechanisms in a layer on top of our overlay. That layer
should be notified whenever a node is added or removed
from Overnesia nView set. It can then maintain a copy of the
consolidated index for each element of the virtual super-peer.

III. QUERY ROUTING STRATEGIES

In this section we propose a number of query routing
strategies that take into consideration the unique characteristics
of Overnesia. Our purpose is not to thoroughly cover all
possible query strategies; this is a very rich research topic
on its own[3], [9], [17] that will be addressed in future
work. Instead, we just aim at showing that one can indeed
leverage on Overnesia properties to implement query strategies
that outperform traditional blind search algorithms based on
flooding in (regular) unstructured overlay networks.

The baseline strategy that is considered in this paper is
query flooding in the overlay network of unreplicated super-
peers. This strategy ensures that every super-peer is visited
by the query procedure and that results are fully accurate
(i.e., if the search item exists in the overlay, then a match is
guaranteed to be found). A limitation of this approach is that
super-peers can be easily overloaded, given that they need to
route and process each and every query. On the other hand,
the replication of super-peers in Overnesia, provides not only
fault-tolerance but also the opportunity for query processing
load distribution among replicas of a Nesos. For that purpose,
we need to devise query routing strategies that allow queries
to visit each and every Nesos in the overlay while minimizing
the number of members of the same cluster that are involved
in the processing of each query (ideally, only one node from
each Nesos).

Nesos-aware Flooding Nesos-aware flooding operates by
flooding the Overnesia overlay. Thus, if this strategy is used,
when a node receives a query is forwards it to all its neighbors,
except to the neighbor from which it received the query.
However, a node is only required to process the query if it
is received from a different Nesos, since all nodes in a Nesos
share the same consolidated index. This prevents some amount
of redundant processing of queries. Assuming that queries
are issued to nodes in the super-peer overlay uniformly at
random, this strategy should, intuitively, distribute the load
of query processing uniformly among nodes. Additionally,
when a query is received from a Nesos neighbor, the node
avoids to forward it to the remaining nodes inside its Nesos,
lowering the number of redundant messages transmitted during
the dissemination.

Similarly to most query flooding protocols, Nesos-aware
flooding uses a time-to-live (TTL) parameter to prevent the
query to loop forever in the network. This value is decreased
even if the message is forwarded inside a Nesos. This ensures
that this strategy is comparable, in terms of performance, with
regular flooding protocols.

Nesos-aware Gossip Nesos-aware gossip operates by hav-
ing each node to gossip a query to a limited number of external
neighbors. This number is called the gossip fanout, f . To avoid
forwarding a query to a Nesos that has already been visited,
each query message carries the identifiers of the Nesos that
have already been involved in the query processing. In detail,
this query routing algorithm operates as follows. In the first
gossip step, the query is propagated to all nodes of the Nesos.
Then, in the second step, each member of the Nesos propagates
the query to all external neighbors. This allows to expand the
breadth of the query in the first gossip steps (see for instance,
[2] for the advantages of such approach). Further gossip steps
attempt to forward the query to f external neighbors from
Nesoi that have not been visited yet; if a node has less than
f external neighbors that meet this condition, the query is
relayed to an internal neighbor.

The intuition behind this strategy is to expand the use of
the abstraction of virtual super-peer, and have each virtual
super-peer gossip with a given fanout of other existing virtual
super-peers. Similar to other gossip protocols (for instance
[4]) the protocol can be parameterized with a time-to-live
and a fanout parameters. The fanout identifies the (maximum)
amount of distinct Nesoi to which each Nesos should forward
each received query. Similarly to the Nesos-aware flooding
strategy above, a node which receives a query from a Nesos
neighbor does not process it. Furthermore, the TTL value is
not decremented when a query is relayed inside the Nesos.

Improved Nesos-aware Gossip The improved Nesos-aware
gossip strategy is a variant of the strategy described above.
The strategy combines gossip with random walks. In the first
rounds, it uses gossip as described above. After a number G
of gossip rounds, query propagation uses biased random walk
(i.e., the fanout is reduced to 1 after G gossip rounds). Random
walks are forwarded for an additional number of rounds, an
additional parameter named random walk time to live. This
strategy also uses the same rules applied to gossip to prevent a
given Nesos from being visited twice. The goal is to minimize
the message cost associated with query dissemination, while
simultaneously striving to maximize the number of Nesoi that
receive, and process, the query.

