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ABSTRACT 

In this paper two compact hardware structures for the 
computation of the CLEFIA encryption algorithm are 
presented. One structure based on the existing state of the art 
and a novel structure with a more compact organization. This 
paper shows that, with the use of the existing embedded 
FPGA components and a careful scheduling, throughputs 
above 1Gbit/s can be achieved with a resource usage as low 
as 86 LUTs and 3 BRAMs on a VIRTEX 5 FPGA. 
Implementation results suggest that a LUT reduction up to 
67% can be achieved at a performance cost of 17% on a 
VIRTEX 4 FPGA, resulting in Throughput/Slice efficiency 
gains up to 2.5 times, when compared with the related state 
of the art. 

1. INTRODUCTION 

In the current digital communication world, digital data is 
constantly being transmitted through public open channels, 
whether it is an internet network access or a through the air 
communication, like in wireless or mobile phone networks. 
In order to have privacy and access management to that same 
media, ciphering mechanisms need to be employed when 
sending sensitive information through these public channels. 
Ciphering algorithms have been in use for a long time, but 
the growing processing capabilities of digital equipment and 
the growing bandwidth for digital communication channels 
impose the need for more dedicated and secure algorithms. 
These algorithms can be divided in two classes, asymmetric 
and symmetric. While the first ones are based on complex 
mathematical problems, thus having long processing times, 
the second ones are implemented using operations such as 
byte substitution, bit permutation and basic arithmetic 
operations, and can process large amounts of data in small 
amounts of time. 
 One of such algorithms is the CLEFIA encryption 
algorithm, the novel symmetrical block ciphering algorithm 
proposed and developed by SONY Corporation focused for 
Digital Rights Management (DRM) purposes [1]. This 
algorithm improves the security of encryption with the use of 
techniques such as Diffusion Switch Mechanisms, consisting 
of multiple diffusion matrices in a predetermined order, to 
ensure immunity against differential and linear attacks 
[2,3,4], and the use of Whitening Keys, combining data with 
portions of the Key before the first round and after the last 
round. In this research work, FPGAs are selected as the target 

technology for their advantages in computation adaptability, 
time to market, development costs, and deployment time of 
dedicated solutions [5,6]. 
 Two structures for the computation of the CLEFIA 
symmetrical encryption algorithm are presented in this paper. 
These structures use the FPGA's embedded BRAMs 
allowing for a more compact and high throughput hardware 
implementation. The first structure computes one CLEFIA 
round per clock cycle, and is based on the topology presented 
in [7] for an ASIC technology, and adapted in this paper to 
FPGA technologies. The second structure, herein proposed, 
further optimizes the area resources by exploring the 
symmetries of the round computation in this algorithm. This 
second structure allows to obtain a more compact topology 
by reusing hardware components, while achieving similar 
throughputs due to the addition of a pipeline stage. Both the 
presented structures allow for the computation of the 
CLEFIA algorithm with all the Key sizes defined in the 
standard. The related CLEFIA state of the art on FPGAs 
presented in [8] is also considered. This structure performs 
the CLEFIA computation on a fully unrolled topology, 
achieving higher throughputs at the expense of area resources 
and low flexibility. 
 While few papers proposing the CLEFIA implementation 
have been published, and mainly for ASIC technologies, the 
presented structures are compared with the existing related 
art. The present analysis suggests improvements in the 
Throughput per Slice efficiency metric of 1.5 to 2.5 times on 
several FPGA technologies. Hardware resource reductions 
up to 67%, at the expense of a throughput reduction of 17% 
on a VIRTEX 4 FPGA are suggested by the experimental 
results, for the presented compact structures. Considering the 
fully unrolled structure proposed in [8], area gains of 48 
times can be achieved at a cost of a throughput reduction of 
20 times. The structures herein proposed are able to achieve 
throughputs above 1Gbit/s with a low FPGA resource 
occupation. 
 The paper is organized as follows. Section 2 presents a 
brief description of the CLEFIA algorithm. Section 3 
describes the proposed structures and respective 
implementations on FPGA technologies. Performance 
evaluation and comparison with the related art are presented 
in section 4. Section 5 concludes this paper with some final 
remarks. 

