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Abstract In this work, we explore how local interactions can simplify the process of
decision-making in multiagent systems, particularly in multirobot problems. We re-
view a recent decision-theoretic model for multiagent systems, the decentralized
sparse-interaction Markov decision process (Dec-SIMDP), that explicitly distin-
guishes the situations in which the agents in the team must coordinate from those
in which they can act independently. We situate this class of problems within dif-
ferent multiagent models, such as MMDPs and transition independent Dec-MDPs.
We then contribute a new general approach that leverages the particular structure
of Dec-SIMDPs to efficiently plan in this class of problems, and propose two algo-
rithms based on this underlying approach. We pinpoint the main properties of our
approach through illustrative examples in multirobot navigation domains with par-
tial observability, and provide empirical comparisons between our algorithms and
other existing algorithms for this class of problems. We show that our approach al-
lows the robots to look ahead for possible interactions, planning to accommodate
such interactions and thus overcome some of the limitations of previous methods.

1 Introduction
Recent years have witnessed a profusion of work on multiagent models that capture
some of the fundamental features of Dec-(PO)MDPs (such as partial observability)
without incurring in the associated computational cost. In this paper, we contribute
to this extensive literature, and investigate a recent model for cooperative multiagent
decision-making in the presence of global partial observability [17]. This model is
motivated by the observation that, in many real-world scenarios involving multiple
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decision makers (e.g., robots), the tasks of the different agents/robots are not cou-
pled at every decision-step but only in relatively infrequent situations. We dub such
problems as having sparse interaction. Multi-robot systems provide our primary mo-
tivation and constitute natural examples for the class of problems considered herein.
In multi-robot systems, the interaction among the different robots is naturally lim-
ited by each robot’s physical boundaries (workspace, communication range, etc.)
and limited perception capabilities. Therefore, when dealing with multi-robot sys-
tems, one natural approach is to subdivide the overall task into smaller tasks that
each robot can then execute autonomously or as part of a smaller group [5, 15, 18].

Several previous works have exploited simplified models of interaction in multi-
agent settings. For example, a hierarchical learning algorithm can consider only the
interaction between the different agents at a higher control level, while allowing the
agents to learn lower level tasks independently [6]. Also, coordination graphs can
represent compactly the dependencies between the actions of different agents, thus
capturing the local interaction between them [8, 10]. Local interactions have also
been exploited to minimize communication during policy execution [16] and in the
game-theoretic literature to attain compact game representations [9, 20].

In this paper we consider Dec-MDPs with parse interactions (henceforth Dec-
SIMDPs). Dec-SIMDPs have been proposed in [17] under the designation of inter-
action-driven Markov games and are closely related to distributed POMDPs with
coordination locales [19] and Dec-MDPs with event-driven interactions and com-
plex rewards [14]. Dec-SIMDPs leverage the independence between agents to de-
couple the decision process in significant portions of the joint state space, allowing
the agents to base their decisions in their local perception of state and alleviating the
difficulties arising from global partial observability. On those situations in which the
agents interact, Dec-SIMDPs rely on communication to bring down the the compu-
tational complexity of the joint decision process. Dec-SIMDPs “balance” the inde-
pendence assumptions with communication: in any given state, the agents are either
independent or can communicate.1

The contributions in this paper are two-fold. On one hand, we build on [17], pro-
viding a precise formalization of Dec-SIMDPs and discussing in some detail the re-
lation with well-established decision-theoretic models such as Dec-MDPs, MMDPs
and MDPs. On the other hand, we contribute two new algorithms that exhibit signifi-
cant computational savings when compared to existing algorithms for Dec-SIMDPs.
We illustrate the application of our algorithms in several simple navigation tasks.

2 Decision Theoretic Models
We start by reviewing decentralized partially observable Markov decision processes
(Dec-POMDPs) and related decision theoretic models. A N-agent Dec-POMDP M
is specified as a tuple M = (N,X ,(Ak),(Zk),P,(Ok),r,γ), where X is the joint
state-space, A = ×N

k=1Ak is the set of joint actions, with each Ak the individual
action set for agent k, each Zk represents the set of possible local observation for

1 We note that both independence assumptions and communication can significantly bring down
the computational complexity in Dec-(PO)MDP related models [1, 7].
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agent k, P(x,a,y) represents the transition probabilities from joint state x to joint
state y when the joint action a is taken, each Ok(x,a,zk) represents the probability
of agent k making the local observation zk when the joint state is x and the last joint
action taken was a, and r(x,a) represents the expected reward received by all agents
for taking the joint action a in joint state x. The scalar γ is a discount factor.

