Towards a simple programming model in Cloud
Computing platforms

Jorge Martins, Jodo Pereira, Sérgio M. Fernandes, Jodo Cachopo
IST / INESC-ID
{jorge.martins,joao.d.pereira,sergio.fernandes,joao.cachopo } @ist.utl.pt

Abstract—Cloud Computing offers application devel-
opers an abstract view of computational resources that
can be provisioned on demand over a computer network.
This model allows organizations to concentrate on the
applications needed to support their core business, instead
of having to manage the infrastructure required to run
those applications.

Yet, even though this approach promises very com-
pelling benefits, there is still a lack of programming models
capable of bringing the power of parallel programming
into the hands of ordinary programmers.

In this paper we tackle this problem by proposing the
use of the Fénix Framework as the means of exposing a
simple and intuitive programming model for the cloud,
while still attaining scalability on par with other Cloud
Computing platforms. We claim that may be achieved
by integrating the Fénix Framework into the Cloud-TM
platform, which is being developed as a self-optimized
middleware platform aimed at simplifying the development
and administration of applications deployed on Cloud
Computing infrastructures.

We validate our claims by describing an initial
prototype that provides a simple integration of the
Fénix Framework with the persistence tier of Cloud-TM in
such a way that it allowed us to run a previously developed
benchmark application without changing any of its code
to adapt it to the cloud platform.

Index Terms—Software Transactional Memory, Persis-
tence, Transactions, Object-Oriented Programming, Rich-
Domain Applications, Fénix Framework, Cloud Comput-
ing

I. INTRODUCTION

Over the last decade an increasing number of
enterprise applications have been developed to sup-
port the organizations’ processes. These applica-
tions typically follow a 3-tiered architecture where
the clients make requests to an application server,
which, in turn, interacts with a database server.
Clients provide the user interface. The application
server is responsible for executing business logic

and interfacing with the clients. The database server
is responsible for the data persistence and ensuring
transactional access to it.

This investment on software is usually associated
with the corresponding investment in hardware in-
frastructure to run it efficiently. Simply maintaining
and managing all the required hardware and soft-
ware stack is costly. Furthermore, many of these
applications have usage peaks that must be taken
into consideration when provisioning for them, but
this leads to servers being idle most of the time.

This situation led to the idea of providing hard-
ware infrastructure at a fraction of the cost of
owning (and managing) it, and with the possibility
to scale up or down the resources allocated based
on demand. This is the main idea behind Cloud
Computing, and clients may rip huge benefits from
this approach. There are several definitions of Cloud
Computing. The most consensual is the one defined
by National Institute of Standards and Technology
(NIST) [1]:

A model for enabling convenient, on-
demand network access to a shared pool
of configurable computing resources (e.g.,
networks, servers, storage, applications,
and services) that can be rapidly provi-
sioned and released with minimal man-
agement effort or service provider inter-
action.

Cloud Computing seems to be poised to represent
a major paradigm shift in how applications are
developed and made available to users. This model
allows organizations to concentrate on the applica-
tions needed to support their core business, instead
of having to manage the infrastructure required to
run the applications. Although this approach brings
evident benefits to its adopters, most cloud platform

vendors provide their own specific set of services,
usually with a proprietary API and set of develop-
ment tools designed to take the most advantage of
the cloud platform’s qualities.

Cloud platform providers make design decisions
taking into account the level of service they aim
to provide, the platform’s stability, and application
scalability and availability. These decisions have
direct consequences on the programming model that
these platforms provide to developers, often impos-
ing additional restrictions and diverging from the
typical enterprise application programming model.
Even a proficient enterprise application program-
mer, when developing cloud-based applications, will
need to adjust to the different programming model
provided by a given cloud platform. Moreover, once
the application is developed for a specific cloud
platform, deploying it in another cloud platform
typically involves rewriting most of the application,
and most likely adjusting to a new programming
model.

Our proposal is to provide cloud-based
application developers with a programming
model/framework closer to the typical enterprise
application programming model. This approach
builds on previous work on the development of the
Fénix Framework [2] and is one of the enabling
technologies of the Cloud-TM [3] middleware
platform, which aims to simplify the development
of services in Cloud Computing platforms, while
minimizing administration costs and maximizing
scalability and efficiency.

