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Abstract—We address the problem of finding a mathematical
model for the genetic network regulating the stress response of
the yeast Saccharomyces cerevisiae to the fungicide mancozeb.
An S-system formalism was used to model the interactions of
this 5 gene network. Parameter estimation was accomplished
by decoupling the resulting system of nonlinear ordinary
differential equations into a larger nonlinear algebraic system,
and using the Levenberg-Marquardt algorithm to fit the
models predictions to experimental data. The introduction of
constraints in the model, related to the putative topology of
the network, was explored. The results show that forcing the
network connectivity to adhere to this topology did not lead
to better results than the ones obtained using an unrestricted
network topology. Overall, the modeling approach obtained
partial success when trained on the non-mutant datasets,
although further work is required if one wishes to obtain more
accurate prediction of the time courses.

Keywords-Systems Biology, Gene Regulatory Network, Pa-
rameter Estimation, S-systems, Saccharomyces cerevisiae,
FLR1 Regulatory Network.

I. BACKGROUND AND PROBLEM DEFINITION

The pattern of expression of a given gene in an organism
often depends on a set of other genes, which interact
among themselves, forming what is called a genetic reg-
ulatory network. Because these networks of interactions are
usually large and intricate, and their resulting dynamics
very complex and nonlinear, much effort has been put on
finding systematic mathematical tools for their modeling and
simulation [2]. One possible approach is based on the S-
system formalism [5], which is a variant of the formalism
proposed by Biochemical Systems Theory (BST) [9], [10].
The S-system formalism represents the dynamics of the
biological network as a system of nonlinear ordinary differ-
ential equations, describing each components temporal rate
of change (the derivative with respect to time of a specific
state variable) as the sum of one positive and one negative
term, accounting, respectively, for its rates of production and
degradation:
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X
gij
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X
hij

j , i = 1, 2, . . . ,M (1)

In expression (1), M is the number of components of the
network (or the number of state variables of the system), αi

and βi are non-negative rate constants, and gij and hij are
real-valued kinetic orders for the production and degrada-
tion terms, respectively. The advantage of using canonical
formulations such as this is that they provide a consistent
mathematical framework for the representation and analysis
of the dynamical behavior of biological systems.

The parameters specified by this type of model (vectors
α and β, and matrices g and h) are estimated by fitting
the models predictions to experimental data. In terms of the
fitting, two approaches may be followed:

1) Fit the predictions of the numerically integrated sys-
tem (1) to experimental time series of the (concentra-
tions of the) components of the network, or

2) Fit the predictions of the differential equations in (1) to
the estimated experimental slopes of these time series.

Besides bypassing the computationally heavy numerical
integration steps, the latter approach has the additional
advantage of resulting in the replacement of the differen-
tial equations (1) with sets of algebraic equations, whose
decoupling allows for the parameters pertaining to each
state variable to be estimated separately [9]. A potentially
problematic requirement of this method has to do with
the slope estimates, whose reliability depends on both the
existence of a sufficient number of experimental points and
an appropriate smoothing of the experimental data.

The estimation of the parameters of highly parameterized
nonlinear models of biological systems often reveals a
particularly troubling characteristic of these systems: the fact
that a large range of parameter values may result in very
similar dynamical behavior and in a similarly good fit of
the model to the experimental data. In the case of S-system
models, this also means that distinct types of interactions
among network components may generate the same overall
dynamical behavior (as the activation or inhibition effect that
a given component has on another is defined by the signs of
the corresponding kinetic orders). The fact that the dynamics
of these systems are insensitive to particular directions in



the parameter search space constitutes a phenomenon called
sloppiness. An approach for analyzing the sloppiness of a
biological system consists in exploring the clusters or clouds
of parameters which result in a given dynamical behavior.

II. THE FLR1 REGULATORY NETWORK

The biological system analyzed in this work was the ge-
netic regulatory network that determines the stress-induced
expression of Saccharomyces cerevisiae (S. cerevisiae) gene
FLR1, in response to the fungicide mancozeb. This network
comprises five interacting genes (the state variables).

Using an S-systems formalism, we have to estimate the
60 resulting parameters (two 5-by-1 α and β vectors, and
two 5-by-5 g and h matrices), by fitting the slopes of
each gene relative concentration at each time point (as
estimated from the corresponding experimental time series)
to the derivatives predicted by the mathematical model
developed. The Levenberg-Marquardt algorithm was used
to minimize a cost-function defined as the sum of squared
residuals between the predicted derivatives and the estimated
experimental slopes at each time point, subject to a number
of nonlinear constraints [10].