A N-agent Decentralized Markov decision process (Dec-MDP) is a particular
class of Dec-POMDP in which the state is jointly fully observable. Formally this
can be translated into the following condition: for every joint observation z ∈ Z ,
with Z = ×N

k=1Zk, there is a state x ∈ X such that P [X(t) = x | Z(t) = z] = 1,
where X(t) is the joint state of the process at time t and Z(t) the corresponding joint
observation. Similarly, a partially observable Markov decision process (POMDP)
is a 1-agent Dec-POMDP and a Markov decision process (MDP) is a 1-agent Dec-
MDP. Finally, a N-agent multiagent MDP (MMDP) is a N-agent Dec-MDP that is
fully observable, i.e., for every individual observation zk ∈Zk there is a state x ∈X
such that P [X(t) = x | Zk(t) = zk] = 1.

In the remainder of the paper paper we focus on Dec-MDPs, particularly in Dec-
MDPs for which the state-space X can be factorized as X = X1× . . .×XN . Al-
though more general Dec-MDP models exist [3], we adhere to this simplified ver-
sion, as this is sufficient for our purposes and makes the presentation both clearer
and simpler. Indeed, since multirobot navigation scenarios constitute the main mo-
tivation behind our work, the sensible approach is, in fact, to consider a factored
joint state-space, where each Xk denotes the individual state-space for robot k. For
future reference, let X−k =X0× . . .×Xk−1×Xk+1× . . .×XN and denote by x−k
a general element of X−k. We also write x = (x−k,xk) to denote the fact that the kth
component of x takes the value xk. We use a similar notation for actions.

In this partially observable multiagent setting, an individual (non-Markov) policy
for agent k is a mapping πk : Hk −→ ∆(Ak), where ∆(Ak) is the space of proba-
bility distributions over Ak and Hk is the set of all possible finite histories (finite
sequences of actions and observations) for agent k.

In a Dec-MDP, the purpose of all agents is to determine a joint policy π so as to
maximize the total sum of discounted rewards. In order to write this in terms of a
function, we consider a distinguished initial state, x0 ∈X , that is assumed common
knowledge among all agents. The purpose of the agents is then to maximize

V π = Eπ

[
∞

∑
t=0

γ
tr
(
X(t),A(t)

)
| X(0) = x0

]
.

Transition-independent Dec-MDPs [2] constitute a particular subclass of Dec-
MDPs in which, for all (x,a) ∈X ×A ,

P [Xk(t +1) = yk | X(t) = x,A(t) = a] = P [Xk(t +1) = yk | Xk(t) = xk,Ak(t) = ak] .
(1)

The transition probabilities can thus be factorized as

P(x,a,y) =
N

∏
k=1

Pk(xk,ak,yk), (2)
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Fig. 1 Diagram representing the relation between individual state-spaces, Xk, the joint state-space
X , and the set XK for a set of agents K = {2,3}. We also represent an interaction area X I

associated with an interaction state x∗ ∈XK (see main text).

where Pk(xk,ak,yk) represents the transition probabilities from local state xk to local
state yk when the individual action ak was taken. This particular class of Dec-MDPs
has been shown to be NP-complete in finite-horizon settings, versus the NEXP-
completeness of general Dec-MDPs [7].2

Similarly, reward independent Dec-MDPs correspond to a subclass of Dec-
MDPs in which, for all (x,a) ∈ X ×A , r(x,a) = f (rk(xk,ak),k = 1, . . . ,N),
i.e., the global reward function r can be obtained from local reward functions
rk,k = 1, . . . ,N, and each individual reward is consistent with the global reward
[7]. One typical example is

r(x,a) =
N

∑
k=1

rk(xk,ak). (3)

Interestingly, it was recently shown that reward independent Dec-MDPs retain
NEXP-complete complexity [1]. However, when associated with transition inde-
pendence, reward independence implies that a Dec-MDP can be decomposed into
N independent MDPs, each of which can be solved separately. The complexity of
this class of problems thus reduces to that of standard MDPs (P-complete). For a
summary of complexity results for Dec-POMDP related models, we refer to [1, 7].

