
Design of Low-Power Multiple Constant Multiplications
Using Low-Complexity Minimum Depth Operations

Levent Aksoy
INESC-ID

Lisboa, Portugal
levent@algos.inesc-id.pt

Eduardo Costa
Univ. Católica de Pelotas

Pelotas, Brazil
ecosta@ucpel.tche.br

Paulo Flores, José Monteiro
INESC-ID/IST TU Lisbon

Lisboa, Portugal
{pff, jcm}@inesc-id.pt

ABSTRACT
Existing optimization algorithms for the multiplierless realization
of multiple constant multiplications (MCM) typically target the
minimization of the number of addition and subtraction operations.
Since power dissipation is directly related to the amount of hard-
ware, some power reduction is indirectly achieved by these algo-
rithms. However, in many cases, glitching plays an equally impor-
tant role in defining the power consumption. This is specially true
for arithmetic circuits, and in particular to MCM due to high logic
depth and large number of re-convergent paths. This paper intro-
duces exact algorithms that search the optimal area of an MCM
design at gate-level where each constant multiplication is imple-
mented in its minimum depth. Experimental results show that the
proposed algorithms lead to MCM designs consuming significantly
less power with respect to those obtained by the MCM algorithms.

Categories and Subject Descriptors
B.2.0 [Arithmetic and Logic Structures]: General

General Terms
Algorithms, Design

Keywords
Multiple constant multiplications (MCM), 0-1 integer linear pro-
gramming, high-level synthesis, low-power MCM design

1. INTRODUCTION
The Multiple Constant Multiplications (MCM) operation, that

realizes the multiplication of a set of known constants by a variable,
is a central operation and performance bottleneck in many Digital
Signal Processing (DSP) applications such as digital Finite Impulse
Response (FIR) filters, linear DSP transforms, and error correcting
codes. Since the multiplication operation is expensive in terms of
area, delay, and power dissipation in hardware and the constants
to be multiplied with the same variable are known beforehand, the
full-flexibility of a multiplier is not necessary in the design of the
MCM operation. Hence, constant multiplications are generally re-
alized using addition/subtraction and shift operations [12].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’11, May 2–4, 2011, Lausanne, Switzerland.
Copyright 2011 ACM 978-1-4503-0667-6/11/05 ...$10.00.

Figure 1: Shift-adds implementations of 29x and 43x: (a) with-
out partial product sharing [9]; with partial product sharing:
(b) the algorithm of [1]; (c) the algorithm of [2].

For the implementation of constant multiplications using addi-
tion/subtraction and shift operations, a straightforward method, gen-
erally known as the digit-based recoding [9], initially defines the
constants in multiplications in binary. Then, for each 1 in the bi-
nary representation of the constant, according to its bit position, it
shifts the variable and adds up the shifted variables to obtain the
result. As a simple example, consider the constant multiplications
29x and 43x. Their decompositions in binary are listed as follows:

29x = (11101)binx = x� 4+ x� 3+ x� 2+ x

43x = (101011)binx = x� 5+ x� 3+ x� 1+ x

and require 6 addition operations using the digit-based recoding
method [9], as presented in Figure 1(a).

However, the sharing of common partial products in the shift-
adds architecture allows for great reductions in the number of oper-
ations and consequently, in area and power dissipation of the MCM
design. Hence, the MCM problem is defined as finding the mini-
mum number of addition/subtraction operations that implement the
constant multiplications, since shifts can be realized using only
wires in hardware without representing any area cost. Note that
the MCM problem is an NP-complete problem [6].

The algorithms designed for the MCM problem can be catego-
rized in two classes: Common Subexpression Elimination (CSE)
algorithms [1, 10, 13] and graph-based (GB) methods [2, 16]. Al-
though both CSE and GB algorithms aim to maximize the sharing
of partial products, they differ in the search space that they explore.
The CSE algorithms initially define the constants under a num-
ber representation. Then, all possible subexpressions are extracted
from the representations of the constants and the “best" subexpres-
sion, generally, the most common, is chosen to be shared among the
constant multiplications. The GB algorithms are not limited to any
particular number representation and consider a larger number of
alternative implementations of a constant multiplication, yielding
better solutions than the CSE algorithms as shown in [2, 16].

Returning to our example in Figure 1, the exact CSE algorithm [1]
gives a solution with 4 operations by finding the most common par-
tial products 3x = (11)binx and 5x = (101)binx when constants are
defined under binary, (Figure 1(b)). The exact GB algorithm [2]
finds the minimum number of operations solution with 3 opera-
tions by sharing the common partial product 7x in both multiplica-
tions, (Figure 1(c)). Observe that the partial product 7x = (111)binx
cannot be extracted from the binary representations of both multi-
plications 29x and 43x in the exact CSE algorithm [1].