Because of the systems anticipated sloppiness, the ap-
proach described by Vilela et al. [10] was used for parameter
estimation, with admissible parameter sets being estimated
by a Monte Carlo process combined with the optimization
algorithm.

III. PRE-PROCESSING OF EXPERIMENTAL DATA

Five sets of experimental data were available for this work
[6]. Each set consists of five time series of the relative
concentrations of the transcripts of five S. cerevisiae genes
(parental strain BY4741) involved in its stress response to
the fungicide mancozeb, measured over the course of 11
hours, at 8 non-equally spaced time instants. The genes
are FLR1, YAP1, PDR3, RPN4 and YRR1 and the relative
concentrations of their transcripts (Flr1p, Yap1p, Pdr3p,
Rpn4p and Yrr1p, respectively) were obtained as ratios of
the levels of the corresponding mRNA to the levels of
ACT1 mRNA in the cells. The ratios obtained for control
conditions (absence of mancozeb) were set to 1 and the
remaining values were considered relative to that control.
Each data set corresponds to experiments carried out using
the wild-type S. cerevisiae strain BY4741, labeled wt, and
four deletion mutants, missing genes YAP1, PDR3, RPN4
and YRR1, and labeled ∆yap1, ∆pdr3, ∆rpn4 and ∆yrr1,
respectively.

In terms of the FLR1 gene, the yeasts stress response to
mancozeb is characterized by a transient initial activation of
FLR1 expression, followed by a decline in FLR1 transcript
levels, until full adaptation to mancozeb is attained (e.g. in
the wt data set). Because of this transient response, the initial
period of the experiments was more finely sampled, with six

measurements taken in the first 2 hours, and the two final
measurements taken at the 6th hour and at the 11th hour.

The authors sought to ascertain the regulatory roles of
genes YAP1, PDR3, RPN4 and YRR1 in the control of
FLR1 activation, and their analysis resulted in the proposal
of a network specifying the interactions among these four
transcriptional regulators and the FLR1 gene.

The parameter estimation algorithm used in this work re-
quires the computation of the derivatives of the experimental
time series. Because of the limited number of experimental
data points and of noise in the corresponding measurements,
an accurate estimate for these derivatives requires the data
to be smoothed. Thus, cubic smoothing splines [1] were
constructed for every experimental time series using function
csaps of the MATLAB Spline Toolbox. The smoothing
spline f = csaps(x,y,p) minimizes

p

n∑
j=1

w(j)|y(:, j)− f(x(j))|2 + (1− p)
∫
λ(t)|D2f(t)|2dt

(2)
The first term in (2) is called the error measure, and the

second term the roughness measure. Parameter p is called the
smoothness parameter as it determines the relative weight
of the two contradictory demands of having f be smooth
and simultaneously be close to the data. For p = 0, f will
be the least-squares straight line fit to the data, while for
p = 1, it will be the datas natural cubic spline interpolant.
Parameter w in the error measure is a vector of weights,
and parameter λ in the roughness measure is a piecewise
constant weight function, which allows one to force f to be
smoother (by making the weight function larger) or, on the
contrary, closer to the data (by making the weight functions
smaller), in some parts of the spline interval than in others.

In the present case, x is the vector of measurement instants
and y is the vector of transcript levels of a given gene, in a
given data set. Parameter w was set to be a vector of ones the
same size as x, since early experiments, in which it was set
to be the inverse of the measurements variance (computed,
when available, from 3 independent measurements), yielded
poor results. Parameters p and λ were chosen, for each time
series, by trial and error. In the case of parameter p, the
values typically used were 0.8 or 0.97 but values as low
as 0.3 and 0.5 were found to be more adequate in some
instances. As for parameter λ, its value also varied, but,
in general, more roughness was allowed at the initial time
points, where the transient response occurs (smaller λ for
those points).