The remainder of this paper is organized as
follows. In Section II, we describe some of the main
cloud platforms and the challenges they pose to
the typical enterprise application developer. Then, in
Section IV, we present the Cloud-TM middleware
platform. Next, in Section III, we introduce the
Fénix Framework and its benefits for developers.
In Section V, we provide insight on extending the
Fénix Framework towards a cloud platform, while
maintaining its programming model. Finally, we
conclude in Section VI.

II. RELATED WORK

Given the multitude of cloud platform providers,
in this section we shall examine only some of

the main players in the field: Google AppEngine,
Amazon Web Services, and Microsoft Azure.

Concerns such as application scalability have
driven the design of cloud platforms and their
storage solutions, both directly influencing how a
programmer develops applications.

Google App Engine (GAE) is Google’s offering
in the Platform-as-a-Service (PaaS) realm. It is a
software platform for developing and hosting web
applications in Google’s infrastructure!, which pro-
vides dynamic web serving, along with automatic
scaling and load-balancing.

To achieve high scalability, GAE can run mul-
tiple replicas of the same application on different
Application servers. This way it is simple to scale
up or down an application automatically, based
on its usage, simply by adjusting the number of
Application servers running it. This approach is
possible because all requests are load-balanced and
forwarded to Frontends that are responsible for
routing the requests to available Application servers.

Persistence is attained through the use of the
datastore. The datastore is a schemaless object
database, including its own query engine and sup-
port for transactions. Each data object in the datas-
tore is known as an entity. Objects in the datastore
are organized into entity groups. Datastore trans-
actions can manipulate objects only of the same
entity group, providing Serializable isolation level
inside transactions. GAE’s datastore ability to scale
comes from the possibility of assigning different
entity groups to different network nodes.

It is the programmer’s responsibility to decide
which objects go into which entity group. This
decision becomes quickly overwhelming in the con-
text of an enterprise application with a rich domain
model, and large complex object graphs. The naive
solution is to place all objects in the same entity
group, but it does not scale: all datastore accesses
would be performed on the same node. Any other
approach requires the programmer to decouple, in a
sensible way, what is a tightly coupled object graph.

Recently, Google introduced the possibility to
perform cross-group transactions, although limited
to five entity groups and incurring in performance
penalties. This possibility could help reduce the

"http://code.google.com/appengine

effect of any decision regarding breaking the object
graph into entity groups.

Amazon pioneered the cloud offerings and has
since provided a multitude of services that add up
to the Amazon Web Services (AWS).?

Amazon Elastic Beanstalk takes advantage of
Amazon’s Elastic Compute Cloud (EC2) coupled
with Elastic Load Balancing and Auto Scaling ser-
vices to provide a scalable Java-based cloud plat-
form. The programmer can specify how an applica-
tion should scale given usage patterns, schedules, or
other criteria. As with Google’s approach, multiple
replicas of the same application will run on differ-
ent EC2 instances, with traffic being redirected to
different ones by the load balancer.

A scalable, high-availability database is provided
by the SimpleDB service. SimpleDB is a schemaless
object database, including its own query engine
and automatic indexing facilities. Each data object
in SimpleDB is known as an item and is repli-
cated automatically in multiple different geographic
locations. Items in SimpleDB are organized into
domains. To be able to scale up its application, the
developer also needs to partition the application data
and requests into multiple domains. Transactional
support is limited to accesses to a single item. For
enterprise applications with rich domain models,
where a single business operation may read, create
or modify multiple objects, SimpleDB does not pro-
vide any guarantees regarding the whole operation.

Microsoft has developed Windows Azure Plat-
form® as its own Cloud offering. With Azure, Mi-
crosoft provides a set of developer services that
allow building and hosting applications on Mi-
crosoft’s infrastructure.