In many DSP systems, performance is an important and crucial
parameter. Hence, circuit area is generally expendable in order to
achieve a given performance target. Although the delay parame-
ter is dependent on several implementation issues, such as circuit
technology, placement, and routing, the delay of the MCM oper-
ation is generally considered as the number of adder-steps, which
denotes the maximal number of adders/subtracters in series to pro-
duce any constant multiplication [11]. The algorithms that find the
fewest number of operations in an MCM instance while taking into
account the delay constraint were introduced in [1, 11, 15].

As can be observed from Figure 1, a constant multiplication can
be implemented with a number of different addition/subtraction op-
erations each having a different implementation cost in hardware.
The gate-level implementation cost of all possible addition and sub-
traction operations in an MCM operation and an algorithm that
reduces the hardware complexity were presented in [3]. In this
model, an addition/subtraction operation is assumed to be imple-
mented under the ripple carry adder architecture and its hardware
cost is determined in terms of full adders, half adders, and addi-
tional logic gates.

With the increasing popularity of portable electronic devices that
include many DSP systems, power consumption has become a mat-
ter of concern. Switching activity and power dissipation estimation
models for the MCM operation have been introduced in [7, 8]. As
shown in the Glitch Path Score (GPS) power dissipation estima-
tion model [8], power dissipation in MCM circuits is highly related
with the depth of each operation and its area at gate-level. Hence, in
this paper, we introduce exact algorithms that yield MCM designs,
where each constant multiplication is realized at its minimum depth
using optimal area at gate-level. Experimental results indicate that
the proposed algorithms yield low-power MCM designs when com-
pared to those obtained by the algorithms designed for the MCM
problem and for the MCM problem under a delay constraint.

The rest of the paper is organized as follows. Section 2 presents
the background concepts. The exact algorithms are introduced in
Section 3. Section 4 presents the experimental results and finally,
conclusions are given in Section 5.

2. BACKGROUND
In this section, we give the basic concepts related with the pro-

posed exact algorithms and introduce the problem definitions.

2.1 Number Representation
The binary representation decomposes a number in a set of ad-

ditions of powers of two. The representation of numbers using a
signed digit system makes the use of positive and negative dig-
its, {1,0,1}, where 1 stands for −1. The Canonical Signed Digit
(CSD) representation [4] is a signed digit system that has a unique
representation for each number and verifies the following proper-
ties: i) two non-zero digits are not adjacent; ii) the number of non-
zero digits is minimal. Any n digit number in CSD has at most
d(n + 1)/2e non-zero digits, and on average, the number of non-
zero digits is reduced by 33% when compared to binary. The Min-
imal Signed Digit (MSD) representation [13] is obtained by drop-

Figure 2: The graph representation of an A-operation.
ping the first property of the CSD representation. Thus, a constant
can have several representations under MSD, including its CSD
representation, but all with a minimum number of non-zero digits.

2.2 Multiplierless Constant Multiplications
In multiplierless constant multiplications, the fundamental oper-

ation, called A-operation in [16], is an operation with two integer
inputs and one integer output that performs a single addition or a
subtraction, and an arbitrary number of shifts. It is defined as:

w = A(u,v) = |2l1 u+(−1)s2l2 v|2−r (1)

where s ∈ {0,1} is the sign, which determines if an addition or a
subtraction operation is to be performed, l1, l2 ≥ 0 are integers de-
noting left shifts of the operands, and r ≥ 0 is an integer indicating
a right shift of the result. An A-operation can be represented in
a graph where the vertices are labeled with the constants and the
edges are labeled with the sign and shifts as illustrated in Figure 2.

In the MCM problem, the complexity of an adder and a sub-
tracter in hardware is assumed to be equal. It is also assumed that
the sign of the constant can be adjusted at some part of the de-
sign and the shifting operation has no cost in hardware. Thus, only
positive and odd constants are considered in the MCM problem.
Observe from Eqn. (1) that in the implementation of an odd con-
stant considering any two odd constants at the inputs, one of the
left shifts, l1 or l2, is zero and r is zero, or both l1 and l2 are zero
and r is greater than zero. Also, it is necessary to constrain the left
shifts, otherwise there exist infinite ways of implementing a con-
stant. In [2], the number of shifts is allowed to be at most mb + 1,
where mb is the maximum bit-width of the constants to be imple-
mented. Thus, the MCM problem [16] can be defined as follows:

DEFINITION 1. THE MCM PROBLEM. Given the target set com-
posed of positive and odd unrepeated target constants to be im-
plemented, T = {t1, . . . , tn} ⊂ N, find the smallest ready set, R =
{r0,r1, . . . ,rm}, with T ⊂ R, such that r0 = 1 and for all rk with
1 ≤ k ≤ m, there exist ri,r j with 0 ≤ i, j < k and an A-operation
rk = A(ri,r j).

