
COMPACT CLEFIA IMPLEMENTATION ON FPGAS

 Paulo Proença and Ricardo Chaves

Instituto Superior Técnico / INESC-ID
Rua Alves Redol 9, 1000-029 Lisbon Portugal

pproenca@sips.inesc-id.pt, ricardo.chaves@inesc-id.pt

ABSTRACT

In this paper two compact hardware structures for the
computation of the CLEFIA encryption algorithm are
presented. One structure based on the existing state of the art
and a novel structure with a more compact organization. This
paper shows that, with the use of the existing embedded
FPGA components and a careful scheduling, throughputs
above 1Gbit/s can be achieved with a resource usage as low
as 86 LUTs and 3 BRAMs on a VIRTEX 5 FPGA.
Implementation results suggest that a LUT reduction up to
67% can be achieved at a performance cost of 17% on a
VIRTEX 4 FPGA, resulting in Throughput/Slice efficiency
gains up to 2.5 times, when compared with the related state
of the art.

1. INTRODUCTION

In the current digital communication world, digital data is
constantly being transmitted through public open channels,
whether it is an internet network access or a through the air
communication, like in wireless or mobile phone networks.
In order to have privacy and access management to that same
media, ciphering mechanisms need to be employed when
sending sensitive information through these public channels.
Ciphering algorithms have been in use for a long time, but
the growing processing capabilities of digital equipment and
the growing bandwidth for digital communication channels
impose the need for more dedicated and secure algorithms.
These algorithms can be divided in two classes, asymmetric
and symmetric. While the first ones are based on complex
mathematical problems, thus having long processing times,
the second ones are implemented using operations such as
byte substitution, bit permutation and basic arithmetic
operations, and can process large amounts of data in small
amounts of time.
 One of such algorithms is the CLEFIA encryption
algorithm, the novel symmetrical block ciphering algorithm
proposed and developed by SONY Corporation focused for
Digital Rights Management (DRM) purposes [1]. This
algorithm improves the security of encryption with the use of
techniques such as Diffusion Switch Mechanisms, consisting
of multiple diffusion matrices in a predetermined order, to
ensure immunity against differential and linear attacks
[2,3,4], and the use of Whitening Keys, combining data with
portions of the Key before the first round and after the last
round. In this research work, FPGAs are selected as the target

technology for their advantages in computation adaptability,
time to market, development costs, and deployment time of
dedicated solutions [5,6].
 Two structures for the computation of the CLEFIA
symmetrical encryption algorithm are presented in this paper.
These structures use the FPGA's embedded BRAMs
allowing for a more compact and high throughput hardware
implementation. The first structure computes one CLEFIA
round per clock cycle, and is based on the topology presented
in [7] for an ASIC technology, and adapted in this paper to
FPGA technologies. The second structure, herein proposed,
further optimizes the area resources by exploring the
symmetries of the round computation in this algorithm. This
second structure allows to obtain a more compact topology
by reusing hardware components, while achieving similar
throughputs due to the addition of a pipeline stage. Both the
presented structures allow for the computation of the
CLEFIA algorithm with all the Key sizes defined in the
standard. The related CLEFIA state of the art on FPGAs
presented in [8] is also considered. This structure performs
the CLEFIA computation on a fully unrolled topology,
achieving higher throughputs at the expense of area resources
and low flexibility.
 While few papers proposing the CLEFIA implementation
have been published, and mainly for ASIC technologies, the
presented structures are compared with the existing related
art. The present analysis suggests improvements in the
Throughput per Slice efficiency metric of 1.5 to 2.5 times on
several FPGA technologies. Hardware resource reductions
up to 67%, at the expense of a throughput reduction of 17%
on a VIRTEX 4 FPGA are suggested by the experimental
results, for the presented compact structures. Considering the
fully unrolled structure proposed in [8], area gains of 48
times can be achieved at a cost of a throughput reduction of
20 times. The structures herein proposed are able to achieve
throughputs above 1Gbit/s with a low FPGA resource
occupation.
 The paper is organized as follows. Section 2 presents a
brief description of the CLEFIA algorithm. Section 3
describes the proposed structures and respective
implementations on FPGA technologies. Performance
evaluation and comparison with the related art are presented
in section 4. Section 5 concludes this paper with some final
remarks.