Applications are built from one or more roles,
a formalization of the logical partition of an ap-
plication. Windows Azure provides three types of
roles: web roles, which are intended for logic that
interacts with the outside world via HTTP and IIS;
worker roles, whose interactions with the outside
world are not limited to HTTP and may be used to
perform complex tasks; and VM roles, which allow
organizations to pre-configure Windows 2008 R2
server images and deploy them to run on the cloud.

Zhttp://aws.amazon.com
3http://www.microsoft.com/windowsazure

The Windows Azure programming model stipu-
lates that an application is built from one or more
roles, that it runs more than one instance of each
role, and that it behaves correctly in case of an
instance failure. These rules guarantee that admin-
istration tasks and operational hazards are not dis-
ruptive to the application (OS patches, application
upgrades or hardware failures will likely affect the
application performance, but not its availability) and
that applications benefit from on-demand scalability
(through a web portal, configuration, or specific
API).

Windows Azure provides storage services de-
signed to handle very large data sets: tables to store
structured data sets using a non-relational approach,
and blobs for binary data. Every table/blob is auto-
matically replicated three times, in distinct physical
machines.

The Table storage is a schemaless object database,
including its own query engine and support for
transactions. Each data object in the table storage
is known as an entity. Entities are organized into
tables that may be partitioned across multiple stor-
age nodes. Transactions may manipulate entities
only within the same table and the same partition.
Additionally, an entity may appear only once within
a transaction, and only one operation may be per-
formed against it. Furthermore, read operations must
not be mixed with write operations. Partitioning is
controlled by the programmer through a Partition-
Key assigned to each object. Similarly to GAE’s
datastore, this policy places the responsibility of cor-
rectly splitting a large and complex domain object
graph into partitions for scalability. Furthermore, the
limitation on read/write operation mixing within a
transaction imposes additional restrictions on how
complex business logic can be implemented.

III. FENIX FRAMEWORK

The Fénix Framework* [2] has matured in the
context of the FénixEDU project with the goal
of simplifying the development of Java enterprise
applications. The core idea is to shift responsibility
for transactional control from the persistence tier
to the application server tier. Persistence is still
provided by the persistence tier.

*http://fenix-ashes.ist.utl.pt/trac/fenix-framework

The Fénix Framework uses the JVSTM [4] to
provide transactional control and integrates it with
a relational database system. The JVSTM is a
multi-versioned Software Transactional Memory
(STM) [5] that provides in-memory transactional
support right in the application server tier. JVSTM
guarantees strict serializability for all committed
transactions, while providing efficient reads and
ensuring that read operations never conflict.

Transaction support requires transaction-aware
domain objects. To this purpose, JVSTM provides
a domain-specific language [6] that can be used to
describe the structural aspects of an application’s
domain model—the Domain Modeling Language
(DML) [4], [7]. The DML uses a Java-like syntax
to describe entities in terms of their attributes, and
relationships between entities. A developer using the
Fénix Framework would use the DML to describe
the application’s domain model and use the DML
compiler to generate the source code that imple-
ments the structural aspects of domain classes in
a transaction-safe way; the developer would then
extend these classes with behavior using plain Java.

To load persistent objects, the Fénix Framework
queries the database, performing transparent map-
ping from the underlying relational model to the
domain model specified through the DML. When
persisting objects, the Fénix Framework extends the
JVSTM commit operation to persist changes to
the database, again performing transparent mapping
from the domain model to the relational model.

The Fénix Framework provides a domain object
cache to reduce the performance penalty of ac-
cessing the database. An object request is always
checked first against the cache, and only if not found
there will it be loaded from the database (and stored
in the cache for future lookups). This cache stores
domain objects for as long as possible, and given
that domain objects are transaction-safe, they exhibit
the useful property of having their own identity:
There will be at most one instance in memory of
any persistent object, regardless of the number of
concurrently running transactions.

IV. CLouDTM

The Cloud-TM platform is a middleware that
is being developed for service implementation in

Distributed
Execution
Framework

Object Grid

Mapper

Data Platform Programming APIs
Search API

Jaziwndo

o
g
&
-
z
5
g
3

Reconfigurable Distributed
Software Transactional Memory

HYOLINOW SOD 8 QVOTHYOM
YIZAIWNY QVOIIHOM
YIOVNVIA NOILVLdVAY

JaSeuepy
Buyjess onse|3

esource

provisioning /
SLA negotiation

Cloud-TM architecture

Figure 1.