3 Local Interactions in Dec-MDPs
In this paper we exploit sparse interactions among the different agents in a Dec-
MDP. In particular, we are interested in Dec-MDPs in which there is some level
of both transition and reward dependency, but this dependency is limited to spe-
cific regions of the state space. We introduce decentralized sparse-interaction MDPs
(Dec-SIMDPs). Dec-SIMDPs essentially correspond to the model previously pro-
posed in [17] under the designation of interaction-driven Markov games. However,
we revisit several aspects of this model that were not properly formalized in the
original work, and provide a more extensive discussion on the relation between this
work and the models surveyed in the previous section. We postpone to the following
section the introduction of two novel algorithms for this class of problems.

2 In this paper we are interested in infinite horizon problems. Complexity results for infinite-
horizon problems with partial observability are even more discouraging—even single-agent
POMDPs have been shown undecidable in infinite-horizon settings [12].
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We start by introducing some auxiliary notation. Given an N-agent Dec-MDP
M = (N,X ,(Ak),P,r,γ), let K be a subset of the N agents in M . Extending the
notation in Section 2, we denote by XK =×k∈KXk the joint state-space of all agents
in K. Similarly, we write X−K to denote the joint state-space of the agents not in K.
We write xK to denote a general element of XK and x−K to denote a general element
of X−K . We write x=(x−K ,xK) to distinguish the components of x corresponding to
agents in K and those corresponding to agents not in K (see Fig. 1 for an illustration).

Also, for any given a Dec-MDP, we write the reward r(x,a) as

r(x,a) =
N

∑
k=1

rk(xk,ak)+
M

∑
i=1

rI
i (xKi ,aKi), (4)

where each rk corresponds to an individual component of the reward function that
depends only on agent k and there are M agent sets, Ki, i = 1, . . . ,M, and M reward
components, rI

i (the interaction components), each depending on all the agents in Ki
and only on these. We note that this decomposition can be performed at no loss of
generality, since any reward r can be trivially written in that form by setting M = 1,
rk ≡ 0, K1 = {1, . . . ,N}, and rI

1 = r. The scenarios that we are interested in are those
in which the support of ∑

M
i=1 rI

i – the subset of X ×A in which this sum is non-zero
– is small when compared with X ×A .

We say that an agent k0 in a Dec-MDP is independent of an agent k1 in a state
x ∈X if the transition probabilities for the individual state of agent k0 at x do not
depend on the state/action of agent k1, i.e.,
P
[
Xk0 (t +1) = yk0 | X(t) = x,A(t) = a

]
= P

[
Xk0 (t +1) = yk0 | X−k1 (t) = x−k1 ,A−k1 (t) = a−k1

]
.

and it is possible to decompose the global reward function r(x,a) as in (4) in such a
way that no set Ki contains both k0 and k1. When any of the above does not hold, we
say that agent k0 depends on k1 at state x. This notion of dependence extends trivially
to sets of agents by interpreting the agents in each set as a single centralized agent.
Intuitively, two agents are dependent if either the rewards or the transitions of one
of the agents depend on the state or action of the other.

The agents in a set K interact at state x ∈X if the following conditions hold:

• If k0 ∈ K and agent k0 depends on agent k1 in state x, then k1 ∈ K.
• If k1 ∈ K and there is an agent k0 that depends on agent k1 in state x, then k0 ∈ K.
• There is no strict subset K′ ⊂ K such that the above conditions hold for K′.

If the agents in a set K interact in a state x, then we refer to xK as an interaction state
for the agents in K. Interactions capture all dependencies between the agents in K:
if the agents in K interact in state xK , no agent in K is independent of all others in
xK and no agent outside K depends on any agent in K.

In a general Dec-MDP, all agents interact in all states, since generally there are
no transition or reward independences. On the other hand, transition and reward in-
dependent Dec-MDPs have no interactions at all – as expected, such problems can
be decomposed into N independent single-agent models and solved in a straight-
forward manner. An interaction occurs whenever a group of agents is coupled in
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terms of either transitions or rewards and either the transition probabilities cannot
be factorized as in (2) or the reward function cannot be decomposed as in (3).