2. CLEFIA ENCRYPTION ALGORITHM

The CLEFIA algorithm is a 128 bit block symmetrical

2011 21st International Conference on Field Programmable Logic and Applications

978-0-7695-4529-5/11 $26.00 © 2011 IEEE

DOI 10.1109/FPL.2011.101

512

encryption algorithm with a Key size varying from 128, 192,
to 256 bits. As most current block ciphers, it consists of a
Key Scheduling Part and a Data Path computed in multiple
rounds, allowing it to be easily implemented in platforms
with limited resources [9].
 In CLEFIA, state of the art design techniques, present in
other ciphering algorithms can also be found, namely:
Whitening Keys, a technique used to improve security of
iterated block ciphers, consisting in steps to combine data
with portions of the key, before the first round and after the
last round; Feistel Structures that are the most widely used
and the best studied structures for the design of block ciphers,
initially proposed by H. Feistel in the early 70’s and adopted
by the well-known block cipher DES; a Diffusion Switch
Mechanism consisting in the usage of multiple diffusion
matrices in a predetermined order, to ensure immunity
against differential and linear attacks [2,10].
 CLEFIAs Data Path uses a 4-branch Feistel structure, an
extended version of the traditional 2-branch Feistel structure.
It uses two different F-Functions per round, each one having
32 bit input/output data path, as depicted in Figure 1. F-
Functions F0 and F1, have different Diffusion Matrices,
providing CLEFIA with a diffusion switch mechanism.
Additional robustness was added to this algorithm with the
addition of two Whitening Keys, one added before the main
computation round and the other at the end of round
operations. The different Key sizes that can be used in
CLEFIA (128, 192, or 256 bits) directly influence the
number of computed rounds, 18, 22, or 26, respectively [1].
 Like in most ciphering algorithms, operations on data
consist of byte swapping, byte substitution, and arithmetic
operations over finite fields GF(28) . The following describes

the main operations performed in the CLEFIA algorithm.

2.1. F-Functions

Two different F-Functions, F0 and F1 are employed in each
round, used for data randomization. These F-Functions
consist of additions in GF(28) between the round data and the
Round Keys; Substitution Boxes S0 and S1, and Diffusion
Matrices M0 and M1, one for each F-Function (F0 and F1), as
depicted in Figure 2.
 Two different types of 8 bit S-boxes are used in each F-
Function, S0 and S1 [1].
 Two different diffusion matrices, M0 and M1, are an
integral part of the diffusion mechanism present in CLEFIA
providing the algorithm with resistance to differential attacks.
Each one of the four 8 bit input lines are multiplied by the
values in each line of the matrix and additions are performed
at the end to finish the operations on these matrices. The
constant values used on these matrices suggest some
simplifications for the operations needed in these diffusion
matrices, as proposed in [7].

2.2. Data Processing

The ciphering process in CLEFIA is performed in a sequence
of rounds, composed by the mentioned F-Functions, and
XOR additions. Four 32 bit Whitening Keys are also added,
two of them before the round computations start and two
more added after all the rounds are computed, as depicted in
Figure 1 as WKi. Given the Feistel Network based structure
of this algorithm the decryption process is identical to the
encryption one, using the same computational units, only
differing in the order these operations are performed, as also
depicted in Figure 1. This inverse computation is achieved by
feeding the round key in the inverse order, allowing for the
same computational structure to be used [1].

Figure 2. CLEFIAs F-Functions

Figure 1. CLEFIA Datapath

513

 Two 32 bit Round Keys are employed in each round.
These Round Keys are obtained from the original Key, as are
the Whitening Keys. These Round Keys are added in the F-
Functions computation.