Cloud Computing infrastructures, and it includes the
following goals [8]:

o To offer a simple and intuitive programming
model for the implementation of services in
Cloud Computing platforms. In particular, by
relieving developers of the burden of dealing
with low-level mechanisms such as distribu-
tion, persistence, and fault-tolerance; instead
allowing them to concentrate on delivering
added business value.

o To minimize operational costs by automating
provisioning of resources from the underlying
Cloud platforms while guaranteeing a user-
specified Quality-of-Service.

« To maximize scalability and efficiency of pro-
vided services through self-tuning capabilities
that can deal with fluctuations both in allocated
resources and workload.

Figure 1 provides an overview of the proposed
architecture for Cloud-TM[9]. It encompasses two
main blocks: a Data Platform and an Autonomic
Manager.

The Data Platform is responsible for retrieving,
manipulating, and storing data across a dynamic
set of distributed nodes that are elastically acquired
from one or more underlying Infrastructure-as-a-
Service (IaaS) Cloud providers. It will expose a set
of APIs, denoted as Data Platform Programming
APIs in Figure 1, aimed at increasing the produc-

tivity of Cloud programmers in two ways:

« By allowing ordinary programmers to
read/write data from/to the Data Platform
using the familiar abstractions provided by the
object-oriented paradigm, such as inheritance,
polymorphism, associations.

o By allowing ordinary programmers to take
full advantage of the processing power of the
Cloud-TM platform via a set of abstractions
that will hide the complexity associated with
parallel/distributed programming, such as load
balancing, thread synchronization, scheduling,
or fault-tolerance.

The main component of the Data Platform, is a
highly scalable, elastic and dynamically Reconfig-
urable Distributed Software Transactional Memory
(RDSTM). Red Hat’s Infinispan is being used as a
starting point for developing this essential compo-
nent of the Cloud-TM platform.

Infinispan is a recent in-memory transactional
data grid designed from the ground up to be ex-
tremely scalable. Infinispan is being extended with
new algorithms both for data replication and dis-
tribution, and real-time self-tuning schemes aimed
at guaranteeing optimal performance even in highly
dynamic Cloud environments.

The lowest level of the Data Platform provides
abstractions that allow state to be persisted over a
wide range of heterogeneous durable storage sys-
tems, from local/distributed filesystems to Cloud
storages.

The Autonomic Manager is the component in
charge of automating the elastic scaling of the
Data Platform, as well as of orchestrating the self-
optimizing strategies that will dynamically recon-
figure the data distribution and replication mecha-
nisms to maximize efficiency in scenarios entailing
dynamic workload.

Its topmost layer will expose an API allowing the
specification and negotiation of QoS requirements
and budget constraints. The Autonomic Manager
will collect information not only about heteroge-
neous system-level resources (such as CPU, mem-
ory, network and disk), but will also characterize
the workload of each of the components of the Data
Platform and their efficiency.

This information is then processed by the Work-
load Analyzer, which will then inform the Adap-

tation Manger. Finally, the Adaptation Manager is
responsible for self-tuning the various components
of the Data Platform and control the dynamic auto-
scaling mechanism with the ultimate goal of meet-
ing QoS/cost constraints.

The above description of the qualities desired for
the Data Platform Programming APIs makes the
Fénix Framework the perfect candidate to imple-
ment it. It provides programmers with a language
that has a familiar syntax to describe a rich domain
model; and a minimalistic API that provides the sin-
gle new notion of atomic operation (or transaction),
making it easier to reason about parallel programs.

Integration of the Fénix Framework with the re-
mainder of the Cloud-TM platform needs to occur at
two distinct levels: changing the Fénix Framework
implementation to rely on Infinispan as the per-
sistence tier; additionally building a new DML
compiler that generates code that takes into account
the specificities of the platform, such as providing
monitoring information to the Workload Monitor or
providing different data layouts to adjust to different
memory and concurrency requirements.

