

UNIVERSITY OF ALGARVE
FACULTY OF SOCIAL AND HUMAN SCIENCE

THE UNIVERSITY OF WOLVERHAMPTON
SCHOOL OF LAW, SOCIAL SCIENCES AND COMMUNICATIONS

Munshi Asadullah

A Framework for Structural Ambiguity Resolution for
Portuguese.

A Project submitted as part of a programme of study for the award of
MA Natural Language Processing & Human Language Technology

Supervisors

Prof. Doutor Nuno J. Mamede
Instituto Superior Técnico (IST) / INESC-ID Lisboa

Prof. Doutor Jorge Baptista
University of Algarve / INESC-ID Lisboa

Dr. Constantin Orasan
University of Wolverhampton

May 2012

UNIVERSITY OF WOLVERHAMPTON
SCHOOL OF LAW, SOCIAL SCIENCES AND COMMUNICATIONS
MA NATURAL LANGUAGE PROCESSING & HUMAN LANGUAGE TECHNOLOGY

Name: Munshi Asadullah

Date: 15-05-2012

Title: A Framework for Structural Ambiguity Resolution for Portuguese
Module Code: LN4036

Presented in partial fulfilment of the assessment requirements for the above award

Supervisor: Dr. Nuno J. Mamede, Dr, Jorge Baptista and Dr. Constantin Orasan

Declaration:

(i) EITHER:
*This work or any part thereof has not previously been presented in any form to the University
or to any other institutional body whether for assessment or for other purposes. Save for any
express acknowledgements, references and/or bibliographies cited in the work, I confirm that
the intellectual content of the work is the result of my own efforts and of no other person.

OR:
*The work includes the following material which has been submitted for assessment/credit
previously: student to list material. My Project Supervisor has expressly agreed that it is
appropriate to include the material listed below within the work.

(ii) It is acknowledged that the author of any project work shall own the copyright. However, by
submitting such copyright work for assessment, the author grants to the University a perpetual
royalty-free licence to do all or any of those things referred to in section 16(i) of the Copyright
Designs and Patents Act 1988 (viz: to copy work; to issue copies to the public; to perform or
show or play the work in public; to broadcast the work or to make adaptation of the work.

(iii) EITHER:
*This project did not involve contact with human subjects, and hence did not require approval
from the LSSC Ethics Committee.

OR:
*This project involved contact with human subjects. Approval was given by the LSSC Ethics
Committee, and I have abided by any conditions that were stipulated.

Signed:__ Date:_________________

* One of each pair of alternatives in (i) and (iii) should be deleted.

Abstract.

Structural ambiguity resolution in natural language text is an active field of research.

Ambiguity is where a structural element in a text causes the interpretation of the text in

more than one way. Prepositional Phrases (PP) introduce significant amount of

structural ambiguity since how a PP modifies another phrase can often be traced beyond

the syntactic scope of a sentence. It is rather intuitive that semantic knowledge is

important to model the phenomenon properly. Proper semantic interpretation though

can be difficult to achieve. Moreover lexical and syntactic information based

approaches has been proven to be quite effective. One such approach was dependency

based resolution of PP attachment ambiguity. We propose a heuristic based modeling of

data from two different parsers namely Constraint Grammar (CG) based parser

PALAVRAS and Phrase Structure Grammar (PSG) based Finite-State Parser (FSP)

used as the parsing backbone of the STRING Natural Language Processing (NLP) chain

for Portuguese. Different models using two parser output will be produced and put

together in a linear combination for performance maximization. For the development of

the research, a processing framework is also proposed and its development is presented.

A dependency annotation tool is also developed within the scope of the research. The

models performance was satisfactory if not extraordinary, although the primary

objective was to present the modeling possibilities rather than the absolute performance.

Acknowledgement.

I am very thankful to my supervisors; Prof. Doutor Nuno J. Mamede and Prof. Doutor

Jorge Baptista for helping me build the research. I would also like to express my

gratitude to my supervisor at the University of Wolverhampton, Dr. Constantin Orasan

for guiding me towards the completion of the work.

I am grateful to Wilker Aziz for his technical help and support along with his advice

during the setup of the experiments. I would like to thank all the annotators who helped

me in evaluating the annotation took and producing annotated data. My special gratitude

to , for her help and support with the Portuguese language.

This research was partially supported by the European Commission, Education &

Training, Eramus Mundus: EMMC 2008-0083, Erasmus Mundus Masters in NLP &

HLT program.