2.3. Key Scheduling

In order to obtain the several needed Rounds Keys and
Whitening Keys, the ciphering Key needs to be expanded.
This expansion is realized by the Key Scheduling part of the
CLEFIA algorithm. The Whitening Keys are obtained
directly from the Key, depending of the key size [1]. The
calculation of the round keys is performed by passing the
initial key value through a processing network (GFN)
identical to the one used to cipher the data. This GFN
network can be a 4 branch structure, similar to the one
depicted in Figure 1, used for a 128 bit input Key, or an 8
branch GFN, for 192 and 256 bit input Key sizes [1]. After
GFN calculation is completed, the result is expanded using a
double swap function (a simple bitwise permutation) and
additional constants are added. The resulting values are the
needed Round Keys, used in the ciphering data path.

3. PROPOSED CLEFIA STRUCTURES

The main goal on this research work was to provide a
compact hardware CLEFIA structure, while still being able
to achieve implementations with adequate throughput and
performance, even on low cost devices. Two hardware
structures are herein presented, one being the derivation of
the structure proposed in [7] for ASIC technologies and a
second one herein proposed that further optimizes the data
path. Both these structures allow for the cipher and decipher
computations with all three Key sizes specified in the
algorithm.
 As described above, the CLEFIA algorithm computation
is divided into the Key Scheduling computation and the
ciphering computation itself. While the ciphering
computation needs to be performed for every 128 bit data
block, the key scheduling computation only needs to be
computed once for the same ciphering Key value. Moreover,
the Key Scheduling computation changes according to the
Key size used of 128, 192, or 256 bits, implying additional
hardware costs. This lead to the decision to perform the Key
Scheduling computation in software and transfer the resulting
expanded Key, already computed, to the hardware core
during the initialization procedure. Apart from receiving and
storing the expanded Keys, the hardware core is also
responsible for the transfer and computation of the data to be
encrypted or decrypted.
 As suggested in [10] and validated by the structures
proposed in [7] and [8], faster implementation of CLEFIA
can be achieved with the usage of T-boxes. T-Boxes merge
the computation of the S-box operations with the linear
transformation layers, compressing the resulting structure
into a lookup table, also resulting on a reduction of the

critical path [11].
 In the CLEFIAs F-Functions operation, T-Boxes can be
used to replace S0, S1, M0 and M1, by the lookup operations
depicted by (1), followed by XOR operations (GF(28)
additions) [7], as depicted at the bottom of Figure 3.

T00 = (S0, 02×S0, 04×S0, 06×S0)
T01 = (02×S1, S1, 06×S1, 04×S1)
T02 = (04×S0, 06×S0, S0, 02×S0)
T03 = (06×S1, 04×S1, 02×S1, S1) (1) T10 = (S1, 08×S1, 02×S1, 0A×S1)
T11 = (08×S0, S0, 0A×S0, 02×S0)
T12 = (02×S1, 0A×S1, S1, 08×S1)
T13 = (0A×S0, 02×S0, 08×S0, S0)

 The resulting T-Boxes have an 8 bit input bus and 32 bit
data output. These lookup tables can be implemented in two
ways: i) using logic gates (or LUT in FPGAs) [8]; ii) or using
dedicated memory blocks. Given that most of the current
reconfigurable devices, in particular FPGAs, have dedicated
embedded memory blocks designated as BRAMs, the T-Box
implementation can be efficiently realized by these
components. This allows to achieve faster and less LUT
demanding solutions [5]. Further optimizations can be
accomplished in terms of resource requirements taking into
account that these tables perform identical calculations.
Actually, T00 and T02, depicted in (1), perform the exact same
lookup operation, given the same input, only differing in a 16
bits shift of the output. The same applies to T01/T03, T10/T12
and T11/T13. Given this and due to the existence of dual port
BRAMs in most FPGA devices, two of these lookup
operations can be realized in a single BRAM component.
The additional shift operations can be implemented by
hardwired routing, without additional area overhead. The
remaining hardware required to perform the round
computations is composed by a tree of XOR operations