The minimum adder-step realization of a target constant ti in-
cludes dlog2S(ti)e operations in series, where S(ti) denotes the num-
ber of non-zero digits of ti in its CSD representation. Hence, for a
target set, T = {t1, . . . , tn}, the minimum adder-step of the MCM
operation [11] is computed as:

min_delayMCM = max
ti
{dlog2S(ti)e} (2)

Thus, the optimization of the number of operations problem un-
der a delay constraint can be defined as follows:

DEFINITION 2. THE MCM PROBLEM UNDER A DELAY CON-
STRAINT. Given the target set T = {t1, . . . , tn} ⊂ N and the de-
lay constraint dc with dc≥min_delayMCM , find the smallest ready
set R = {r0,r1, . . . ,rm} such that under the same conditions on the
ready set given in Definition 1, the set of A-operations yields an
MCM design without exceeding dc.

Note that the area of an A-operation at gate-level, that is directly
proportional to the number of logic gates, has a significant effect
on the power dissipation as a larger number of logic gates produce
more transitions. Also, the depth of an A-operation in the MCM de-
sign affects the power dissipation as the transitions generated at the

Figure 3: Implementations of the target set {5,11,171,215}: (a) with the minimum number of operations; (b) with the minimum
number of adder-steps; (c) with the minimum depth constraint for each operation.

output of an operation produce more transitions on the next level
operations and more glitching is generated and propagated along
the re-convergent paths. Hence, a low-power MCM operation can
be designed when each constant is realized in its minimum depth
using optimal area at gate-level. Thus, the optimization of area
problem under the minimum depth constraint can be defined as:

DEFINITION 3. THE OPTIMIZATION OF AREA PROBLEM UN-
DER THE MINIMUM DEPTH CONSTRAINT. Given the target set
T = {t1, . . . , tn} ⊂ N, find the ready set R = {r0,r1, . . . ,rm} such
that under the same conditions on the ready set given in Defini-
tion 1, the set of A-operations yields an MCM design where each
constant is implemented under its minimum depth using optimal
area at gate-level.

An an example on shift-adds realization of constant multiplica-
tions with the minimum adder-step constraint and the minimum
depth constraint for each operation, consider the target constants in
T = {5,11,171,215} The minimum adder-steps of 5, 11, 171, and
215 are 1, 2, 3, and 2 respectively. Thus, the minimum adder-step
realization of the MCM operation includes 3 adder-steps as com-
puted by Eqn. (2). The exact GB algorithm of [2] designed for
the MCM problem finds a solution with 4 operations and 4 adder-
steps without requiring any intermediate constant, as illustrated in
Figure 3(a). The GB algorithm of [15], called Hcub-DC, that is de-
signed for the MCM problem under a delay constraint gives a solu-
tion with 5 operations under the minimum delay constraint, i.e., 3,
as shown in Figure 3(b). The exact GB algorithm proposed in this
paper finds a solution including 5 operations, where each constant
is implemented at its minimum depth, as presented in Figure 3(c).

2.3 0-1 Integer Linear Programming
The 0-1 Integer Linear Programming (ILP) problem is the min-

imization or the maximization of a linear cost function subject to a
set of linear constraints and is generally defined as follows1:

Minimize cT ·x (3)
Subject to A ·x≥ b, x ∈ {0,1}n (4)

In (3), c j in c is an integer value associated with each of n vari-
ables x j, 1≤ j≤ n, in the cost function, and in (4), A ·x≥ b denotes
the set of m linear constraints, where b ∈ Zn and A ∈ Zm×Zn.

3. THE EXACT ALGORITHMS
The exact CSE and GB algorithms designed for the optimization

of area problem under the minimum depth constraint consist of four
main parts:

1The maximization objective can be easily converted to a minimization ob-
jective by negating the cost function. Less-than-or-equal and equality con-
straints are accommodated by the equivalences, A · x ≤ b⇔−A · x ≥ −b
and A ·x = b⇔ (A ·x≥ b)∧ (A ·x≤ b), respectively.

1. Generation of all possible implementations of the constants.
2. Construction of the Boolean network that represents the im-

plementations of the constants.
3. Formalization of the problem as a 0-1 ILP problem.
4. Obtaining the minimum solution using a 0-1 ILP solver.

In next sections, these parts are described in detail.

3.1 Generation of Constant Implementations
In the preprocessing phase of the exact algorithms, the target

constants to be implemented are converted to positive and then,
made odd by successive divisions by 2. The resulting constants
are stored in a set called target set, T , without repetition. Thus,
the target set includes the minimum number of necessary target
constants to be implemented. The implementations of the target
and intermediate constants are found as follows:

1. Take an element from T , ti, and determine its minimum depth
value, dti , as dlog2S(ti)e. Form an empty set, Oi, associated
with ti that will include the gate-level implementation cost of
all A-operations that generate ti and their inputs as a pair.