This way, developing an application using the
Cloud-TM platform would be similar to de-
velop a standalone enterprise application using the
Fénix Framework, but would take advantage of
the platform’s elasticity and self-tuning character-
istics with little to no extra effort. Contrary to
any of the platforms described in Section II, the
Fénix Framework imposes no restrictions on what
domain objects can participate in a transaction, as
long as they have been defined in DML, and it
provides stronger isolation level to business oper-
ations (strict serializability). In addition, the self-
tuning characteristics of Cloud-TM can be used to
increase often-related data locality, thus increasing
scalability in an autonomic way, with no program-
mer intervention or explicit data partitioning.

V. VALIDATION

The Fénix Framework described in [2] uses a
relational database system to store the state of the
application persistently. The Fénix Framework pro-
vides a strictly serializable semantics to the appli-
cations’ business transactions. This semantics relies
on the STM used by Fénix Framework. The commit
operation of transactions had to be extended to store

persistently the changes made by a transaction that
can commit because, usually, STMs do not handle
persistence of data. With this extension, once the
committing transaction has been validated by the
STM, the changes made in the context of this trans-
action are stored in the relational database system.
If by some unexpected reason an error happens in
the process of writing the changes to the relational
database system then the committing transaction is
aborted. Otherwise, we can commit the transaction
and make visible its effects in main memory.

To validate our claims, we made a simple imple-
mentation of the Fénix Framework where we use In-
finispan as our persistence tier instead of a relational
database system. To keep this initial implementation
simple, we assume that there is a single instance of
the application server running. This way, we did not
need to implement a mechanism to synchronize the
transactions running in different application servers.
There has been, however, a previous effort with
another Fénix Framework implementation (D2STM
[10]) that can work in a distributed environment.
Future implementations of the Fénix Framework
using Infinispan will integrate that work to allow
multiple instances of the application server to de-
tect conflicts between them. The changes made in
Fénix Framework to use Infinispan are described as
follows.

To reduce the number of accesses to the per-
sistence tier, the Fénix Framework uses a domain
object cache, which keeps the domain objects in
memory as long as possible. This cache is shared
by all threads of the application server. One of the
goals of the Fénix Framework was that read-only
transactions should access the persistence tier only
when the desired version of a domain object is
not available in memory, which should not happen
often if most of the application’s data fit in main
memory. Thus, once loaded into main memory,
the versions of a domain object should remain in
main memory until they are no longer needed by
currently executing (or future) transactions or the
Java garbage collector needs space that it cannot
find in any other way. In the last case, the versions
of the domain objects that are not being used in any
running transaction may be removed from the cache

by the garbage collector’. Due to this reason, the
Java garbage collector may remove a version of a
domain object from the cache that may be necessary
for a current transaction. This way, it is not enough
to just store the last version of each domain object
since each transaction needs to access a consistent
view of the world (the whole set of application do-
main objects) to support the serializability property
of transactions and it may have to access a version
other than the last version of a domain object. The
Fénix Framework described in [2] relies on how the
specific underlying relational database implements
its transactions to guarantee this property. Our so-
lution to cope with this problem was to store all
versions of each domain object in Infinispan.

The advantage of storing all versions of each
domain object is that we can run a read-only trans-
action somewhere in the past and view the state of
the system at that point in time. This can be useful
for auditing purposes. However, with this approach
we have an unbounded growth of the storage space
required for storing all versions of each domain
object. If this becomes an issue, we can remove
the versions of domain objects that are no longer
needed from the persistence storage.

The Fénix Framework keeps a set of versions for
each accessed domain object in main memory. To
limit the amount of memory needed to store all
these versions, there is an algorithm that removes all
versions that are no longer needed, taking into ac-
count the set of running transactions. This algorithm
is executed asynchronously whenever a transaction
finishes. We can adapt this algorithm to also delete
the removed versions from the persistence storage.