The splines were evaluated at 67 equally spaced time
points, and their derivatives were obtained at the same time
points. Figure 1 shows the plots of the experimental and
splined time series of the five aforementioned genes, in the
wt data set. Figure 2 shows the corresponding derivatives.
The same data is shown in Figure 3 and Figure 4, respec-
tively, for the ∆yap1 data set.
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splined data
experimental data

Figure 1. Experimental time series (red circles) of the transcript levels
of FLR1, YAP1, PDR3, RPN4 and YRR1 in the wild-type strain of S.
cerevisiae (wt data set). The blue lines are cubic smoothing splines.
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Figure 2. Time series of the transcript levels derivatives of genes FLR1,
YAP1, PDR3, RPN4 and YRR1 in the wt data set, as obtained from the
splines used to smooth the time series, at 67 equally spaced time points.
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splined data
experimental data

Figure 3. Experimental time series (red circles) of the transcript levels of
FLR1, YAP1, PDR3, RPN4 and YRR1 in the YAP1 deletion mutant of S.
cerevisiae (∆yap1 data set). The blue lines are cubic smoothing splines.
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Figure 4. Time series of the transcript levels derivatives of genes FLR1,
YAP1, PDR3, RPN4 and YRR1 in the ∆yap1 data set, as obtained from
the splines used to smooth the time series, at 67 equally spaced time points.



The obtained results were good for the wt data set (Figure
1), but of inferior quality for the ∆yap1 data set (Figure 3).
Indeed, the amount of noise seemed to be greater in the
latter, and, had more points been sampled, data smoothing
would probably have yielded a constant function for every
time series. This problem also arose in a considerable portion
of the time series in the other three data sets, leading to the
conclusion that the few available measurements were not
informative enough to build reliable splines.

As an alternative to cubic smoothing splines, the auto-
mated smoother described in [8] was also applied to the data,
but, despite its handling of nonstationary noise structures,
the results were not satisfactory. The limited success of
this smoothing method may have been due to the limited
number of experimental points available and, perhaps more
importantly, to the fact that the experimental points were not
equally spaced.

IV. MODELING AND PARAMETER ESTIMATION

As stated earlier, the mathematical modeling of the FLR1
regulatory network was based on the S-System formalism,
with the state variables being the transcript levels of its
five interacting genes: X1=FLR1, X2=YAP1, X3=PDR3,
X4=RPN4, and X5=YRR1.

Parameter estimation was based on the decoupling of
the resulting system of ordinary differential equations, and
the sets of admissible parameters were estimated using
the method described in [10]. The computational imple-
mentation used was made freely available by the au-
thors in the form of a set of MATLAB scripts. The
main script is EO_mainf and its syntax is result =
EO_mainf(X,S,p) with X being the experimental time
series, S its corresponding estimated slopes, and p a struc-
ture of optional parameters provided to the algorithm. X
and S are thus matrices with a number of rows equal to the
number of (splined) time points, and a number of columns
equal to the number of network components. Eight distinct
settings were considered for parameter estimation, varying
both in the data sets used, and in the topological constraints
applied to the network. For each of these eight settings, the
algorithm was run 100 times, with differing initial conditions
(as explained at the end of this section). In terms of the data
used, two alternatives were explored:

1) using all five data sets, resulting in 335-by-5 X and S
matrices (675=335 splined data points for each gene);

2) using only the wt data set, resulting in 67-by-5 X and
S matrices (67 splined data points for each gene).

As for the constraints applied to the network, four settings
were tested, by imposing zero-valued entries in the kinetic
orders matrices g and h. In practice, this was done by
inputting the fields p.G and p.H of structure p as matrices
of ones and zeros, according to whether or not a given
gene was allowed to affect another genes production and
degradation rate. The constraints imposed were based on

the (positive or activation-type) interactions specified in the
putative network proposed in [6], of which a simplified
version is reproduced in Figure 5. Because there was no
information regarding negative interactions among the genes,
the constraints imposed on p.H simply reflect the fact that
the rate of degradation of each gene should depend solely on
its own concentration level and not on any other components.

Figure 5. Putative FLR1 regulatory network proposed in [6]. The black
arrows represent the activation effect that a given gene has on the level of
expression of another (up-regulation only).

The four tested settings were:
1) A fully unconstrained network, where each gene is

allowed to have an effect on every other genes pro-
duction and degradation terms, i.e. for which

p.G = p.H =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 (3)

2) A fully constrained network, where the effect of a
given gene on another genes production term was
determined by the putative network proposed in [6]
(with an additional dependence of the production
rate of a gene on its own expression level), and its
degradation term was made to depend only on its own
level of expression, i.e. for which

p.G =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

+


0 1 1 0 1
0 0 0 1 0
0 0 0 0 1
0 1 0 0 1
0 1 1 0 0

+


1 1 1 0 1
0 1 0 1 0
0 0 1 0 1
0 1 0 1 1
0 1 1 0 1


(4)

p.H =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (5)

3) a network with constraints on the production term but
not on the degradation term, i.e. for which p.G is as
defined in (4) and p.H is as defined in (3);



4) a network with constraints on the degradation term but
not on the production term, i.e. for which p.G is as
defined in (3) and p.H is as defined in (5).