IV. EVALUATION

A. Experimental Setting

We conducted an extensive experimental evaluation of both
the overlay maintenance protocol and query routing strategies
in the PeerSim simulator [8] using its event driven engine.
To do this we have implemented the Overnesia protocol in
this simulator as well as all query routing strategies proposed
in this paper. To serve as a comparative baseline, we have



implemented an overlay network of (non-replicated) super-
peers, using an extension of the Scamp protocol [5] (operating
on top of TCP). The decision to use Scamp was based on
the following three arguments: i) the complete specification
of Scamp is published; ii) Scamp maintains relatively stable
neighboring relations, being adequate to the use of TCP as
transport protocol; and iii) in [6] the authors propose Scamp
as an adequate protocol to maintain a super-peer overlay.
Moreover, to compare our approach with a DHT in terms of
resilience and complexity, we also implemented Chord [13] for
the simulator using the same of assumptions employed in the
remaining protocols.

All results presented in this paper are an average of results
extracted from several independent executions of each simu-
lation.

Experimental Parameters In our experiments we have
a virtual clock that coordinates the delivery of events to
nodes (and protocols). Message delay was configured to be
uniformly distributed between 1.000 and 2.000 time units
(TU). All experiments were conducted in a system composed
of 10.000 nodes, with the values depicted in Table I for the
relevant protocol parameters. We tested 4 different Overnesia
configurations, considering different Nesos sizes. These con-
figurations, which we refer to as small (s), medium (m), large
(l), and very large (vl), are characterized by increasing values
of the target and threshold values for Nesos size as reported
in Table II. The reasons for using these distinct scenarios are
twofold. Firstly, it allows us to demonstrate the flexibility of
Overnesia. Secondly, it permits to observe the behavior of
query routing strategies for distinct Nesos sizes. Similarly,
we also experimented with 4 Chord configurations, where
the number of backup successors was set to 30 (similar to
the size of pView used for Overnesia), and the number of
fingers maintained by each node was configured with the NST

parameter used in each Overnesia configuration.

Parameter Value
∆T1 20.000 TU
∆T2 20.000 TU
∆T3 10.000 TU
π 0− 20.000 TU

probability ρ 0.1
TTL 10

pView size 30

TABLE I
COMMON PARAMETERS FOR OVERNESIA

small medium large very large
NST 3 10 20 30

NSMAX 6 16 25 40
NSMIN 1 6 10 15

θ 8 3 2 2

TABLE II
DIFFERENT TARGET Nesos SIZE

!"

#!"

$!"

%!"

&!"

'!"

%" &" '" (" )" *" +" #!"##"#$" #%" #&" #'" #(" #)" #*" #+" $!" $#" $$" $%" $&" $'" $(" $)" $*" %!" %#" %$" %%" %&" %'" %(" %)" %*" %+" &!"

&),!&"

$#,##"

%$,*'"

$$,*!"

!
"
#
$
%
&'
(
)'
!
%
*(
+'
,-

.'

!%*(*'*+/%'

-./01/234"526"

-./01/234"576"

-./01/234"586"

-./01/234"5.86"

(a) Nesos Size Distribution

0 2000 4000 6000 8000 10000

cycle

10

100

1000

10000

100000

m
e
s
s
a
g
e
s
 s

e
n
t

Chord

Scamp

Overnesia

(b) Overlay Join Message Cost

Fig. 2. Overlay properties

B. Overlay Characterization

One of the goals of Overnesia is to allow members of any
Nesos to act as a single, replicated, super-peer. Replication
increases the dependability of the overlay and the potential for
distributing the load of query processing among the members
of a Nesos. To that end, the size of Nesoi should respect
the configuration of the protocol. Moreover, to ensure the
efficiency of the protocol, the complexity in terms of messages
required to achieve the Overnesia topology should be as low
as possible.