In a general N-agent Dec-MDP, we define an interaction area X I as follows:

• X I ⊂XK for some set of agents K;
• ∃x∗∈X I such that x∗ is an interaction state for the agents in K;
• The set X I is connected.3

An agent k is involved in an interaction at time t if there is one interaction area X I

involving a set of agents K such that k ∈ K and X(t) = (xK ,x−K) with xK ∈X I . We
represent the concept of interaction area in the diagram of Fig. 1.

The purpose of defining/identifying the interaction areas in a Dec-MDP is to sin-
gle out situations in which the actions of one agent depend on other agents. An agent
that is not involved in any interaction should be able to choose its individual actions
independently of the other agents and thus be unaffected by partial (global) state
observability. In contrast, we focus on those problems for which each of the agents
involved in an interaction in a particular interaction area X I ⊂XK at time t has full
access to the state XK(t). We refer to such a Dec-MDP as having observable inter-
actions. Our focus on Dec-MDPs with observable interactions, although apparently
restrictive, actually translates a property often observed in real-world scenarios. For
example, when interacting, robots are often able to observe/communicate relevant
information for coordination. In a sense, interaction areas encapsulate the need for
information sharing in a general multiagent decision problem.

We are now in position to introduce our model. A N-agent Dec-MDP M has
sparse interactions if all agents are independent except in a set of M interaction
areas,

{
X I

1 , . . . ,X
I

M
}

, with X I
i ⊂ XKi for some set of agents Ki, and such that

|X I
i |� |XKi |. We refer to a Dec-MDP with sparse observable interactions as a Dec-

SIMDP (decentralized sparse-interaction MDP). For all agents outside interaction
areas, the joint transition probabilities and reward function for a Dec-SIMDP can be
factorized as in (2) and (3), and it is possible to model these agents using “individual
MDPs”. On the other hand, the agents involved in an interaction can be modeled
using a “local” MMDP. We represent such a Dec-SIMDP as a tuple

Γ =
(
{Mk,k = 1, . . . ,N},{(X I

i ,M
I
i ), i = 1, . . . ,M}

)
,

where

• Each Mk is an MDP Mk = (Xk,Ak,Pk,rk,γ) that individually models agent k
in the absense of other agents, where rk is the component of the joint reward
function associated with agent k in the decomposition in (3);

• Each M I
i is an MMDP that captures a local interaction between Ki agents in the

states in X I
i and is given by M I

i = (Ki,XKi ,(Ak),P
I
i ,r

I
i ,γ), with X I

i ⊂XKi .

Each MMDP Mi describes the interaction between a subset Ki of the N agents, and
the corresponding state-space, XKi , is a superset of the respective interaction area.

3 In this context we say that a set U ⊂X is connected if, for any pair of states x,y ∈U , there is
a sequence of actions that, with positive probability, yields a trajectory {x(0), . . . ,x(T )} such that
x(t) ∈U, t = 0, . . . ,T , and either x(0) = x and x(T ) = y or vice-versa.
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A Dec-SIMDP is an alternative way of representing a Dec-MDP with observable
interactions. In the states of each interaction area in a Dec-SIMDP (and only in
these), the agents involved in the associated MMDP are able to observe their joint
state. This can be interpreted as having the agents in this area use communication
to overcome local state perception and decide jointly on their action. Outside these
areas, the agents have only a local perception of the state and should, therefore,
choose the actions independently of the other agents.

Note that, in the absence of any interaction areas, the Dec-SIMDP reduces to a
set of independent MDPs that can be solved separately. This captures the situation in
which the agents are completely independent. On the other hand, a Dec-SIMDP is a
Dec-MDP model with joint state observability in the interaction areas. In those situ-
ations in which all agents interact in all states, as assumed in the general Dec-MDP
model, the whole state-space is an interaction area and, as such, our assumption of
full state observability in the interaction areas renders our model equivalent to an
MMDP. Nevertheless, the appeal of the Dec-SIMDP model is that many practical
situations do not fall in either of the two extreme cases (i.e., independent MDPs vs.
fully observable MMDP). It is in these situations that the Dec-SIMDP model may
bring an advantage over more general (but potentially intractable) models.