2. For each A-operation that computes ti where the minimum
depth values of the inputs, du and dv, are smaller than dti ;

(a) Determine the implementation cost of the A-operation.
(b) Add the inputs of the A-operation to Oi as a pair, i.e., u

and v, with its implementation cost.
(c) Add u and v to T , if they do not represent the input that

is the constants are multiplied with, i.e., ’1’, and are not
in T .

3. Repeat Step 1 until all the elements of T are considered.
Observe that the target set, that only includes the target constants

to be implemented in the beginning of the iterative loop, is aug-
mented with the intermediate constants that are required for the im-
plementation of target constants, i.e., the inputs of each A-operation
that generates a target constant.

The only difference between the exact CSE and GB algorithms is
how the minimum depth implementations of a constant are found.
In our realization of the exact CSE and GB algorithms, all possi-
ble minimum depth implementations of a constant are found be-
forehand and stored in a look-up table. Hence, in Step 2 of the
algorithm, each A-operation that generates a constant is taken from
these look-up tables. The implementation cost of an A-operation,
Step 2(a) of the algorithm, is computed as described in [3].

Before the construction of the look-up tables, we determine all
the constants at minimum depth 1, 2, and 3. Note that any positive
and odd constant in between [3,215 − 1] has the minimum depth
value 1, 2, or 3. In the construction of the look-up table for the
exact GB algorithm, while finding a minimum depth implementa-
tion for the constant c, i.e., an A-operation, c is assigned to the
output and the constants from depths less than that minimum of c
are assigned to the inputs of the A-operation. The possible input

Figure 4: Possible minimum depth realizations of constants.

assignments in the A-operation are illustrated in Figure 4, where an
arrow pair intersecting at one point represents an A-operation and
each box includes some constants at a depth value. For an example,
a depth 2 constant can be implemented using an operation where
both inputs are depth 1 constants or using an operation where one
of its input is a depth 1 and the other is a depth 0 constant. Then,
we search for the values on the left and right shifts and sign value
in the A-operation that computes c. Note that shifts are restricted
with the bit-width of the constant plus 1 and only one of the shifts
is set to a value greater than 0 and the others are set to 0, since
only positive and odd constants are considered. As an example, 3
implementations out of 17 of a depth 2 constant 25 can be given as,
25 = 3� 3+1, 25 = 5� 2+5, and 25 = 7� 2−3.

In the construction of the look-up table for the exact CSE al-
gorithm, we represent c under a particular number representation,
i.e., CSD or MSD. Then, we decompose the non-zero digits in its
representation(s) in two parts and find all possible implementations
considering the minimum depth of each input of the operation, as
illustrated in Figure 4. All implementations of the depth 2 constant
25 obtained from its MSD representations, 11001 and 101001, are
given in Figure 5. Observe that there are 5 possible different imple-
mentations of 25 (the last implementation on each representation is
the same hence, one of them can be eliminated).

25 =



011001 =

 010000+001001 = 1� 4+9
001000+010001 = 1� 3+17
000001+011000 = 1+3� 3

101001 =

 100000+001001 = 1� 5−7
001000+100001 =−1� 3+33
000001+101000 = 1+3� 3

Figure 5: Possible implementations of 25 under MSD.

In Table 1, we present the number of constants, noc, and the to-
tal number of operations that generate all the constants, tno, for
depth values 1, 2, and 3 when constants are in between 8 and 13
bits, bw. Each entry in columns tno of Table 1, a/b, stands for
the value considered in the exact CSE algorithm under MSD and
in the exact GB algorithm, respectively. For example, for positive
and odd constants in between 3 and 255, i.e., 8-bit constants, there
are 13, 106, and 8 depth 1, 2, and 3 constants respectively and for
the eight depth 3 constants, there are 432 and 2060 possible im-
plementations to be considered in the exact CSE algorithm under
MSD and the exact GB algorithm respectively. Observe that the
significant difference in the number of possible operations consid-
ered in the exact CSE and GB algorithms shows itself for the depth

Table 1: Number of constants and operations for depths 1, 2,
and 3.

bw Depth 1 Depth 2 Depth 3
noc tno noc tno noc tno

8 13 14 / 14 106 514 / 947 8 432 / 2,060
9 15 16 / 16 192 880 / 1,503 48 1,904 / 20,612

10 17 18 / 18 318 1,390 / 2,237 176 7,304 / 111,074
11 19 20 / 20 492 2,068 / 3,173 512 21,936 / 418,092
12 21 22 / 22 722 2,938 / 4,335 1,304 62,424 / 1,239,820
13 23 24 / 24 1,016 4,024 / 5,747 3,056 163,376 / 3,122,306

Figure 6: Network generated for the constant 215.