2. CLEFIA ENCRYPTION ALGORITHM 

The CLEFIA algorithm is a 128 bit block symmetrical 
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encryption algorithm with a Key size varying from 128, 192, 
to 256 bits. As most current block ciphers, it consists of a 
Key Scheduling Part and a Data Path computed in multiple 
rounds, allowing it to be easily implemented in platforms 
with limited resources [9]. 
 In CLEFIA, state of the art design techniques, present in 
other ciphering algorithms can also be found, namely: 
Whitening Keys, a technique used to improve security of 
iterated block ciphers, consisting in steps to combine data 
with portions of the key, before the first round and after the 
last round; Feistel Structures that are the most widely used 
and the best studied structures for the design of block ciphers, 
initially proposed by H. Feistel in the early 70’s and adopted 
by the well-known block cipher DES; a Diffusion Switch 
Mechanism consisting in the usage of multiple diffusion 
matrices in a predetermined order, to ensure immunity 
against differential and linear attacks [2,10]. 
 CLEFIAs Data Path uses a 4-branch Feistel structure, an 
extended version of the traditional 2-branch Feistel structure. 
It uses two different F-Functions per round, each one having 
32 bit input/output data path, as depicted in Figure 1. F-
Functions F0 and F1, have different Diffusion Matrices, 
providing CLEFIA with a diffusion switch mechanism. 
Additional robustness was added to this algorithm with the 
addition of two Whitening Keys, one added before the main 
computation round and the other at the end of round 
operations. The different Key sizes that can be used in 
CLEFIA (128, 192, or 256 bits) directly influence the 
number of computed rounds, 18, 22, or 26, respectively [1]. 
 Like in most ciphering algorithms, operations on data 
consist of byte swapping, byte substitution, and arithmetic 
operations over finite fields GF(28) . The following describes 

the main operations performed in the CLEFIA algorithm. 

2.1. F-Functions 

Two different F-Functions, F0 and F1 are employed in each 
round, used for data randomization. These F-Functions 
consist of additions in GF(28) between the round data and the 
Round Keys; Substitution Boxes S0 and S1, and Diffusion 
Matrices M0 and M1, one for each F-Function (F0 and F1), as 
depicted in Figure 2. 
 Two different types of 8 bit S-boxes are used in each F-
Function, S0 and S1 [1]. 
 Two different diffusion matrices, M0 and M1, are an 
integral part of the diffusion mechanism present in CLEFIA 
providing the algorithm with resistance to differential attacks. 
Each one of the four 8 bit input lines are multiplied by the 
values in each line of the matrix and additions are performed 
at the end to finish the operations on these matrices. The 
constant values used on these matrices suggest some 
simplifications for the operations needed in these diffusion 
matrices, as proposed in [7]. 

2.2. Data Processing 

The ciphering process in CLEFIA is performed in a sequence 
of rounds, composed by the mentioned F-Functions, and 
XOR additions. Four 32 bit Whitening Keys are also added, 
two of them before the round computations start and two 
more added after all the rounds are computed, as depicted in 
Figure 1 as WKi. Given the Feistel Network based structure 
of this algorithm the decryption process is identical to the 
encryption one, using the same computational units, only 
differing in the order these operations are performed, as also 
depicted in Figure 1. This inverse computation is achieved by 
feeding the round key in the inverse order, allowing for the 
same computational structure to be used [1]. 

 
Figure 2. CLEFIAs F-Functions 

 
Figure 1. CLEFIA Datapath 
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 Two 32 bit Round Keys are employed in each round. 
These Round Keys are obtained from the original Key, as are 
the Whitening Keys. These Round Keys are added in the F-
Functions computation. 

2.3. Key Scheduling 

In order to obtain the several needed Rounds Keys and 
Whitening Keys, the ciphering Key needs to be expanded. 
This expansion is realized by the Key Scheduling part of the 
CLEFIA algorithm. The Whitening Keys are obtained 
directly from the Key, depending of the key size [1]. The 
calculation of the round keys is performed by passing the 
initial key value through a processing network (GFN) 
identical to the one used to cipher the data. This GFN 
network can be a 4 branch structure, similar to the one 
depicted in Figure 1, used for a 128 bit input Key, or an 8 
branch GFN, for 192 and 256 bit input Key sizes [1]. After 
GFN calculation is completed, the result is expanded using a 
double swap function (a simple bitwise permutation) and 
additional constants are added. The resulting values are the 
needed Round Keys, used in the ciphering data path. 