Table of Contents

Chapter 1: Introduction .. 1
1.1. Motivation. .. 1

1.2. Objectives. ... 4

1.3. Methodology. ... 5
1.3.1. Data Pre-processing. ... 5

1.3.2. Experimental setup. .. 6

1.3.3. Implementations. ... 7

1.4. Structure of the dissertation. ... 7

Chapter 2: Related work. .. 9
2.1. Structural ambiguity. ... 9

2.1.1. Prepositional Phrase (PP) Attachment. ... 10

2.1.2. Syntactic Environment of the PP Attachment Ambiguity. 11

2.1.3. PP Attachment Disambiguation. ... 12

2.1.4. Preference Heuristics for PP Attachment Disambiguation. 13

2.1.5. PP Disambiguation and Dependency Grammar (DG). 15

2.2. Machine Learning (ML). ... 18
2.2.1. Machine Learning Methods. .. 18

2.2.2. Data and Feature. .. 19

2.2.3. Resolving Structural Ambiguity Using Machine Learning. 20

2.3. Summary. .. 23

Chapter 3: Data and Systems. .. 24
3.1. Data and systems overview .. 24

3.2. CG parsing with PALAVRAS. .. 25

3.3. Bosque Tree-bank. .. 26

3.4. Finite-State Parsing. ... 31

3.5. STRING NLP Chain. ... 32

3.6. XIP XML Structure. .. 35

3.7. Summary. .. 38

Chapter 4: Data Pre-Processing. .. 39
4.1. Data-structure generation. .. 39

4.1.1. Parsing Bosque. .. 39

4.1.2. Parsing with STRING NLP chain. ... 42

4.1.3. XIP data model generation. .. 44

4.2. Token alignment. .. 45
4.2.1. Data-structure for Alignment. .. 46

4.2.2. Alignment data generation. .. 46

4.2.3. Automatic alignment with Giza++. .. 47

4.2.4. Alignment data generation. .. 51

4.3. Summary. .. 52

Chapter 5: Experments & Evaluations. ... 54
5.1. Experimental data analysis.. 54

5.2. The dependency annotation tool DpAn. ... 59

5.3. PP attachment disambiguation model. ... 65
5.3.1. Linier Phrase Distance (LPD) Heuristic. ... 65

5.3.2. Tree Travers Distance (TTD) Heuristics. .. 66

5.3.3. Model evaluation.. 66

Chapter 6: Future Prospects and Conclusion. .. 68

References. ... 69

List of Figures:

Figure 1 - 1: Primary data processing of the Bosque. .. 6
Figure 1 - 2: Alignment data generation. .. 6

Figure 2 - 1: Possible Parse-Trees for Example.2.2. .. 10

Figure 3 - 1 : CGD view of a sentence in Bosque.. 27
Figure 3 - 2 : A typical header in the CGD view of a sentence in Bosque. 27
Figure 3 - 3 : Inconsistency in raw text found in Bosque. ... 28
Figure 3 - 4 : Different segments of CGD output of a sentence in Bosque............... 28
Figure 3 - 5 : ID error in CGD output of Bosque. .. 30
Figure 3 - 6 : Irrelevant random element error in CGD output of Bosque. 30
Figure 3 - 7 : The STRING NLP Chain. ... 32
Figure 3 - 8 : First level of DTD’s in XIP XML.. 35
Figure 3 - 9 : Hierarchy of a NODE element in XIP XML. 36
Figure 3 - 10 : DEPENDENCY elements in XIP XML.. 37

Figure 4 - 1: Bosque data-structure of one sentence. ... 40
Figure 4 - 2 : Redundant parsed output in Bosque. ... 41
Figure 4 - 3 : Representation of the reflexives in Bosque. ... 42
Figure 4 - 4 : Class interaction in XIP data model. .. 44
Figure 4 - 5 : Primary alignment output. .. 48
Figure 4 - 6: Token level alignment map. ... 52

Figure 5 - 1: Dependency representation in XIP XML ... 54
Figure 5 - 2: Modifier (head) distribution in the training data................................. 55
Figure 5 - 3 : Governor distribution of PP in the training data. 56
Figure 5 - 4: Modified governor count of PP in the training data. 57
Figure 5 - 5: Modified governor distribution of PP in the training data. 58
Figure 5 - 6: DpAn Basic Window. .. 60
Figure 5 - 7: DpAn Prompts. .. 61
Figure 5 - 8 : DpAn Parse Tree Representation. .. 61
Figure 5 - 9: DpAn response from the annotators. .. 62
Figure 5 - 10 : DpAn Input File Format. ... 64
Figure 5 - 11 : LPD distribution observed in the data. .. 65

List of Tables:

Table 3 - 1: NODE element attributes. ... 37

Table 4 - 1 : Punctuation map for raw text extraction. ... 43

Table 5 - 1: Evaluation Results. ... 67

1

Chapter 1: Introduction.