3 constants, while these values for the depth 2 constants are close
to each other and they are the same for the depth 1 constants.

3.2 The Boolean Network
After all possible implementations of the target and intermedi-

ate constants are found, these implementations are represented in a
Boolean network that includes only AND and OR gates. The prop-
erties of the Boolean network are as follows:

1. The primary input of the network is the input to be multiplied
with the constants denoted by ’1’.

2. An AND gate in the network represents an addition or a sub-
traction operation.

3. An OR gate in the network represents a target or an interme-
diate constant and combines all possible implementations of
the constant.

4. The outputs of the network are the OR gate outputs associated
with the target constants.

The part of the algorithm, where the network is constructed, is
given as follows:

1. Take an element from T , ti.
2. For each pair in Oi, generate a two-input AND gate. The

inputs of the AND gate are the elements of the pair, i.e., ’1’
or the outputs of the OR gates representing the target and
intermediate constants in the network.

3. Generate an OR gate associated with ti where its inputs are
the outputs of AND gates determined in Step 2.

4. If ti is a target constant, assign the output of the correspond-
ing OR gate as the output of the network.

5. Repeat Step 1 until all elements in T are considered.
After the network is constructed, we include the optimization

variables into the network so that the cost function of the 0-1 ILP
problem can be formed. To do this, we associate the optimization
variables with the operations. Hence, for each AND gate in the
network, we add a third input representing an optimization variable.

As an example, suppose the depth 2 constant 215 as a target con-
stant, that has the same implementations under the exact GB algo-
rithm and the exact CSE algorithm when constants are defined un-
der CSD or MSD. These implementations are 215 = 255−5� 3,
215 = 7� 5−9, and 215 = 31� 3−33. Also, note that there is
only one possible implementation for each intermediate constant,
5, 7, 9, 31, 33, and 255, that are required to implement 215. The
Boolean network generated for the target constant 215 after the op-
timization variables are added, is illustrated in Figure 6. In this
figure, the 1-input OR gates for the intermediate constants are omit-
ted and the type of each operation is given inside of each AND gate.

Table 3: FIR filter specifications, size of 0-1 ILP problems generated by the exact algorithms, and their runtime.
Filter 0-1 ILP Problem Size and Run Time

Fil. Specifications Exact CSE - CSD Exact CSE - MSD Exact GB
pass stop tap width vars cons ovars sol / CPU vars cons ovars sol / CPU vars cons ovars sol / CPU

1 0.20 0.25 30 14 1583 3129 728 23748 / 0.43 4172 8631 1947 22704 / 4.60 39483 82147 19271 21636 / 1860.2
2 0.15 0.20 30 14 1312 2557 608 26674 / 0.52 2962 6057 1373 23938 / 5.42 29668 62479 14370 22994 / 1321.3
3 0.10 0.15 30 14 1315 2621 599 25848 / 0.32 3590 7488 1653 24990 / 2.33 28927 61651 13971 23732 / 1843.5
4 0.15 0.20 40 14 817 1498 394 24952 / 0.40 2004 3782 972 24094 / 1.69 30846 63446 15050 23142 / 1343.1
5 0.10 0.12 40 14 1277 2509 586 34444 / 1.40 3161 6536 1465 32636 / 7.24 36650 76887 17834 30266 / 255.6
6 0.10 0.15 60 14 1137 2090 548 39288 / 0.30 2678 5134 1289 36214 / 4.39 43856 88195 21658 34346 / 292.8
7 0.15 0.20 80 14 1470 2819 689 42902 / 0.43 4745 9645 2220 41034 / 3.99 35710 72813 17454 39804 / 206.0
8 0.15 0.25 80 14 1539 2956 724 48922 / 0.38 2762 5386 1314 47916 / 1.12 52528 106072 25855 45418 / 371.9

3.3 The 0-1 ILP Formalization
The cost function of the 0-1 ILP problem is determined as the

linear function of optimization variables representing operations,
where the cost value of each optimization variable is the implemen-
tation cost of each operation determined as described in [3]. The
constraints of the 0-1 ILP problem are obtained by finding the Con-
junctive Normal Form (CNF) formulas of each gate in the network
and expressing each clause in CNF formulas as a linear inequality
as described in [5]. For example, a 3-input AND gate, d = a∧b∧c,
is translated to CNF as (a + d)(b + d)(c + d)(a + b + c + d) and
converted to linear constraints as a− d ≥ 0, b− d ≥ 0, c− d ≥ 0,
−a−b− c+d ≥−2. The outputs of the network, i.e., the outputs
of OR gates associated with the target constants, are also set to 1,
since the implementation of target constants is aimed. Thus, the
obtained model can serve as an input to a generic 0-1 ILP solver.