Figure 3. Type-I CLEFIA Structure

514

(additions over GF(28)) [7].
 Apart from the round computation, the addition of the
four 32-bit Whitening Keys also need to be performed, two at
the beginning and two more in the end of the final round
computation. The resulting structure, depicted in Figure 3 is
similar to the one proposed in [7], and herein designated as
Type-I CLEFIA structure.
 In order to obtain an even more compact structure for the
CLEFIA implementation, the symmetry between the F0 and
F1 functions is further explored. The main difference between
F0 and F1 resides in the M0 and M1 tables, as depicted in
Figure 2. A more compact structure can be derived by
merging the computation of these two tables into a single
lookup table. Combining the resulting table for both M0 and
M1 and taking into consideration the computation structures
of the F-functions, a single merged structure able to compute
both F0 and F1 can be derived.
 The resulting merged T-Boxes, capable of computing
both the F0 and F1, use a 9-bit input divided in two parts, 8
bits for the data and the other one for F-Function selection.
As in the Type-I CLEFIA structure, a 32-bit value is
outputted by this T-Box. However, for the implementation of
these T-Boxes the BRAMs need to store twice the data.
While in Type-I the T-Box blocks require 256x32bits=8kbits,
in the Type-II structure, the memory block needs
512x32bits=16kbits to store the lookup values. Most FPGA
devices have 18Kbit BRAMs units, meaning that for these
FPGAs the resulting T-Box blocks for the Type-II structure
will occupy the entire BRAM unit, while in Type-I, only half
of each used BRAM is occupied.
 In the T-Box of Type-II structure, the selection of which
function is to be computed within the T-Box is performed by
a single bit value at the most significant bit of the address bus
of the BRAM, as depicted in Figure 4 by the T0/T1 selector in
the BRAM.
 Being able to perform the lookup operation of the F-
functions within a single component, an additional level of
folding can be applied, performing the computation of F0 and
F1 in the same hardware structure. With this technique,
approximately half of the hardware resources are needed,
apart from the additional selection logic. Consequently the
computation of each round will now require two clock
cycles, twice as much as in the Type-I structure.
 Note that, even though a data dependency exists between
the data of each round, with a careful scheduling of the round
operations and data storage, round i+1 can start its
computation before round i has completely finished its
computation. With this in mind a pipeline stage can be added
to Type-II CLEFIA structure dividing the computation into
two stages. Table 1 depicts the proposed scheduling for this
computation, where Pi refers to 32-bits of the 128-bit input
and Pj refers to the respective round being computed.
 In this improved structure the computation of each round
is performed in two clock cycles. In the first stage, one of the
F-Function is computed by the T-Box structures. In the

second stage, the remaining data and Round Key additions
are performed. With the proposed schedule, and considering
the resulting hardware structure within the FPGA fabric, a
pipeline stage can be placed in such a way that stage one and
stage two are relatively balanced. The real gain in this
structure comes from the fact that while one stage computes
one-half of the CLEFIA algorithm, the other stage computes
the other half of the CLEFIA algorithm.
 Note that the computation in each round can now be
performed in approximately half of the time as in Type-I
structure. Thus, it is expected that an approximate ciphering
throughput can be achieved, given that no pipeline stalling
exists. In order to optimize the data path to the used FPGA
technology, the pipeline stage register, depicted in dark in
Figure 4, can be placed in different parts of the data path.
Several realized implementations, suggested that, in the
analyzed devices, this register is best placed at the output of
the BRAMs. In all the families of analyzed FPGAs, a register
is intrinsically located at the beginning of the BRAMs, which

Figure 4. Type-II CLEFIA Structure

Table 1. Type-II Structure Pipeline Scheduling
 First Stage Second Stage Output
1 T0(P0