This research will investigate a way to improve the Prepositional Phrases (PP)

attachment disambiguation for Portuguese using the output of two automatic parses. PP

attachment is a structural ambiguity problem that makes it difficult for a parser to attach

a PP with the phrase it modifies. We are proposing several heuristic based models for

the task. Since very little work has been done in this direction, a framework has been

proposed to design the models in a semi-automatic way. The parsers selected for the

task are STRING (Mamede, 2011) Natural Language Processing (NLP) chain and

PALAVRAS (Bick, 2000). This chapter will provide a general overview of the

motivations, aims, challenges and the contributions of the research.

1.1. Motivation.

Ceccato et al. (2004, p. 1) argued that ambiguity, where something can be interpreted in

more than one way, is a phenomenon present at all levels of linguistic analysis in

natural languages. According to Roth (1998, p. 806) many important natural language

problems can be regarded as problems of resolving ambiguity. The ambiguity may be

semantic or syntactic or both based on the context. Thus, this research is motivated by

the fact that mapping accurate dependencies in a sentence defines the relation of each

syntactic element with respect to its surrounding elements and that will ease the task of

structural ambiguity resolution and semantic interpretation.

Improving the accuracy of the dependency representation will make the current output

of STRING more appropriate and information-rich for further analysis and processing.

Moreover, the statistical models will be tried to enrich using the parser output of the

Bosque tree-bank. Bosque was parsed using Dependency Grammar (DG) (Tesnière,

1959) based parser PALAVRAS. According to Covington (2001, p. 97) the parser in the

human mind operates in the same way as in a DG. The author (idem: ibidem) also

presented some advantages of DG over more traditional representation based on

constituency namely that “dependency links are close to the semantic relationships

needed for the next stage of interpretation”, especially for semantic and pragmatic

analysis, which also motivated this research. Best of our knowledge, a framework to

incorporate DG based bi-lexical dependency information with Phrase Structure

2

Grammar (PSG) based dependency information, such as the output produced by

STRING, has never been attempted, thus, another important motivation for the research.

Furthermore, among different ambiguities, structural ambiguity, more specifically

attachment ambiguity resolution in parsed texts, is one of the goals of this research.

Structural ambiguity, occurs when a sentence has several alternatives dependency

relationships between words or phrases. Nagao (1990, p. 280) stated that these kinds of

ambiguities are difficult to resolve using syntactic knowledge alone. Semantic

processing is often also necessary. He also argued that resolution of structural

ambiguities is a problem of selecting the most acceptable dependency from several

possibilities. It is often performed by using knowledge on dependencies between words

(idem, ibidem).

Resolving attachment ambiguity, such as the Prepositional Phrase (PP) attachment

problem, can thus be performed more efficiently with the proper dependency annotation

of a sentence. The correct attachment of PPs is a central disambiguation problem in

parsing natural languages as Merlo & Ferrer (2006, p. 341) presented that “Incorrect

attachment of prepositional phrases often constitutes the largest single source of errors

in current parsing systems. Correct attachment of PPs is necessary to construct a parse

tree which will support the proper interpretation of constituents in the sentence.”

According to the authors (idem, ibidem), “recent approaches have formalized the

problem of disambiguating PP attachments as a binary choice, distinguishing between

attachment of a PP to a given verb or to another constituent”. This is, though, a

simplification of the problem, which does not take the type of the attachment into

account. The authors (idem, ibidem) eventually proposed an extension of the problem of

PP attachment as a “four-way disambiguation problem”, arguing that what is needed in

“interpreting prepositional phrases is knowledge about both the structural attachment,

the traditional noun and verb attachment distinction, and the nature of the attachment,

i.e. the distinction between arguments from adjuncts”. The later distinction is a

traditional linguistic problem for which there is no trivial solution (see Goldberg, 1995).