4 Planning in Dec-SIMDPs
We now introduce two novel Dec-SIMDP algorithms that leverage the particular
structure of this class of problems and avoid the computational complexity of more
general Dec-MDP models. Our approach relies on a simple heuristic that provides
interesting insights into the structure of Dec-SIMDP and on how should the inter-
action areas be chosen for a particular problem. As in most planning problems, the
underlying Dec-MDP/Dec-SIMDP model is assumed known.

4.1 MPSI and LAPSI
Let us start by considering a Dec-SIMDP in which all except agent k have full state
observability. Let us further suppose that the agents with full state observability
follow some fixed known policy π−k. Then, from the perspective of agent k, the en-
vironment behaves as a POMDP, since the other agents can be collectively regarded
as part of the environment. In this particular situation, we can use any POMDP
solution method to compute the policy for agent k.

Our heuristic departs from the simplified situation just described. For each agent
k = 1, . . . ,N, we assume all other agents to follow some (hypothesized) policy π̂−k
that depends only on the state Xt . Given this policy π̂−k, we derive the POMDP
model for agent k and use the corresponding solution as the policy πk. Algorithm 1
summarizes this approach.

This heuristic rests on the assumption that the hypothesized policy, π̂−k, will
allow agent k to approximately “track” the other agents and hence choose its actions
accordingly. The closer π̂−k is to the actual policy of the other agents, the better
agent k will be able to track them, and the better he will decide.
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Algorithm 1 General outline of the proposed heuristic planning algorithms.
Require: Dec-SIMDP model M =

(
{Mk,k = 1, . . . ,N},{(X I

i ,M
I
i ), i = 1, . . . ,M}

)
1: for all k = 1, . . . ,N do
2: Build hypothetical policy π̂−k for other agents
3: From M and π̂−k build POMDP model for agent k, (X ,Ak,Zk,Pπ̂−k ,rπ̂−k ,γ)
4: Use preferred POMDP solution technique to compute πk : ∆(X )→Ak
5: end for

The two algorithms proposed in this paper, dubbed MPSI (Myopic Planning for
Sparse Interactions) and LAPSI (Look-Ahead Planning for Sparse Interactions),
share this underlying structure but consider different hypothetical policies π̂−k in
Step 2. In MPSI, agent k models the other agents as self-centered and oblivious to
the interactions. In other words, agent k acts as if each agent j, j 6= k, is following the
optimal policy for the corresponding MDP M j in the Dec-SIMDP model. In envi-
ronments with almost no interaction, MPSI actually provides a good approximation
to the policy of the other agents outside the interaction areas.

In contrast, in LAPSI, agent k considers that all other agents jointly adopt the
optimal policy for the underlying MMDP. LAPSI is, in a sense, the counterpart
to MPSI, as it provides a good approximation to the policy of the other agents in
scenarios where the interactions are not so sparse.

Clearly, the idea in Algorithm 1 can be used in general Dec-POMDPs. However,
the hypothetical policy π̂−k will seldom correspond to the actual policy followed by
the other agents, and it is only natural that this method will not allow each agent
k to properly “track” the other agents and decide accordingly, this leading to poor
results in general Dec-POMDPs. The particular structure of Dec-SIMDPs, how-
ever, renders this approach more appealing for two reasons: on one hand, outside
interaction areas the policy of agent k (ideally) exhibits minimum dependence on
the state/policy of the other agents. As such, poor tracking in these areas has lit-
tle impact on the policy of agent k. In interaction areas, on the other hand, local
full observability allows agent k to perfectly track the other agents involved in the
interaction and choose its actions accordingly.

In the following subsection, we describe a specific instance of both MPSI and
LAPSI that is closely related to the QMDP heuristic for POMDPs [11] and rests on
the concept of generalized α-vectors. As will soon become apparent, even using
such a simple POMDP solver such as QMDP, LAPSI is able to attain near-optimal
performance in all test scenarios while incurring in a computational cost much lower
than alternative methods.