Infinispan offers a cache interface to store
key/value pairs. In Fénix Framework, each do-
main object has a unique object identifier (OID)
and it may have several versions (recall that
Fénix Framework uses a multi-version STM) and
we need to have a way of storing an object and
all of its versions using the cache interface. To
do this, each version of a domain object is stored
as an entry in the cache having the pair (OID of
the domain object, current version number) as the
key and the triple (current version number, previous

5In our current implementation, we rely on Java’s SoftReferences
for this behavior.

version number, serialization of domain object) as
the value. Each version of a domain object stored as
an entry in a Infinispan cache has the information
needed to compute the key of the previous version.
This key is equal to the OID of the domain object
plus the previous version number stored in the value
of the entry. We also have an extra entry in the
cache per object that holds the most recent version
of the object. The key of this entry is just the OID
of the object and its value has the same format as
for the other entries. This entry, designated as the
root entry, gives us the entry point for looking up in
Infinispan the correct version of a domain object for
a given transaction, i.e., the version with the highest
version number that is smaller than the version
number associated with the transaction. When it is
necessary to get from Infinispan the correct version
of a domain object for a given transaction, we just
need to traverse the list of entries associated with
this domain object until we find an entry whose
value has a current version number smaller than
the version of the transaction. The first element
of this list is the root entry associated with the
domain object. Finally, we write the changes of a
committed transaction in Infinispan in the context
of an Infinispan transaction. This way, we can
assure that the process of storing the changes in
the persistence tier is atomic (as desired), i.e., all
changes are written in the persistent tier or none is
made.

With this proof-of-concept implementation of the
the Fénix Framework we were able to run an
existing benchmark (more specifically, the TPC-W
benchmark [11]) without having to change any of
the benchmark’s code.

The tests were performed running a single ap-
plication server in a machine with a NUMA ar-
chitecture, built from four AMD Opteron 6168
processors. Each processor contains 12 cores, thus
totaling 48 cores. The system had 128GB of RAM,
more than enough to keep data from all processes
(clients, application server and Infinispan) loaded
in main memory. We tested using Java 6 with
HotSpot(TM) 64-Bit Server VM (19.1-b02). The
application server was installed as a web application
on Apache Tomcat 6. We populated the database

5000

4500 B

4000 —

3500 -

3000 =

2500 =

2000 i

Web Interactions Per Second

1500 -

1000 -

500 |- ///\/\' 4
! ! ! !

2 4 6 8 10
Number of clients

Read-only mix —s— Browsing mix —— Shopping mix —%—

Figure 2. Throughput for a single application server, varying the
number of concurrent clients.

with 1,000 books and 28,800 clients,® and tested the
application with the number of concurrent clients
ranging from 1 to 10.

Figure 2 shows that the Infinispan-version of the
Fénix Framework scales with the number of clients
for the Read-only mix scenario but that does not
happen for the other two scenarios, specially for the
Shopping-mix scenario where the measured WIPS
remains almost constant for a number of clients
greater than 2. This is due to the fact that the STM
used by the Fénix Framework uses a global lock
for committing successful transactions. The cost in
time to write to Infinispan the objects modified
by a transaction is high. Since this writing only
happens during the commit process of a successful
transaction this means that the time to execute a
transaction is dominated by the time to commit the
transaction. Therefore, when we have several con-
current transactions that modify the system most of
the time they are waiting that some other transaction
finishes its commit. This problem does not happen
in the Read-only mix scenario since in this case the
transactions do not modify the state of the system.
There has been ongoing work on the JVSTM to
make it lock free [12]. In the future we expect to
incorporate this updated version of the JVSTM on
our implementation of the Fénix Framework.

SAccording to the TPC-W specification, the database must be
populated with 2880 X ¢ clients in order to use up to ¢ concurrent
clients.

VI. CONCLUSION

In this paper we proposed the simple program-
ming model provided by the Fénix Framework as
a foundation for a programming model for the new
generation of enterprise applications being devel-
oped to run in the cloud.

We briefly described the work that we have been
doing in the Cloud-TM platform to integrate our
previous work on the Fénix Framework into the
remainder of the Cloud-TM platform. Specifically,
how to change the Fénix Framework so that it tar-
gets Infinispan as the underlying persistence layer.