0 + RK0) - -
2 T1(P2

0 + RK1) (T00 + T01 + T02 + T03) + WK0 + P1
0 P0

1
3 T0(P0

1 + RK2) (T10 + T11 + T12 + T13) + WK1 + P3
0 P2

1
4 T1(P2

1 + RK3) (T00 + T01 + T02 + T03) + P1
1 P0

2
5 T0(P0

2 + RK4) (T10 + T11 + T12 + T13) + P3
1 P2

2
6 T1(P2

2 + RK5) (T00 + T01 + T02 + T03) + P1
2 P0

3
7 T0(P0

3 + RK6) (T10 + T11 + T12 + T13) + P3
2 P2

3
… … … …
34 T1(P2

16 + RK33) (T00 + T01 + T02 + T03) + P1
16 P0

17=C0
35 T0(P0

17 + RK34) (T10 + T11 + T12 + T13) + P3
16 P2

17=C2
36 T1(P2

17 + RK35) (T00 + T01 + T02 + T03) + P1
17 + WK2 C1

37 - (T10 + T11 + T12 + T13) + P3
17 + WK3 C3

515

cannot be removed, thus defining the frontier of the second
pipeline stage.
 On the left side of the resulting structure, depicted in
Figure 4, a set of registers can be observed. These registers
are used to store the temporary round values, needed by the
proposed schedule (see Table 1).

4. PERFORMANCE EVALUATION

In this section, experimental results for the proposed
structures, on several Xilinx FPGAs technologies, are
presented and compared with the work in the existing related
art [7,8].
 In order to evaluate the presented CLEFIA structures on
low cost FPGA devices, the Xilinx Spartan 3E technology
was selected. The implementations results, presented in
Table 3, suggest that throughputs above 650 Mbit/s can be
achieved for both structures at a resource cost of 624 LUT
and 5 BRAMs for Type-I structure and 270 LUT and 3
BRAMs for the more compact Type-II structure. Note that in
all implementations of the proposed structures an extra
BRAM is added. This BRAM is used to store the Round
Keys used in the CLEFIA computation, and is herein
considered as part of the CLEFIA core.
 Results in higher end devices were also obtained, namely
for the VIRTEX 4 and VIRTEX 5 technologies. In these
FPGAs throughputs between 1.0 and 1.7 Gbit/s are
achievable with a relatively low resource cost for both
structure types. For the Type-II structure, on a VIRTEX 4, a
resource occupation of 205 LUTs and 3 BRAMs is achieved.
For the VIRTEX 5 the resource usage is reduced to 86 LUTs
and 3 BRAMs. This decrease in LUT usage is due to the fact
that the VIRTEX 5 technology has 6 input LUTs while the
LUTs in the VIRTEX 4 only have 4. Throughput/Slice
efficiency metrics up to 15.1 (Mbps/Slice) are achieved for
the proposed Type-II structure. Table 2 presents the obtained
throughputs for the two presented CLEFIA structures
acording to the Key size. As expected when longer ciphering
keys are used the performance efficiency of the ciphering
computation decreases.
 Considering the related art, the presented structures
implemented on FPGA cannot be directly compared with the

ones proposed in [7], since these authors focused their work
on ASIC technology. Nevertheless, as mentioned above, the
presented Type-I structure is similar to the Type-A structure
proposed in [7], which suggests the best throughput/area
efficiency metric. With this, comparing the presented Type-I
structure with the proposed Type-II structure allows us to
evaluate the improvements of the proposed modification to
the computation structure. Experimental results suggest an
area reduction between 50% and 67%, at the expense of a
throughput reduction between 14% and 24%, for the
SPARTAN 3 and VIRTEX 5 technologies, respectively.
These values suggest an improvement of the
Throughput/Slice efficiency metric of 1.5 times on the
VIRTEX 5 technology, and more significantly of 2 and 2.5
times for the SPARTAN 3E and VIRTEX 4 technologies.
 This significant efficiency improvement is due to the
component reutilization accomplished by the pipeline and
data path rescheduling. Note that, even though the number of
cycles needed to cipher a data block doubles, the operating
frequency also increases (185 MHz instead of 108 MHz for
the SPARTAN 3E), since the computational data path is
evenly divided in two.
 Note that, while the original structure (Type-A) proposed