To evaluate such aspects of Overnesia, we conducted simu-
lations where each node joins the overlay in sequence, using
a random peer already present in the overlay as contact. Fig-
ure 2(a) depicts the distribution of Nesos size for the 4 distinct
Overnesia configurations. Notice that for all configurations, the
most common size for Nesoi is the target value of NST +1. As
expected, no Nesos surpasses the size of NSMAX . Interestingly
enough, several Nesoi in all configurations present a size below
that of NST +1. These Nesoi are a result of the Nesos division
procedure. Notice that, for all configurations of Overnesia, the
second most common Nesos size is NSMAX/2.

This gives us additional insights over the ideal configuration
for the Overnesia protocol. Namely Nesos size will be typi-
cally distributed between NSMAX/2 and NSMAX . Moreover,
to promote stability in the overlay topology, the parameter
NSMIN should be set below NSMAX/2. Finally, to increase



the number of Nesos with a size of NST +1, parameter NSMAX

should be set close to 2 NST + 1, in order to take advantage
of the Nesos division procedure.

Figure 2(b) show the number of sent messages in each sim-
ulation cycle when nodes are joining the overlay. Notice that
in each cycle a new node is added to the system. Results are
presented for Overnesia, Scamp and Chord. Because message
cost is somewhat independent from the protocol configuration,
we only depict values for the very large Overnesia and small
Chord configurations. Overnesia presents much lower values
than Scamp or Chord. This is mostly due to the design of
Overnesia, that relies on low cost mechanisms to build and
maintain the overlay, and also due to its soft constraints
over the topology (i.e. without the hard constraints typical of
DHTs).

C. Fault Tolerance
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Fig. 3. Overlay Connectivity Under Churn

Any P2P overlay designed to operate in a large scale
environment (e.g. over the internet) should ensure that its
connectivity is not hampered by the presence of churn.

Experiments were performed by first creating the overlay
(having nodes join as described before) and then, after a
stabilization period of 50 cycles, different quantities of churn
were induced (ranging from 2% to 20%) during a period of
100 simulation cycles. To induce a given percentage p of

churn in the overlay, in every other cycle during the churn
period p percent of nodes fail simultaneously, after which the
same number of nodes join the overlay concurrently. When
the churn period is over, a stabilization period of 50 cycles is
executed and the percentage of nodes that belong to the largest
connected component of the overlay is measured. Results are
summarized in Figure 3(a).

Chord connectivity drops to values bellow 40% (for all
configurations) with only 2% churn. Furthermore, it drops to
connectivity values below 10% for churn values above 6%.
This happens because Chord mechanism to locate fingers is
slow. Therefore, it cannot operate in such a dynamic envi-
ronment without degenerating into several disconnected rings.
Scamp on the other hand can maintain 60% of the overlay
connected for churn values of 6%, reaching connectivity values
below 10% with churn values above 10%. Scamp uses a lease
time that enforces nodes to rejoin the overlay in order to
recover from failures. Such lease time cannot be too small,
otherwise the overlay becomes unstable. In sharp contrast,
the reactive nature of Overnesia, that leverages on TCP as
an unreliable failure detector, combined with fast recovery
mechanisms, is able to sustain high quantities of churn. All
but the small configuration are able to maintain a connectivity
above 90%, even for churn values as high as 18%. The small
configuration, due to the smaller number of neighbors kept by
each node, presents values below 80% for churn values above
16%.

To better explain what happens in these scenarios, Fig-
ure 3(b) plots the percentage of nodes in the largest connect
component during the simulations where 20% churn was
induced in the system. For simplicity, we only plot the worst
configuration of Overnesia (small) and the best configuration
of Chord (very large). During the initial 50 stabilization cycles,
all protocols have a connectivity of 100%. During churn
period, the connectivity of both Overnesia and Scamp drops
every time churn is applied to the system, and recovers during
the following cycle (where no churn is applied). Overnesia
connectivity is less hampered than that of Scamp, due to its
highly connected topology. Additionally, Overnesia is able to
recover more connectivity than Scamp in each stable cycle.
On the other hand, Chord connectivity is severely hampered
as soon as churn is introduced, and it is unable to recover any
of its lost connectivity in a single simulation cycle, due to the
slow process to update and fix its fingers.