The remaining fields of structure p for which the default
values were not used were p.iter, p.ubB and p.int. Pa-
rameter p.iter (which is the number of iterations for the
optimization algorithm and whose default value is 300) was
set to 500; parameter p.ubB (which is the upper boundary
value of the constant rates β and whose default value is
300) was set to 100; and parameter p.int (which is a positive
scalar used to calculate the initial values for the optimization
algorithm and whose default value is 1) was made to vary
between different runs of the algorithm. If k was the run
index, then p.int was set to k/5.

V. RESULTS

Two criteria were defined for evaluating the performance
of the parameter estimation algorithm in each of the 8
settings tested. The first criterion, C1, was the lowest cost
function value achieved for each setting in the 100 runs
of the algorithm, and the second criterion, C2, was the
percentage of runs reaching a cost function value below a
certain threshold (which was set to 1000). The results of this
evaluation are shown in Table I.

Table I
CRITERIA C1 AND C2 FOR EACH SETTING

Setting Datasets used Constraints C1 C2
1 all none - 0
2 all on g and h - 0
3 all on g - 0
4 all on h - 0
5 wt none 108.82 60
6 wt on g and h 945.92 100
7 wt on g 141.60 100
8 wt on h 310.71 99

According to these criteria, the worst overall settings were
those for which all five data sets were used to estimate
the parameters. This may be explained by the fact the poor
dynamic variability exhibited by the slopes of a large portion
of the time series in the non-wild-type data sets. Specifically,
in each of the four sets referring to deletion mutants,
∆yap1, ∆pdr3, ∆rpn4 and ∆yrr1, the time series of the
corresponding gene is constant. As the authors of the method
point out [9], this may lead the algorithm to produce spurious
results, due to numerical problems with the inversion of an
ill-conditioned matrix. Within settings 5 to 8 (for which only
the wt data set was used for parameter estimation) the best
results were achieved when no constraints were imposed
on the topology of the network (setting 5), while the worst
results were obtained for the fully constrained topology.

Further analysis of the optimization results focused on
the agreement of the predictions of the integrated version
of (1) with the experimental data. Thus, defining the error
(in the model) as the sum of squared residuals between the

Table II
CRITERION C3 FOR EACH SETTING AND DATASET

Setting wt ∆yap1 ∆pdr3 ∆rpn4 ∆yrr1
1 1270.7 18.189 691.24 832.84 102.69
2 14643 18.189 691.24 832.84 102.69
3 Inf 18.189 Inf 832.84 102.69
4 1450.2 18.189 691.24 832.84 102.69
5 727.36 18.189 691.24 832.84 102.69
6 11050 18.189 691.24 832.84 102.69
7 1018.3 18.189 691.24 832.84 102.69
8 215.70 18.189 691.24 832.84 102.69

predictions of the integrated system (1) and the experimental
data, two additional criteria for the evaluation of the results
were devised: criterion C3, corresponding to the lowest error
achieved for each setting in the 100 runs of the algorithm;
and criterion C4, corresponding to the percentage of runs
achieving an error below a certain threshold (which was set
to 5000).

The predictions of the 100 models in each setting were
obtained for the five time series in each data set, via numer-
ical integration of the system, with the five corresponding
initial conditions in each data set. The numerical integration
of the system was performed with the simple Euler method,
since the stiff solvers available in MATLAB (ode15s and
ode23s) could not successfully handle it. Time steps of 1/60
h were used, and a safeguard for the prediction of negative
values (as well as numerical errors resulting in infinite and
NaN values) was applied: if such values were predicted, they
were changed into the value at the previous time step. Table
II below shows the value of evaluation criterion C3 for each
setting and data set.

Because these are absolute values, one cannot compare the
errors among data sets (that is, the columns of Table II are
not comparable). Nonetheless, a striking result is that the
same lowest error was obtained for nearly all the settings
in each data set referring to a deletion mutant (the only
exception was the ∆yap1 data set, for which the lowest error
achieved in setting 3 was exceedingly large). In fact, the best
prediction in settings 1 to 8 was equivalent for every one
of these deletion mutant data sets, yielding, for each gene,
transcript levels that were constant in time and equal to their
corresponding initial level.