3.4 Finding the Minimum Solution
On the generated 0-1 ILP problem, a generic 0-1 ILP solver will

search the minimum value of the cost function while satisfying the
constraints that represent how target and intermediate constants are
implemented. The solution of the 0-1 ILP solver, i.e., the operations
whose optimization variables are set to 1, will directly determine
the set of operations that yields the minimum area solution.

3.5 Problem Complexity
As a worst case scenario, suppose that all the constants in depth

3 are to be implemented when bw is again in between 8 and 13
bits. In this case, all possible implementations of positive and odd
constants in between [3, 2bw−1] should be considered in both al-
gorithms. Table 2 presents the size of 0-1 ILP problems in terms of
the number of variables (vars), constraints (cons), and optimization
variables (ovars), for the exact CSE and GB algorithms in this sce-
nario. Observe that although the current 0-1 ILP solvers can easily
cope with all the 0-1 ILP problems generated by the exact CSE al-
gorithm under MSD, they may find hard to handle those generated
by the exact GB algorithm when bw is in between 11 and 13.

Note that the possible implementations of constants considered
in the exact GB algorithm cover all possible implementations con-
sidered in the exact CSE algorithm under MSD. The same observa-
tion is also true for the exact CSE algorithm under MSD and CSD,
since the MSD representations of a constant include its CSD repre-
sentation. Although a CSE algorithm cannot guarantee the global
minimum solution due to its limited search space, it can be applied
on MCM instances that the exact GB algorithm cannot handle.

Table 2: Worst-case complexity on the 0-1 ILP problem size.
bw Exact CSE - MSD Exact GB

vars cons ovars vars cons ovars
8 2,047 4,495 960 6,169 13,172 3,021
9 5,855 12,351 2,800 44,517 90,298 22,131

10 17,935 36,767 8,712 227,169 456,082 113,329
11 49,071 99,207 24,024 843,593 1,689,356 421,285
12 132,815 266,543 65,384 2,490,401 4,983,112 1,244,177
13 338,943 677,839 167,424 6,260,249 12,522,174 3,128,077

4. EXPERIMENTAL RESULTS
This section presents high-level and gate-level results of the ex-

act algorithms introduced in this paper and compares them with
those of the algorithms designed for the MCM problem and the
MCM problem under a delay constraint. In the design of an MCM
operation at gate-level, first, we obtain a set of addition/subtraction
operations that implements the constant multiplications using a high-
level algorithm. Then, we describe these operations in VHDL un-
der the ripple carry architecture as shown in [3] and synthesize the
MCM circuit using the Cadence Encounter R© RTL Compiler with
the UMC Logic 0.18µm Generic II library under the minimum area
design strategy during the technology mapping.

As an experiment set, we used FIR filter instances given in Ta-
ble 3, where filter coefficients were computed with the remez al-
gorithm in MATLAB. In this table, pass and stop are normalized
frequencies that define the passband and stopband respectively, tap
is the number of filter coefficients, and width is the bit-width of the
coefficients. This table also presents the size of 0-1 ILP problems
generated by the exact CSE and GB algorithms. Note that sol and
CPU stand respectively for the minimum area value obtained by
the 0-1 ILP solver [14] and its runtime in seconds on a PC with
Intel Xeon at 2.33GHz and 4GB memory under Linux.

As can be observed from Table 3, since the exact GB algorithm is
not restricted to any particular number representation, it generates
a 0-1 ILP problem larger than that of the exact CSE algorithms,
where the 0-1 ILP solver [14] requires more CPU time to find the
minimum solution. The exact CSE algorithms obtain a solution
using a little computational effort, but their solutions, especially
those obtained under CSD, are far away from the global minima.

The high-level results of algorithms on FIR filters are presented
in Table 4. In the algorithms designed for the MCM problem un-
der a delay constraint, the delay constraint was taken as the min-
imum number of adder-steps of the MCM operation computed by
Eqn. (2). In Table 4, Op and GPS denote respectively the number
of operations and the power dissipation estimation value [8] of the
MCM operation. In computation of the GPS value, the bit-width
of the filter input was 16, as in the design of MCM operations at
gate-level. Also, As/Aas indicates the maximum number of adder-
steps and the average number of adder-steps over all operations in
the MCM operation respectively.

Observe from Table 4 that the GB algorithms generally obtain
better solutions in terms of the number of operations than those
obtained by the exact CSE algorithms. Also, the solutions of the
exact CSE and GB algorithms designed for the optimization of
area problem under the minimum depth constraint generally in-
clude more number of operations, because the possible implemen-
tations of constants are restricted due to the minimum depth con-
straint and the optimization of area rather than the optimization of
the number of operations is targeted in these algorithms. However,
on overall instances, they find an MCM operation with the smallest
Aas and GPS value with respect to the algorithms designed for the
MCM problem and the MCM problem under a delay constraint.