D. Query Routing Performance
In this section we assess the benefits that can be obtained by

using query routing strategies described in Section III on top
of the Overnesia overlay. For this purpose, we have executed
several thousands of simulations in which, after forming the
overlay, we launch queries from random nodes in the super-
peer overlay. In each experiment, 100 individual queries are
issued.

We evaluated, for each Overnesia configuration, for each
query routing protocol configuration, and for each individual
query, the following three distinct performance metrics:



Query Hit Rate (QHR): The ratio of individual Nesoi that
receive (and process) a given query. The value varies between
0 and 1. A value of 1 indicates that all consolidated indexes
were searched (i.e., each and every Nesos was visited by the
query), and therefore the query returns fully accurate results.

Query Processing Rate (QPR): The ratio of individual nodes
that are required to process a query. The goal is to lower this
number as much as possible without compromising the QHR
(to promote a good load balancing between peers).

Message Cost (MC): The total number of messages sent to
disseminate the query. This value should also be as low as
possible to promote the efficiency of the search mechanism.

We do not plot results for Chord given that results presented
in [15] show that blind search can be performed over Chord (in
steady state) with a MC equal to N-1 (where N is the number
of nodes in the system). Furthermore, this solution requires
that all nodes process each query, generating a constant QPR
value of 1. Finally, results presented earlier in this paper, have
shown that Chord has a poor performance in highly dynamic
environments.

Nesos-aware Flooding In this section we compare the per-
formance of regular flooding and Nesos-aware flooding. Due
to lack of space, in this section we only depict results for TTL
values which allow to achieve a QHR of 1.0 with the lowest
MC value. Figure 4(a) and Figure 4(b) present respectively the
query processing rate and query message cost for two flood
based protocols: i) a regular flood protocol; and ii) the Nesos-
aware flood protocol described in Section III. As expected,
regular flood requires every node in the overlay to process the
query. On the other hand, the Nesos-aware flooding protocol
that leverages on Overnesia topology, achieves remarkably
lower QPR values, below 0.2 for the very large configuration.

In terms of message cost, performing regular flood on
the Overnesia overlay generates much more messages than
flooding in a Scamp overlay. This is due to the clustering
imposed by the existence of Nesoi. Moreover, the negative
impact of flooding becomes more visible for larger Nesos sizes
(notice that the results shown for the very large configuration
uses a lower TTL value). Our Nesos-aware flooding protocol
however is able to operate with message cost values smaller
than flooding in the Scamp overlay. This happens because it
avoids to forward messages inside each Nesos.

Nesos-aware Gossip We now compare the performance
of regular gossip, Nesos-aware gossip, and improved Nesos-
aware gossip. In these experiments we explore a wide range
of values for the parameters of the considered query routing
protocols. Namely we tested the regular gossip and Nesos-
aware gossip protocols with a TTL value that goes from 4 to
7, and the improved Nesos-aware gossip protocol with a TTL
value that ranges from 3 to 6 combined with a random-walk
TTL that goes from 1 to 3. Additionally, these parameters were
combined, in all protocols, with a fanout that ranges from 4 to
10. As before, we only present, for each configuration, results
for the set of parameters that allowed a QHR of 1.0 with the
lowest cost (both message cost and query processing ratio).

Figure 4(c) and Figure 4(d) depict, respectively, the query

(a) Flood Strategies QPR

(b) Flood Strategies MC

(c) Gossip Strategies QPR

(d) Gossip Strategies MC

Fig. 4. Performance of Query Dissemination Strategies



processing rate and query message cost for a regular gossip
protocol operating on top of Scamp, our Nesos-aware gossip
protocol, and its improved version. In these figures we depict
the configuration tuples (TTL, fanout) and (TTL, fanout,
random-walk TTL) used for each protocol.

Regular gossip over Scamp is used as a baseline. As
expected it presents a QPR of 1, as a result of all nodes being
required to process each query, and a high message cost, due
to the necessity of using a high fanout value (8). This fanout
is required due to the unbalanced degree of each node, that
limits the epidemic mechanism in the initial steps of the query
dissemination.