3. PROPOSED CLEFIA STRUCTURES 

The main goal on this research work was to provide a 
compact hardware CLEFIA structure, while still being able 
to achieve implementations with adequate throughput and 
performance, even on low cost devices. Two hardware 
structures are herein presented, one being the derivation of 
the structure proposed in [7] for ASIC technologies and a 
second one herein proposed that further optimizes the data 
path. Both these structures allow for the cipher and decipher 
computations with all three Key sizes specified in the 
algorithm. 
 As described above, the CLEFIA algorithm computation 
is divided into the Key Scheduling computation and the 
ciphering computation itself. While the ciphering 
computation needs to be performed for every 128 bit data 
block, the key scheduling computation only needs to be 
computed once for the same ciphering Key value. Moreover, 
the Key Scheduling computation changes according to the 
Key size used of 128, 192, or 256 bits, implying additional 
hardware costs. This lead to the decision to perform the Key 
Scheduling computation in software and transfer the resulting 
expanded Key, already computed, to the hardware core 
during the initialization procedure. Apart from receiving and 
storing the expanded Keys, the hardware core is also 
responsible for the transfer and computation of the data to be 
encrypted or decrypted. 
 As suggested in [10] and validated by the structures 
proposed in [7] and [8], faster implementation of CLEFIA 
can be achieved with the usage of T-boxes. T-Boxes merge 
the computation of the S-box operations with the linear 
transformation layers, compressing the resulting structure 
into a lookup table, also resulting on a reduction of the 

critical path [11]. 
 In the CLEFIAs F-Functions operation, T-Boxes can be 
used to replace S0, S1, M0 and M1, by the lookup operations 
depicted by (1), followed by XOR operations (GF(28) 
additions) [7], as depicted at the bottom of Figure 3. 

  
T00 = (S0, 02×S0, 04×S0, 06×S0)  
T01 = (02×S1, S1, 06×S1, 04×S1)  
T02 = (04×S0, 06×S0, S0, 02×S0)  
T03 = (06×S1, 04×S1, 02×S1, S1) (1) T10 = (S1, 08×S1, 02×S1, 0A×S1) 
T11 = (08×S0, S0, 0A×S0, 02×S0)  
T12 = (02×S1, 0A×S1, S1, 08×S1)  
T13 = (0A×S0, 02×S0, 08×S0, S0)  

  
 The resulting T-Boxes have an 8 bit input bus and 32 bit 
data output. These lookup tables can be implemented in two 
ways: i) using logic gates (or LUT in FPGAs) [8]; ii) or using 
dedicated memory blocks. Given that most of the current 
reconfigurable devices, in particular FPGAs, have dedicated 
embedded memory blocks designated as BRAMs, the T-Box 
implementation can be efficiently realized by these 
components. This allows to achieve faster and less LUT 
demanding solutions [5]. Further optimizations can be 
accomplished in terms of resource requirements taking into 
account that these tables perform identical calculations. 
Actually, T00 and T02, depicted in (1), perform the exact same 
lookup operation, given the same input, only differing in a 16 
bits shift of the output. The same applies to T01/T03, T10/T12 
and T11/T13. Given this and due to the existence of dual port 
BRAMs in most FPGA devices, two of these lookup 
operations can be realized in a single BRAM component. 
The additional shift operations can be implemented by 
hardwired routing, without additional area overhead. The 
remaining hardware required to perform the round 
computations is composed by a tree of XOR operations 