Table 2. Summary of obtained Performance Results

 Key
Size

Clock
Cycles Mbps Mbps/Slice

Spartan
3E

Type-I
128 18 768 1.2
192 22 628 1.0
256 26 531 0.9

Type-II
128 36 658 2.4
192 44 538 2.0
256 52 455 1.7

Virtex
4

Type-I
128 18 1273 2.0
192 22 1042 1.7
256 26 881 1.4

Type-II
128 36 1045 5.1
192 44 855 4.2
256 52 724 3.5

Virtex
5

Type-I
128 18 1707 10.0
192 22 1396 8.2
256 26 1181 6.9

Type-II
128 36 1301 15.1
192 44 1064 12.4
256 52 900 10.5

Table 3. Hardware Performance Comparison of CLEFIA Implementations

 Takeshi
[7]

Ours
Type-I

Ours
Type-II

Ours
Type-I

Ours
Type-II

Kryjak
[8]

Ours
Type-I

Ours
Type-II

Kryjak
[8]

Device 90nm
ASIC XC3S1200-4 XC4LX200-11 XC4

LX200 XC5LX30-3 XC5
LX30

Slices 21.07* 624 270 625 205 9896 170 86 2612

BRAMs n.a 4 + 1 2 + 1 4 + 1 2 + 1 0 4 + 1 2 + 1 0

Max. Frequency (MHz) 746.27 108 185 179 294 167 240 366 167

Latency (cycles) 18 18 36 18 36 18 18 36 18

Throughput (Mbps) 5306 768 658 1273 1045 21376 1707 1301 21376

Throughput/Slice (Mbps/s) n.a 1.2 2.4 2.0 5.1 2.1 10.0 15.1 8.2
* Kgates not Slices

516

in [7] performs the Key expansion, the ones herein presented
do not. The advantage of our approach is that we are able to
cipher with 128, 192, and 256 bit Keys while the one in [7] is
only able to cipher using 128 bit Keys. Nevertheless, the
above comparison was performed between the two presented
structures, which do not perform the Key expansion.
 For the implementation of T-Boxes using LUTs, a total of
185 slices would be needed for each T-Box if using a Spartan
3E device. Thus 1480 slices would be needed to implement
the 8 required T-Boxes in Type-I structure. Also, the delay
imposed by this kind of implementation leads to a longer
critical path and consequently to lower frequencies and
throughputs. This can be seen by the low working
frequencies obtained in [8] when compared to the ones herein
proposed.
 In [8] a fully unfolded structure is proposed, justifying the
extremely high throughput obtained (21Gbit/s). However,
this throughput comes at the expense of an excessively high
area resource usage as depicted in Table 3. This structure
does not allow for the use of encryption modes other than
ECB and a key size of 128 bits. On a VIRTEX 4 FPGA a
Throughput/Slice efficiency metric of 2.1 is obtained for [8]
in comparison with a Throughput/Slice of 5.1 for the
proposed Type-II structure. The comparison between the two
implementations, suggest a Throughput/Slice of 1.8 to 2.4
times better on a VIRTEX 5 and VIRTEX 4 technologies,
respectively. Throughputs significantly above 1Gbit/s were
not a target, since most FPGA applications do not require
such high throughput values.
 In the above discussion the BRAMs needed by the
proposed structures were not considered. However, the
number of used Slices is within the percentage of used
BRAMs, which are available in the FPGA, either we use
them or not. In the structure propose in [8] no BRAMs are
used.