Notice that for every configuration of Overnesia (with the
exception of the small configuration) there is a trade-off in our
protocols. Both protocols can improve the query processing
rate and the message cost with relation to regular gossip
(and regular flood). The use of the improved version of the
Nesos-aware gossip protocol can slightly lower the message
cost while increasing the query processing ratio; this happens
because the improved version of the protocol allows to use
more conservative fanout values, since the final random walks
can, in a cheaper way, compensate for the smaller breadth.
However, a portion of these random walks visit nodes in Nesoi
which already processed the query increasing the QRP.

V. RELATED WORK

Gnutella [7] second version uses a two-tier overlay network
based on a super-peer architecture. Similarly to other super-
peer architectures, regular peers connect to a super-peer which
integrates a consolidated index of the resources maintained
by all regular peers connected to it (as well as its own
index). Nodes which are super-peers organize themselves in
an unstructured overlay network. Additionally super-peers
exchange their consolidated index among neighbors in the
overlay, creating replicated entries that may be used to limit
the query flooding in the last hop.

When a (regular) node wishes to perform a query, it
forwards the query to its super-peer which, in turn, floods the
query with a given time to live value trough the super-peer
overlay. When a super-peer finds in its index information a
match to the query, it sends an answer directly to the source
of the query. Unlike our work, Gnutella does not address fault
tolerance. Whenever a super-peer fails, regular peers have
to resend their index to a new super-peer, which has to re-
execute the consolidate operation. Moreover, a query has to
be processed by every super-peer which forwards it.

SOSPNet [6] maintains a super-peer overlay which exploits
semantic similarity among content maintained by peers. Reg-
ular peers maintain a cache of super-peers that are suitable
targets for processing queries. When making a query, they
select the target super-peer using a local preference value. This
preference value is computed based on the quality of results
provided by those peers in response to previous queries. In
SOSPNet, the index of a regular peer is not maintained by
a single super-peer. Instead, super-peers decide to replicate
portions of the indexes of regular peers based on the utility

of these indexes for solving past queries. Unfortunately, this
also means that portions of regular indexes can never be stored
in the super-peer level. Therefore, some resources are never
found by queries.

Similar to our work, SOSPNet aims at distributing the
load among super-peers, however our approaches operate at
different levels with different goals. Whereas we distribute
the load of processing and replying to queries by exploiting
the topology of Overnesia, SOSPNet balances the number
of queries initiated by regular peers received by each super-
peer by dropping some queries. Our work can be seen as
complementary to that of SOSPNet, as our work can be used
to replicate the state of super-peers in the SOSPNet overlay,
allowing the overlay to keep the information gathered during
the operation of the system, even if super-peers leave the
system.

Gia [3] is a system based on a non-hierarchical overlay that
adapts the topology according to the node capacity. Overnesia
is not driven by any specific node characteristic. Gia enforces
index replication to all one hop neighbors. Like Gia, Overnesia
also replicates super-peers indexes to a sub set of one-hop
neighbors, the nView. However, unlike Gia, we have a tighter
control on the number of nodes that replicate a given index
and support more sophisticated mechanisms to control these
replicas.

Some query routing protocols, such as [14], route queries
using biased random walks, that rely in additional information
provided by the system, to increase the probability of locating
resources that match a given query. In [1] the use of bloom
filters to provide information for query routing in P2P Systems
is suggested. These techniques are complementary to and can
be combined with our work.

VI. CONCLUSIONS

In this paper we have presented Overnesia, a protocol that
maintains a replicated super-peer overlay network, which is
highly connected, and offers improved fault tolerance. Addi-
tionally, we proposed a set of simple query routing strategies
based on both flooding and gossip on the super-peer overlay
which leverage on the unique characteristics of Overnesia,
allowing to distribute the load of query processing among
super-peers.

As future directions of work, we want to design more
complex routing strategies that can better exploit the Overnesia
replicated topology, such as efficient informed query routing
strategies. It is our belief that many query mechanisms that
have been previously proposed in the literature can offer better
performance if adapted to benefit from the replication of super-
peers provided by Overnesia.
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