 
Figure 3. Type-I CLEFIA Structure 

514



(additions over GF(28)) [7]. 
 Apart from the round computation, the addition of the 
four 32-bit Whitening Keys also need to be performed, two at 
the beginning and two more in the end of the final round 
computation. The resulting structure, depicted in Figure 3 is 
similar to the one proposed in [7], and herein designated as 
Type-I CLEFIA structure. 
 In order to obtain an even more compact structure for the 
CLEFIA implementation, the symmetry between the F0 and 
F1 functions is further explored. The main difference between 
F0 and F1 resides in the M0 and M1 tables, as depicted in 
Figure 2. A more compact structure can be derived by 
merging the computation of these two tables into a single 
lookup table. Combining the resulting table for both M0 and 
M1 and taking into consideration the computation structures 
of the F-functions, a single merged structure able to compute 
both F0 and F1 can be derived. 
 The resulting merged T-Boxes, capable of computing 
both the F0 and F1, use a 9-bit input divided in two parts, 8 
bits for the data and the other one for F-Function selection. 
As in the Type-I CLEFIA structure, a 32-bit value is 
outputted by this T-Box. However, for the implementation of 
these T-Boxes the BRAMs need to store twice the data. 
While in Type-I the T-Box blocks require 256x32bits=8kbits, 
in the Type-II structure, the memory block needs 
512x32bits=16kbits to store the lookup values. Most FPGA 
devices have 18Kbit BRAMs units, meaning that for these 
FPGAs the resulting T-Box blocks for the Type-II structure 
will occupy the entire BRAM unit, while in Type-I, only half 
of each used BRAM is occupied. 
 In the T-Box of Type-II structure, the selection of which 
function is to be computed within the T-Box is performed by 
a single bit value at the most significant bit of the address bus 
of the BRAM, as depicted in Figure 4 by the T0/T1 selector in 
the BRAM. 
 Being able to perform the lookup operation of the F-
functions within a single component, an additional level of 
folding can be applied, performing the computation of F0 and 
F1 in the same hardware structure. With this technique, 
approximately half of the hardware resources are needed, 
apart from the additional selection logic. Consequently the 
computation of each round will now require two clock 
cycles, twice as much as in the Type-I structure. 
 Note that, even though a data dependency exists between 
the data of each round, with a careful scheduling of the round 
operations and data storage, round i+1 can start its 
computation before round i has completely finished its 
computation. With this in mind a pipeline stage can be added 
to Type-II CLEFIA structure dividing the computation into 
two stages. Table 1 depicts the proposed scheduling for this 
computation, where Pi refers to 32-bits of the 128-bit input 
and Pj refers to the respective round being computed. 
 In this improved structure the computation of each round 
is performed in two clock cycles. In the first stage, one of the 
F-Function is computed by the T-Box structures. In the 

second stage, the remaining data and Round Key additions 
are performed. With the proposed schedule, and considering 
the resulting hardware structure within the FPGA fabric, a 
pipeline stage can be placed in such a way that stage one and 
stage two are relatively balanced. The real gain in this 
structure comes from the fact that while one stage computes 
one-half of the CLEFIA algorithm, the other stage computes 
the other half of the CLEFIA algorithm. 
 Note that the computation in each round can now be 
performed in approximately half of the time as in Type-I 
structure. Thus, it is expected that an approximate ciphering 
throughput can be achieved, given that no pipeline stalling 
exists. In order to optimize the data path to the used FPGA 
technology, the pipeline stage register, depicted in dark in 
Figure 4, can be placed in different parts of the data path. 
Several realized implementations, suggested that, in the 
analyzed devices, this register is best placed at the output of 
the BRAMs. In all the families of analyzed FPGAs, a register 
is intrinsically located at the beginning of the BRAMs, which 

Figure 4. Type-II CLEFIA Structure 

Table 1. Type-II Structure Pipeline Scheduling 
 First Stage Second Stage Output 
1 T0(P0

0 + RK0) - - 
2 T1(P2

0 + RK1) (T00 + T01 + T02 + T03) + WK0 + P1
0 P0

1 
3 T0(P0

1 + RK2) (T10 + T11 + T12 + T13) + WK1 + P3
0 P2

1 
4 T1(P2

1 + RK3) (T00 + T01 + T02 + T03) + P1
1 P0

2 
5 T0(P0

2 + RK4) (T10 + T11 + T12 + T13) + P3
1 P2

2 
6 T1(P2

2 + RK5) (T00 + T01 + T02 + T03) + P1
2 P0

3 
7 T0(P0

3 + RK6) (T10 + T11 + T12 + T13) + P3
2 P2

3 
… … … … 
34 T1(P2

16 + RK33) (T00 + T01 + T02 + T03) + P1
16 P0

17=C0 
35 T0(P0

17 + RK34) (T10 + T11 + T12 + T13) + P3
16 P2

17=C2 
36 T1(P2

17 + RK35) (T00 + T01 + T02 + T03) + P1
17 + WK2 C1 

37 - (T10 + T11 + T12 + T13) + P3
17 + WK3 C3 
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cannot be removed, thus defining the frontier of the second 
pipeline stage. 
 On the left side of the resulting structure, depicted in 
Figure 4, a set of registers can be observed. These registers 
are used to store the temporary round values, needed by the 
proposed schedule (see Table 1). 