We have succeed in doing this while maintaining
the same API of the Fénix Framework, thereby
allowing us to run the TPC-W benchmark on top
of the Infinispan-version of the Fénix Framework
without having to change any of the benchmark’s
code.

Even though our work is still an initial prototype,
it shows already some very promising results that
we believe will help address some of the current
challenges that the community is facing:

o How to offer a simple and intuitive program-
ming model for the implementation of applica-
tions deployed in Cloud Platforms?

« How to minimize operational costs by automat-
ing resource provisioning from one or more
Cloud providers, while meeting user-specified
Quality of Service?

« How to maximize scalability and efficiency of
applications through self-optimizing capabili-
ties that are able to deal with workload and
resource allocation fluctuations?

We argue that the Fénix Framework already pro-
vides the required qualities (in a typical enterprise
application environment) to address the first chal-
lenge, and that integrating it as Cloud-TM’s Object
Grid Mapper can bring all of the qualities to Cloud-
based applications.

Finally, we expect to rely on work still in progress
in the Autonomic Manager of the Cloud-TM mid-
dleware to provide the required self-tuning capabil-
ities that will allow our approach to fully deliver on
what seem promising results.

ACKNOWLEDGMENT

The work described in this paper would not have
been possible without the contribution of many

people that have been involved in some way or an-
other with the development of the Fénix Framework
and of the FénixEdu system. These include the
excellent development and systems’ administration
teams at CIIST, and the members of the Software
Engineering Group at INESC-ID.

Also, this work was partially supported by FCT
(INESC-ID multiannual funding) through the PID-
DAC Program funds, and by the Cloud-TM project,
which is co-financed by the European Commission
through the contract number 257784.

REFERENCES
[1] P. Mell and T. Grance, “NIST Definition of Cloud
Computing,” http://csrc.nist.gov/publications/drafts/800- 145/

Draft-SP-800-145_cloud-definition.pdf, Jan. 2011.

[2] S. M. Fernandes and J. Cachopo, “Strict serializability is
harmless: A new architecture for enterprise applications,” in
SPLASH’11 Companion, ser. SPLASH °11. New York, NY,
USA: ACM, Oct. 2011.

[3] CloudTM Consortium, “Cloud-TM: A novel programming
paradigm for the cloud,” http://www.cloudtm.eu/, Jun. 2010.

[4] J. Cachopo, “Development of rich domain models with
atomic actions,” Ph.D. dissertation, Instituto Superior Téc-
nico/Universidade Técnica de Lisboa, Sep. 2007.

[5] J. Cachopo and A. R. Silva, “Versioned boxes as the basis
for memory transactions,” Science of Computer Programming,
vol. 63, pp. 172-185, Dec. 2006.

[6] M. Fowler, Domain-Specific Languages, ser. Addison-Wesley
Signature Series. Addison-Wesley Professional, 2010.

[7] J. Cachopo and A. R. Silva, “Combining software transactional
memory with a domain modeling language to simplify web
application development,” in Sixth International Conference on
Web Engineering. Palo Alto, USA: ACM, Jul. 2006, pp. 297—
304.

[8] E. Bernard et al., “D1.2: Enabling technologies report,”
CloudTM Consortium, Tech. Rep., Nov. 2010.

[9] ——, “D2.1: Architecture draft,” CloudTM Consortium, Tech.

Rep., Jun. 2011.

N. Carvalho, J. Cachopo, L. Rodrigues, and A. Rito Silva,

“Versioned transactional shared memory for the FenixEDU

web application,” in Workshop on Dependable Distributed Data

Management (WDDDM). New York, NY, USA: ACM, 2008.

H. W. Cain and R. Rajwar, “An architectural evaluation of

java tpc-w,” in In Proceedings of the Seventh International

Symposium on High-Performance Computer Architecture, 2001,

pp- 229-240.

S. M. Fernandes and J. Cachopo, “Lock-free and scalable

multi-version software transactional memory,” in /6th ACM

SIGPLAN Annual Symposium on Principles and Practice of

Parallel Programming. ACM SIGPLAN, Feb. 2011, pp. 179-

188.

(10]

(11]

(12]