5. CONCLUSION

In this paper two hardware structures are presented for the
implementations of the CLEFIA encryption algorithm. The
presented structures were designed having in mind
reconfigurable technologies, in particular FPGA with
BRAMs, but can be easily targeted to other technologies
such as ASIC. While one of the presented structures is
similar to the one presented in the related art, and used for
comparison, a second structure herein proposed, which
collapses the round computation by carefully scheduling the
operations with the use of an additional pipeline stage.
 The results analysis suggest that with the collapsing of
the computation presented in the proposed structure,
significant gains in resource usage and in the
Throughput/Slice efficiency metric can be achieved.
Experimental results suggest that efficiency improvements of
2.5 times can be achieved as well as a reduction in the
required LUT up to 67% at a performance cost of 17% on a
VIRTEX 4 FPGA.

In conclusion, compact structures for the implementation
of the CLEFIA encryption algorithm can be developed and
throughputs near 1Git/s can be achieved with low resource
usage, even on low cost FPGA devices.

6. ACKNOWLEDGMENTS

This work was supported by the Portuguese Foundation for
Science and for Technology (INESC-ID multiannual
funding) through the PIDDAC Program funds and by the
QREN Programme under contract No. 3487.

7. REFERENCES

[1] T. and Shibutani, K. and Akishita, T. and Moriai, S. and
Iwata, T. Shirai, "The 128-Bit Blockcipher CLEFIA
(Extended Abstract)" in Fast Software Encryption, 2007, pp.
181--195.

[2] Taizo Shirai and Kyoji Shibutani, "On Feistel Structures
Using a Difusion Switching Mechanism" in Fast Software
Encryption, 2006, pp. 41--56.

[3] H. and Wu, W. and Feng, D. Chen, "Differential fault analysis
on CLEFIA" in Proceedings of the 9th international
conference on Information and communications security,
2007, pp. 284--295.

[4] Y. and Tsujihara, E. and Shigeri, M. and Suzaki, T. and
Kawabata, T. Tsunoo, "Cryptanalysis of CLEFIA using
multiple impossible differentials" , 2009, pp. 1--6.

[5] Francisco Rodriguez-Henriquez, N.A. Saqib, A. Diaz-Perez,
and Çetin Kaya Koç, Cryptographic Algorithms on
Reconfigurable Hardware.: Springer, 2006.

[6] AJ Elbirt, W. Yip, B. Chetwind, and C. Paar, "An FPGA
Implementation and Performance Evaluation of the AES
Block Cipher Candidate Algorithm Finalists" in The Third
AES Candidate Conference, printed by the National Institute
of Standards and Technology, Gaithersburg, MD, 2000, pp.
13--27.

[7] T. Sugawara, N. Homma, T. Aoki, and A. Satoh, "High
Performance ASIC Implementation of the 128-bit Block
Cipher CLEFIA" in ISCAS 2008. IEEE International
Symposium on Circuits and Systems, 2008, pp. 2925--2928.

[8] Tomasz Kryjak and Marek Gorgon, "Pipeline Implementation
ot the 128-bit Block Cipher CLEFIA in FPGA" in FPL 2009.
International Conference on Field Programmable Logic and
Applications, 2009, pp. 373--378.

[9] T. Shirai and A. Mizumo, "A Compact and High-Speed
Cipher Suitable for Limited Resources Environment" in 3rd
ETSI security wrokshop presentation, Sophia-Antipolis,
France, 2007.

[10] SONY Corporation. (Revision 1.0, June 1, 2007) The 128-bit
Block Cipher CLEFIA Security and Performance
Evaluations. [Online]. http://www.sony.net/Products/
cryptography/clefia/technical/data/clefia-eval-1.0.pdf

[11] T. and Benaissa, M. Good, "AES on FPGA from the Fastest
to the Smallest" Cryptographic Hardware and Embedded
Systems, pp. 427--440, 2005.

517