4.2 Generalized α-vectors
We now propose particular instances of both MPSI and LAPSI that is closely related
with the Q-MDP heuristic for POMDPs [11], although exploiting the structure of the
Dec-SIMDPs model.

To this purpose, we note that each agent k in a Dec-SIMDP has full local state
observability, implying that, at each time-step t, the kth component of the state,
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Xk(t), is always unambiguously determined. Furthermore, given our assumption of
observable interactions, at each time step t only those state-components correspond-
ing to agents not interacting with agent k will be unobservable. By definition, these
state-components do not depend on the state/action of agent k at time t, and instead
depend only on π̂−k. We take advantage of this fact and modify the Q-MDP heuris-
tic as our POMDP solution method.4 To this purpose we introduce the concept of
generalized α-vectors for Dec-SIMDPs. Due to space limitations, we omit some of
the details involved in the derivation of these vectors as well as the analysis of its
properties. Instead, we refer to [13] for further details.

Let us denote by XI the set of all (joint) states in interaction areas, and define a
generalized α-vector for agent k, αk, recursively as follows:

αk(x) = rπ−k (x,ak)+ γ ∑
y∈XI

Pπ−k (x,ak,y)max
uk

αk(y,uk)+ γ max
uk

∑
y/∈XI

Pπ−k (x,ak,y)αk(y,uk), (5)

where

rπ−k(x,ak) = ∑
a−k

π−k(x−k,a−k)r
(
x,(a−k,ak)

)
Pπ−k(x,ak,y) = ∑

a−k

π−k(x−k,a−k)P
(
x,(a−k,ak),y

)
.

The generalized α-vector αk is the fixed-point of the expression (5) and are well-
defined and unique. Furthermore, they can be computed iteratively using a dynamic-
programming-like approach that, essentially, iterates through the recursion in (5).
It is also possible to show that αk corresponds to the optimal Q-function of an
associated MDP whose dimension grows linearly with the dimension of the original
Dec-SIMDP. Recalling that the decision process for agent k can be modeled using a
standard POMDP, we adopt the approximation

Q∗(xk,b−k,ak)≈∑
x−k

bx−k αk(x,ak). (6)

This solution can now be used to choose the actions of agent k by maximizing the
above expression.

5 Results
In this section we describe the results obtained from applying both MPSI and LAPSI
to a range of problems of different dimensions, and analyze the performance of our
methods in each of the test scenarios. We compare the performance of both MPSI
and LAPSI to that of the optimal fully observable MMDP policy and that of the
IDMG algorithm from [17]. In the IDMG algorithm, each agent k in a Dec-SIMDP(
{Mk,k = 1, . . . ,N},{(X I

i ,M
I
i ), i= 1, . . . ,M}

)
follows the optimal individual pol-

icy πk for the MDP Mk outside the interaction areas. In the interaction areas, the

4 In the continuation, and to avoid unnecessarily complicating the presentation, we focus on a 2-
agent scenario. The development presented extends trivially to more than two agents at the cost of
more cumbersome expressions.
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Fig. 2 Environments used in the experiments. The dark gray areas correspond to interaction states
and the light gray areas to the corresponding interaction areas. We refer to the main text for details.

agents engage in a sequence of local matrix games in which they jointly adopt the
equilibrium policy.

We used several robot navigation scenarios to test our algorithms (see Fig. 2),
since the Dec-SIMDP model is particularly appealing for modeling multi-robot
problems. Furthermore, in this class of problems, the results can be easily visualized
and interpreted. In each of the test scenarios, each robot in a set of two/four robots
must reach one specific state. In the smaller environments (Maps 1 through 4), the
goal state is marked with a number, corresponding to the number of the robot. The
cells with a boxed number correspond to the initial states for the robots. In the larger
environments, the goal for each robot is marked with a cross,×, and the robots each
depart from the other robot’s goal state, in an attempt to increase the possibility of
interaction. Each robot has 4 possible actions that move the robot in the correspond-
ing direction with probability 0.8 and fail with probability 0.2. The shaded regions
correspond to interaction areas, inside of which the darker cells correspond to in-
teraction states, in which the robots get a penalty of −20 if they stand in the same
cell simultaneously. Also, in these interaction states, the rate of action failure is in-
creased to 0.4.5 Upon reaching the corresponding goal, each agent receives a reward
of +1 and its position is reset to the initial state. The dimension of the state-space
for the different Dec-MDPs is summarized in Table 1.