4. PERFORMANCE EVALUATION 

In this section, experimental results for the proposed 
structures, on several Xilinx FPGAs technologies, are 
presented and compared with the work in the existing related 
art [7,8]. 
 In order to evaluate the presented CLEFIA structures on 
low cost FPGA devices, the Xilinx Spartan 3E technology 
was selected. The implementations results, presented in 
Table 3, suggest that throughputs above 650 Mbit/s can be 
achieved for both structures at a resource cost of 624 LUT 
and 5 BRAMs for Type-I structure and 270 LUT and 3 
BRAMs for the more compact Type-II structure. Note that in 
all implementations of the proposed structures an extra 
BRAM is added. This BRAM is used to store the Round 
Keys used in the CLEFIA computation, and is herein 
considered as part of the CLEFIA core. 
 Results in higher end devices were also obtained, namely 
for the VIRTEX 4 and VIRTEX 5 technologies. In these 
FPGAs throughputs between 1.0 and 1.7 Gbit/s are 
achievable with a relatively low resource cost for both 
structure types. For the Type-II structure, on a VIRTEX 4, a 
resource occupation of 205 LUTs and 3 BRAMs is achieved. 
For the VIRTEX 5 the resource usage is reduced to 86 LUTs 
and 3 BRAMs. This decrease in LUT usage is due to the fact 
that the VIRTEX 5 technology has 6 input LUTs while the 
LUTs in the VIRTEX 4 only have 4. Throughput/Slice 
efficiency metrics up to 15.1 (Mbps/Slice) are achieved for 
the proposed Type-II structure. Table 2 presents the obtained 
throughputs for the two presented CLEFIA structures 
acording to the Key size. As expected when longer ciphering 
keys are used the performance efficiency of the ciphering 
computation decreases. 
 Considering the related art, the presented structures 
implemented on FPGA cannot be directly compared with the 

ones proposed in [7], since these authors focused their work 
on ASIC technology. Nevertheless, as mentioned above, the 
presented Type-I structure is similar to the Type-A structure 
proposed in [7], which suggests the best throughput/area 
efficiency metric. With this, comparing the presented Type-I 
structure with the proposed Type-II structure allows us to 
evaluate the improvements of the proposed modification to 
the computation structure. Experimental results suggest an 
area reduction between 50% and 67%, at the expense of a 
throughput reduction between 14% and 24%, for the 
SPARTAN 3 and VIRTEX 5 technologies, respectively. 
These values suggest an improvement of the 
Throughput/Slice efficiency metric of 1.5 times on the 
VIRTEX 5 technology, and more significantly of 2 and 2.5 
times for the SPARTAN 3E and VIRTEX 4 technologies. 
 This significant efficiency improvement is due to the 
component reutilization accomplished by the pipeline and 
data path rescheduling. Note that, even though the number of 
cycles needed to cipher a data block doubles, the operating 
frequency also increases (185 MHz instead of 108 MHz for 
the SPARTAN 3E), since the computational data path is 
evenly divided in two. 
 Note that, while the original structure (Type-A) proposed 

Table 2. Summary of obtained Performance Results 

  Key 
Size 

Clock 
Cycles Mbps Mbps/Slice 

Spartan 
3E 

Type-I 
128 18 768 1.2 
192 22 628 1.0 
256 26 531 0.9 

Type-II 
128 36 658 2.4 
192 44 538 2.0 
256 52 455 1.7 

Virtex 
4 

Type-I 
128 18 1273 2.0 
192 22 1042 1.7 
256 26 881 1.4 

Type-II 
128 36 1045 5.1 
192 44 855 4.2 
256 52 724 3.5 

Virtex 
5 

Type-I 
128 18 1707 10.0 
192 22 1396 8.2 
256 26 1181 6.9 

Type-II 
128 36 1301 15.1 
192 44 1064 12.4 
256 52 900 10.5 

  