Table 4: Summary of high-level results of algorithms on FIR filter instances.
Optimization of #Operations Opt. of #Operations under a Delay Constraint Opt. of Area under the Minimum Depth Constraint

Fil. Exact CSE - MSD [1] Exact GB [2] Exact CSE - MSD [1] Hcub-DC [15] Exact CSE - MSD Exact GB
Op As/Aas GPS Op As/Aas GPS Op As/Aas GPS Op As/Aas GPS Op As/Aas GPS Op As/Aas GPS

1 22 4 / 2.59 1574 17 8 / 4.76 2807 22 3 / 2.27 1370 22 3 / 2.32 1698 22 3 / 2.27 1326 21 3 / 2.29 1358
2 22 4 / 2.27 1374 17 11 / 7.00 4191 22 3 / 2.09 1292 23 3 / 2.48 1745 23 3 / 2.04 1280 21 3 / 2.05 1303
3 23 4 / 2.30 1596 18 7 / 4.50 2505 23 3 / 2.09 1351 23 3 / 2.39 1780 23 3 / 2.09 1296 22 3 / 2.09 1408
4 23 4 / 2.17 1349 19 4 / 2.63 1556 23 3 / 2.09 1268 20 3 / 2.35 1433 24 3 / 1.96 1173 23 3 / 2.00 1232
5 29 3 / 2.28 1862 23 7 / 4.09 3420 29 3 / 2.24 1840 27 3 / 2.52 2195 31 3 / 2.10 1708 27 3 / 2.15 1739
6 33 4 / 2.30 2040 28 6 / 3.57 2944 33 3 / 2.24 1992 31 3 / 2.58 2438 35 3 / 2.14 1892 33 3 / 2.18 1945
7 40 4 / 2.33 2426 35 4 / 2.54 2501 40 3 / 2.15 2243 37 3 / 2.38 2452 42 3 / 2.02 2052 41 3 / 2.02 2085
8 47 3 / 2.21 2793 39 6 / 3.77 4614 47 3 / 2.17 2771 44 3 / 2.61 3499 48 3 / 2.10 2611 44 3 / 2.14 2562

Avg. 29.9 3.8 / 2.3 1876 24.5 6.6 / 4.1 3067 29.9 3 / 2.2 1765 28.4 3 / 2.5 2155 31 3 / 2.1 1667 29 3 / 2.1 1704

Table 5: Summary of gate-level results of algorithms on FIR filter instances.
Optimization of #Operations Opt. of #Operations under a Delay Constraint Opt. of Area under the Minimum Depth Constraint

Fil. Exact CSE - MSD [1] Exact GB [2] Exact CSE - MSD [1] Hcub-DC [15] Exact CSE - MSD Exact GB
area delay power area delay power area delay power area delay power area delay power area delay power

1 12.2 6.0 1629 10.9 8.4 1548 11.5 6.7 1533 13.1 6.3 1783 11.2 6.7 1357 10.8 6.8 1496
2 11.8 6.4 1805 11.9 9.1 2072 11.6 6.4 1781 13.5 7.2 1921 11.6 6.4 1574 11.2 6.3 1724
3 12.2 6.0 1689 9.9 7.7 1534 11.3 6.0 1542 13.0 6.5 2014 10.8 6.2 1442 10.3 6.1 1411
4 11.5 5.5 1261 10.4 6.6 1360 11.1 6.0 1284 10.8 6.2 1310 10.7 5.9 1217 10.6 5.5 1183
5 16.9 6.7 2883 15.5 8.1 3133 16.8 7.0 2673 16.4 7.6 2862 16.3 6.8 2446 15.5 6.8 2599
6 19.1 6.9 3720 17.2 9.0 4427 19.0 6.8 3466 19.8 7.2 4292 18.4 6.7 3076 17.8 7.4 2728
7 21.6 6.8 3010 20.1 6.7 2957 21.0 6.6 2734 20.4 6.5 2891 20.3 6.3 2721 19.9 6.5 2588
8 25.6 6.9 6692 26.1 9.1 7704 25.8 7.2 6647 26.0 7.8 6823 24.7 7.1 6106 23.7 7.1 6168

Avg. 16.4 6.4 2836.1 15.3 8.1 3091.9 16.0 6.6 2707.5 16.6 6.9 2987.0 15.5 6.5 2492.4 15.0 6.6 2487.1

The gate-level results of MCM designs that are obtained using
the solutions of high-level algorithms given in Table 4 are presented
in Table 5. In this table, area (mm2), delay (ns), and power (µW)
denote the area, delay, and power dissipation results of MCM de-
signs at gate-level respectively. Power dissipation values were ob-
tained using simulation results under 10,000 random input vectors.