For each of the different scenarios in Fig. 2, we ran the four algorithms above and
then tested the computed policy for 1,000 independent trials of 100 steps each, in

5 Both the penalty and the increased action failure rate imply that there is both reward and transition
dependence in the interaction areas.
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Table 1 Total discounted reward for each of the four different algorithms in each of the test-
scenarios. The results are averaged over 1,000 independent Monte-Carlo runs. Entries in bold
correspond to guaranteed optimal performance. Entries in italic in the same line are not statistically
different.

Environment # States IDMG MPSI LAPSI MMDP
Disc. Rew. Disc. Rew. Disc. Rew. Disc. Rew.

Map 1 441 12.035 11.130 11.992 12.588
Map 2 1,296 10.672 10.159 10.947 11.069
Map 3 400 13.722 13.249 13.701 14.380
Map 4 65,536 − 15.384 15.564 16.447

CIT 4,900 11.178 11.105 11.126 11.151
CMU 17,689 2.839 2.688 2.824 2.906
ISR 1,849 14.168 13.947 13.997 14.335
MIT 2,401 6.663 6.641 6.648 6.681

PENTAGON 2,704 16.031 15.162 15.976 16.312
SUNY 5,476 11.161 11.130 11.139 11.110

the smaller environments, and 250 time-steps each, in the larger environments. The
obtained performance in terms of total discounted reward can be found in Table 1.

The LAPSI algorithm performed very close to the optimal MMDP policy in all
environments, in spite of the significant difference in terms of state information
available to both methods. Also, in most scenarios, LAPSI and IDMG performed
similarly. The only exceptions are Map 2, where LAPSI outperformed IDMG, and
ISR, where IDMG outperformed LAPSI. Interestingly, however, the difference in
terms of time-to-goal in the ISR environment is not significant. In any case, our
results agree with previous ones that showed that IDMG attained close-to-optimal
performance in most such scenarios [17]. Another interesting observation is that
MPSI typically performed worse than the other methods. As pointed out before,
since an agent in MPSI considers the other agents to be selfish and disregard mis-
coordinations (each is focused only on its individual goal), it is expected that the
agent following MPSI is more “cautious” and takes longer time to reach the goal.

Given the similar performance of IDMG and LAPSI, one may question the ad-
vantage of adopting the latter over the former. There are at least two clear advan-
tages. First of all, since the IDMG method requires the computation of several equi-
libria both during off-line planning and during on-line execution, the computational
complexity of the IDMG algorithm may quickly become prohibitive, in scenarios
with large action spaces and/or with many interaction areas. To assess whether this
is indeed so, we compared the computational effort of our methods with that of
IDMG, both in terms of the average off-line computation time and the on-line com-
putation time (see Fig. 3). Clearly, both MPSI and LAPSI are significantly more
efficient than the IDMG algorithm, according to any of the two performance met-
rics. It is also interesting to note how the average computation times evolve with the
dimension of the problem.

The second advantage of LAPSI becomes evident by noting that the IDMG
method is, by construction, unable to consider future interactions when planning
for the action in a non-interaction area. In this sense, the IDMG algorithm is “my-
opic” to interactions and only handles these as it reaches an interaction area. This
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Fig. 3 Computation time for the different algorithms as a function of the problem dimension.

can have a negative impact on the performance of the method, as illustrated in the fi-
nal test scenario (Fig. 4). In this environment, and ignoring the interaction, Robot 1
can reach its goal by using either of the narrow pathways, since both trajectories
have the same length. However, Robot 2 should use the upper pathway, since it is
significantly faster than using the lower pathway.

Robot 2

Robot 1 Goal 1

Goal 2

Fig. 4 Example scenario where avoiding the interaction may be
beneficial.