Table 3. Hardware Performance Comparison of CLEFIA Implementations 

 Takeshi 
[7] 

Ours 
Type-I 

Ours 
Type-II 

Ours 
Type-I 

Ours 
Type-II 

Kryjak 
[8] 

Ours 
Type-I 

Ours 
Type-II 

Kryjak 
[8] 

Device 90nm 
ASIC XC3S1200-4 XC4LX200-11 XC4 

LX200 XC5LX30-3 XC5 
LX30 

# Slices 21.07* 624 270 625 205 9896 170 86 2612 

# BRAMs n.a 4 + 1 2 + 1 4 + 1 2 + 1 0 4 + 1 2 + 1 0 

Max. Frequency (MHz) 746.27 108 185 179 294 167 240 366 167 

Latency (cycles) 18 18 36 18 36 18 18 36 18 

Throughput (Mbps) 5306 768 658 1273 1045 21376 1707 1301 21376 

Throughput/Slice (Mbps/s) n.a 1.2 2.4 2.0 5.1 2.1 10.0 15.1 8.2 
* Kgates not Slices 
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in [7] performs the Key expansion, the ones herein presented 
do not. The advantage of our approach is that we are able to 
cipher with 128, 192, and 256 bit Keys while the one in [7] is 
only able to cipher using 128 bit Keys. Nevertheless, the 
above comparison was performed between the two presented 
structures, which do not perform the Key expansion. 
 For the implementation of T-Boxes using LUTs, a total of 
185 slices would be needed for each T-Box if using a Spartan 
3E device. Thus 1480 slices would be needed to implement 
the 8 required T-Boxes in Type-I structure. Also, the delay 
imposed by this kind of implementation leads to a longer 
critical path and consequently to lower frequencies and 
throughputs. This can be seen by the low working 
frequencies obtained in [8] when compared to the ones herein 
proposed. 
 In [8] a fully unfolded structure is proposed, justifying the 
extremely high throughput obtained (21Gbit/s). However, 
this throughput comes at the expense of an excessively high 
area resource usage as depicted in Table 3. This structure 
does not allow for the use of encryption modes other than 
ECB and a key size of 128 bits. On a VIRTEX 4 FPGA a 
Throughput/Slice efficiency metric of 2.1 is obtained for [8] 
in comparison with a Throughput/Slice of 5.1 for the 
proposed Type-II structure. The comparison between the two 
implementations, suggest a Throughput/Slice of 1.8 to 2.4 
times better on a VIRTEX 5 and VIRTEX 4 technologies, 
respectively. Throughputs significantly above 1Gbit/s were 
not a target, since most FPGA applications do not require 
such high throughput values. 
 In the above discussion the BRAMs needed by the 
proposed structures were not considered. However, the 
number of used Slices is within the percentage of used 
BRAMs, which are available in the FPGA, either we use 
them or not. In the structure propose in [8] no BRAMs are 
used. 

5. CONCLUSION 

In this paper two hardware structures are presented for the 
implementations of the CLEFIA encryption algorithm. The 
presented structures were designed having in mind 
reconfigurable technologies, in particular FPGA with 
BRAMs, but can be easily targeted to other technologies 
such as ASIC. While one of the presented structures is 
similar to the one presented in the related art, and used for 
comparison, a second structure herein proposed, which 
collapses the round computation by carefully scheduling the 
operations with the use of an additional pipeline stage. 
 The results analysis suggest that with the collapsing of 
the computation presented in the proposed structure, 
significant gains in resource usage and in the 
Throughput/Slice efficiency metric can be achieved. 
Experimental results suggest that efficiency improvements of 
2.5 times can be achieved as well as a reduction in the 
required LUT up to 67% at a performance cost of 17% on a 
VIRTEX 4 FPGA. 

In conclusion, compact structures for the implementation 
of the CLEFIA encryption algorithm can be developed and 
throughputs near 1Git/s can be achieved with low resource 
usage, even on low cost FPGA devices. 
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