Although the exact GB algorithm [2] finds an MCM design in-
cluding the minimum number of operations as presented in Table 4,
its solution does not always yield an MCM design with the optimal
area as can be observed on Filters 1, 2, 7, and 8 in Table 5 when
its results are compared with the exact GB algorithm proposed in
this paper. Also, although the GB Hcub-DC algorithm can find an
MCM with the minimum delay constraint as shown in Table 4, its
solutions does not always lead an MCM design with the minimum
delay as can be observed on Filters 2-5 and 8 in Table 5 when its re-
sults are compared with the exact GB algorithm introduced in this
paper. On average, it obtains better solutions on area and delay than
these algorithms. The same observation can be also made on the
exact CSE algorithms. This is simply because the exact CSE and
GB algorithms proposed in this paper take into account the imple-
mentation of an addition/subtraction operation at gate-level while
synthesizing each constant at its minimum depth. Furthermore, this
approach enables the proposed exact algorithms to find MCM de-
signs that consume less power with respect to the MCM designs
obtained by the high-level algorithms designed for the MCM prob-
lem and the MCM problem under a delay constraint.

5. CONCLUSIONS
This paper addressed the problem of optimization of gate-level

area in the MCM operation where each constant is implemented at
its minimum depth and introduced the 0-1 ILP formalization of this
problem. It was shown that the proposed exact algorithms achieve
significant improvements not only on power dissipation but also,
on area and delay of the MCM design, when compared to the solu-
tions obtained by the prominent algorithms designed for the MCM
problem and the MCM problem under a delay constraint.

6. ACKNOWLEDGMENT
This work was supported by the Portuguese Foundation for Sci-

ence and Technology (FCT) research project Multicon - Architec-

tural Optimization of DSP Systems with Multiple Constants Multi-
plications and by FCT through the PIDDAC Program funds.

7. REFERENCES
[1] L. Aksoy, E. Costa, P. Flores, and J. Monteiro. Exact and

Approximate Algorithms for the Optimization of Area and Delay in
Multiple Constant Multiplications. IEEE TCAD, 27(6):1013-1026,
2008.

[2] L. Aksoy, E. Gunes, and P. Flores. Search Algorithms for the
Multiple Constant Multiplications Problem: Exact and Approximate.
Elsevier Journal on Microprocessors and Microsystems, 34:151-162,
2010.

[3] L. Aksoy, E. Costa, P. Flores, and J. Monteiro. Optimization of Area
and Delay at Gate-Level in Multiple Constant Multiplications. In
Euromicro Conference on Digital System Design, pages 3-10, 2010.

[4] A. Avizienis. Signed-digit Number Representation for Fast Parallel
Arithmetic. IRE Transactions on Electronic Computers,
EC-10:389-400, 1961.

[5] P. Barth. A Davis-Putnam Based Enumeration Algorithm for Linear
Pseudo-Boolean Optimization. Technical Report Max-Planck-Institut
Fur Informatik, 1995.

[6] P. Cappello and K. Steiglitz. Some Complexity Issues in Digital
Signal Processing. IEEE Tran. on Acoustics, Speech, and Signal
Processing, 32(5):1037-1041, 1984.

[7] J. Chen, C.-H. Chang, and H. Qian. New Power Index Model for
Switching Power Analysis from Adder Graph of FIR Filter. In
ISCAS, pages 2197-2200, 2009.

[8] S. Demirsoy, A. Dempster, and I. Kale. Power Analysis of Multiplier
Blocks. In ISCAS, pages 297-300, 2002.

[9] M. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann,
2003.

[10] R. Hartley. Subexpression Sharing in Filters using Canonic Signed
Digit Multipliers. IEEE TCAS II, 43(10):677-688, 1996.

[11] H-J. Kang and I-C. Park. FIR Filter Synthesis Algorithms for
Minimizing the Delay and the Number of Adders. IEEE TCAS II,
48(8):770-777, 2001.

[12] H. Nguyen and A. Chatterjee. Number-Splitting with Shift-and-Add
Decomposition for Power and Hardware Optimization in Linear DSP
Synthesis. IEEE Tran. on VLSI, 8(4):419-424, 2000.

[13] I-C. Park and H-J. Kang. Digital Filter Synthesis Based on Minimal
Signed Digit Representation. In DAC, pages 468-473, 2001.

[14] Solving Constraint Integer Programs website. http://scip.zib.de/.
[15] Spiral webpage. http://spiral.ece.cmu.edu/mcm/gen.html.
[16] Y. Voronenko and M. Püschel. Multiplierless Multiple Constant

Multiplication. ACM Tran. on Algorithms, 3(2), 2007.