By using the IDMG algorithm, Robot 2 goes for the upper pathway while Robot 1
chooses randomly between the two. For concreteness, let’s suppose that Robot 1
chooses to go for the upper pathway. In this case, according to the IDMG algorithm,
both robots reach the interaction area simultaneously and Robot 1 must move out of
the way for Robot 2 to go on. This means that, in total, the two robots take a mean
time of 9 steps to reach the goal. If, instead, Robot 1 takes the lower pathway, the
two robots will reach their goal states in 8 steps. Since the IDMG algorithm chooses
between the two randomly – or, at least, has no way to differentiate between the
two – the average time to the goal is 8.5 time-steps. We ran 1,000 independent trials
using the IDMG algorithm in this scenario and, indeed, obtained an average of 8.485
steps to goal, with a standard deviation of 0.5. Clearly, it seems possible to do better
in this scenario by considering more convenient to use the lower pathway.

For comparison purposes, we also ran 1,000 independent trials using the LAPSI
algorithm in this same scenario. Out of 1,000 trials, Robot 1 always picked the
lower pathway. As expected, the group had an average time-to-goal of 8 time-steps
with a variance of 0. Notice that this difference could be made arbitrarily large by
increasing the “narrow doorway” to an arbitrary number of states, thus causing an
arbitrarily large delay. As such, in scenarios such as the one above, where inter-
actions should be considered even outside interaction areas, our methods present a
clear advantage over the IDMG algorithm.
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6 Conclusion
As mentioned in Section 1, Dec-SIMDPs are particularly suited for modeling sev-
eral multi-robot problems. On one hand, unlike models such as MMDPs, Dec-
SIMDPs do not assume full joint state observability that, in a multi-robot scenario,
is tantamount to having the robots perceive the state of the other robots at every step.
In most settings, this would require the agents to flawlessly communicate in a con-
tinued manner, which is quite unrealistic. On the other hand, due to their physical
limitations, robots are generally bound to interact locally and, when doing so, they
are most likely in a position where communication is possible. Local interactions
and communication are abstracted in the Dec-SIMDPs model in the notions of in-
teraction areas – meaning that the interaction among robots is “local” and limited to
these areas – and observable interactions – meaning that, when interacting, robots
have access to joint state information, possible through communication. While a
Dec-SIMDP is a subclass of Dec-MDPs – and hence any problem modeled as a
Dec-SIMDP can be modeled as a Dec-MDP, – the form of interaction explicitly ab-
stracted in Dec-SIMDPs is particularly suited for multi-robot scenarios and allows
algorithms such as IDMG, LAPSI and MPSI to exploit them for efficient planning.

Concerning the methods, both the LAPSI and the MPSI algorithm allow each
agent to track the other agents in the environment using a belief vector that is then
used to choose the actions. The difference between the two algorithms lies in the as-
sumed policy for the other agents. In MPSI and LAPSI, these “modeling strategies”
are used to abstract the decision process of each agent into a single-agent decision
process (a POMDP). Although we proposed a solution technique based on the gen-
eralized α-vectors, the same principle can be used with any other POMDP solver.

Also, the ability that both MPSI and LAPSI have to track the other agent allows
the planning process to take into consideration the possibility of future interaction.
This, as seen in the example in Fig. 4, is an important property of the method that
overcomes one important limitation of the IDMG algorithm.

It is also interesting to notice that the generalized α-vectors used in MPSI and
LAPSI can be interpreted in terms of an associated MDP. By comparing the optimal
policy in this MMDP and the optimal policies from the individual MDPs it should
be possible to pinpoint those joint-states in which the joint action significantly dif-
fers from the one prescribed by the individual MDPs and in which the actions for
each agent greatly depend on the state of the other agents. This provides one recipe
for choosing the interaction states as those in which individual state-information
is not sufficient to determine the best action. In [16] a similar approach is used to
implement decentralized execution of a jointly optimal policy.

Finally, several open questions remain to be explored. One is concerned with
the worst-case complexity of Dec-SIMDP. Is a Dec-SIMDP reducible to any of the
simpler Dec-MDP subclasses for which complexity results are known? Another in-
teresting question arised from the observation that, as a particular case of a Dec-
(PO)MDP, exact Dec-POMDP methods available (e.g., [4]) can be applied to solve
Dec-SIMDPs. It remains an open question whether it is possible to construct a more
specific optimal solution method that actually leverages the particular structure of
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Dec-SIMDPs, or whether this structure actually brings a benefit in terms of compu-
tational complexity.
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