Regarding the predictions for the wt data set, poor results
were once again obtained for the settings imposing a fully
constrained network topology (settings 2 and 6), but it
was setting 3, referring to a production-term-constrained
network whose parameters were estimated using all data
sets, that yielded the worst results (with an infinite value
being returned for the error). The best results were obtained
for settings 8 and 5, referring, respectively, to a degradation-
term-constrained network (constrained matrix h) and a to-
tally unconstrained one.

Table III shows the value of evaluation criterion C4
(percentage of runs reaching an error below 5000), for each



Table III
CRITERION C4 FOR EACH SETTING AND DATASET (IN PARENTHESIS IS

THE PERCENTAGE OF RUNS SATISFYING BOTH C2 AND C4

Setting wt ∆yap1 ∆pdr3 ∆rpn4 ∆yrr1
1 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)
2 0 (0) 100 (0) 100 (0) 100 (0) 100 (0)
3 0 (0) 100 (0) 0 (0) 100 (0) 100 (0)
4 68 (0) 100 (0) 100 (0) 100 (0) 100 (0)
5 71 (51) 100 (60) 100 (60) 100 (60) 100 (60)
6 0 (0) 100 (100) 100 (100) 100 (100) 100 (100)
7 20 (20) 100 (100) 100 (100) 100 (100) 100 (100)
8 64 (64) 100 (99) 100 (99) 100 (99) 100 (99)

setting and data set.
Although a great percentage of runs pertaining to settings

1-4 satisfy criterion C4, none satisfy both C2 (referring to the
error in the derivatives) and C4. On the contrary, in settings 5
to 8, there is always at least one run satisfying both criteria,
with the exception of setting 6 (fully constrained network),
when trying to predict the values of the wt data set. The
graphical depictions of some of the predictions obtained for
these models are analyzed next. Figure 6 below shows the
time courses predicted for the wt data set by the models
satisfying C2 and C4 in setting 5.

The time courses in Figure 6 show that several parameter
sets resulted in atypically constant predictions in the final
period of the experiment. Although it was at first suspected
that this was simply the result of the safeguards introduced
in the numerical integration routine, it was found that the
same predictions arose when no safeguards were used. An
alternative explanation is that due to the larger number of pa-
rameters that had to be estimated for this fully unconstrained
network, as well as to the fact that some of the time series
are approximately collinear (e.g. PDR3 and YRR1) and have
constant slopes at the end of the experiment, the algorithms
convergence was misled and a sub-optimum parameter set
was obtained.

Figure 7 shows the time courses predicted for the wt data
set by the models satisfying C2 and C4 in setting 8.

For this setting, the parameter sets satisfying C2 and
C4 do not result in time courses with constant final tails
higher than the experimental ones (as was the case with
setting 5), but instead, one of two distinct dynamic behavior
clusters obtained does show a very quick rise at the final
time instants, for nearly every gene. Also, the time courses
predicted for each gene are, in general, more consistent than
those obtained by the models in setting 5.

Despite the limitations of the results obtained, one is lead
to conclude that setting 8 provides the most reliable results,
that reproduce, at least partially, the behavior of the time
series. Assuming that the S-systems formalist can be used
to model this system, this leads to the conclusion that the
putative model for this network [6] is not accurate enough,
and leaves out either existing interactions between genes, or
genes that are important to the dynamics of the system.
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Figure 6. Predicted time courses of the best runs from setting 5 for the
initial conditions in the wt data set.

VI. CONCLUSIONS

The described work has shown that significant further
modeling work needs to be done on this network to obtain
a model that accurately and reliably matches experimental
data. It has also shown significant limitations of the available
experimental data that describes, however, the most compre-
hensive experiments performed with this network. The fact
that using all the available data to train the network did not
lead to better results may be related with the fact that, on
the mutants, the time course for the missing genes transcript
level was always zero. Moreover, when the presence of this
gene is required for the expression of other genes in the
network (e.g. YAP1 is required for FLR1 expression), this
means that the time course for those genes will also be
zero throughout the whole experiment, a fact that makes it
difficult for the parameter estimation algorithms to estimate
the right parameters.

Further modeling efforts, in the context of the continuous-
time S-system formalism, should therefore depend on ob-
taining a larger and more diverse set of experimental data
and on considering more general models that include either
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Figure 7. Predicted time courses of the best runs from setting 8 for the
initial conditions in the wt data set.

more genes or more connections. Alternatively, discrete
modeling of the network should perhaps be attempted with
the present data [4], [3], [7].
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