Foth & Menzel (2006) argued that the PP attachment can be well treated with the help

of Machine Learning (ML) approach. ML techniques are used to resolve irregular and

complex problems for several significant reasons that have been listed by Nilsson

(1998, p. 2). Some tasks cannot be defined properly except for by example; i.e. one

3

might be able to specify input and output pairs but not a precise relationship map

between an input and the desired output. Moreover, a system should be able to adjust

their internal structure to produce correct outputs for a large number of sample inputs.

Thus, it is possible that the performance of a system can be improved with large amount

of better quality data. The other important aspect of ML based systems is that, it

provides a way to extract the important relationships required to solve the problems

from huge amount data.

This study will be dealing with the output of two rather different systems and model the

PP attachment phenomenon using both the systems. The systems are rule-based system

and thus relationship present in the data is limited by the features used to devise the

rules. There is a possibility of the existence of more useful relations that might be

discovered by using the distribution of certain features over the training data set. These

relations may have been left out because of both the exhaustive development process of

any rule-based system and the increasing complexity of predicting the hierarchy of rule

triggering. Therefore, a ML system may be used to extract these relations and thus use

them to model a phenomenon more accurately.

Furthermore, the Bosque corpus here used is quite large and the number of features

available in the linguistic, information-rich, STRING output may be able to establish a

map between the input and the output. Moreover, the size of the data and the number of

features are overwhelming for human encoding. Besides, future editions of the corpus

may be more accurate and STRING features are regularly updated. So, intuitively, a ML

approach seems reasonable for this task.

In the realm of ML, the attachment disambiguation task can be categorized as a

classification problem. It is considered to be a standard problem handled by Artificial

Intelligence (AI) methods. According to Walt & Barnard (2006, p. 170), “the

performance of classifiers depends on both the quality and the quantity of the training

data, and the richness of the feature set selected for the classification”. This research

will be conducted with the pre-compiled corpus Bosque and thus the quality and

quantity of the training data is constrained by the size and the quality of the corpus.

An information-rich feature set will be able to extract significant amount of linguistic

knowledge embedded in the data to make the accurate modeling that is necessary to

improve the dependency output. The data extraction though can be a difficult task

4

considering the irregularities which may be inherent from the underlying systems or

noisy data. A robust framework is necessary to reduce the time required for developing

application and research to study dependency relations. This is an important motivator

for this research.

1.2. Objectives.

This dissertation will describe the methods that have been investigated in order to

design a framework to analyze, annotate and develop dependency relation based

research such as PP attachment disambiguation using the parsers under investigation.

The framework is a part of the natural development of this research to build a statistical

model to extract PP modifier dependency using the features that can be extracted from

the data.

Lin (1997, p. 65) defined that traditionally, lexical dependencies (Hudson, 1984;

called head (or governor, or parent), and another word called modifier (or dependent, or

daughter). However the dependency generated by STRING defines the relationship

between the heads of the chunks rather than the relationships between word units. The

models will be generated using the output data of the systems, regardless of the rule set

or underlying implementation of the parsing systems that produced the data. Thus the

model will be adopted to extract relationships between the chunks. Thus, one of the

primary objectives is to check for possible improvement in the current dependency

output of the STRING.

The input data will be extracted from the parsed output of the parsers under

investigation. The objective is to design a model that will select the candidate of a

modifier and governor pair and select the most probable pair. This dissertation will also

present the experiments conducted to evaluate the performance of the model in

disambiguating the PP attachments. Although the experimental setup, tools and the data

are developed for Portuguese, an argument in favor of the possible multi-lingual nature

of the framework will also be presented.

The methods used for the statistical modeling, extracts pre-defined feature distributions

from the parsed output of the STRING and the Constraint Grammar (CG) (Karlsson,

1990) format output of PALAVRAS. The model thus is biased by the underlying rule

5

based system and the model’s performance is expected be closer to the training dataset.

The absence of large amount of gold standard training data will be attempted to be

compensated by biasing the model’s parameters using the Portuguese tree-bank

Bosque1. The CG formalism with bi-lexical dependency is used to represent one of the

many formats of the Bosque output. The separate model was developed using the

Bosque and will be used in combination with the other models.

Bosque is the part of the larger tree-bank, Floresta Sintá(c)tica tree-bank project

(Afonso et al., 2002). However Bosque has been checked by humans for the anomaly in

the parsed output. It will be used to extract the biasing factors, such as, the existence of

a traversal path between the modifiers and governor components and the path distance if

such exists. Several models will be produced and the performance will be evaluated

using human annotated test dataset. The human annotation will be produced using the

annotation tool developed as a part of the proposed framework.

1.3. Methodology.

The methodology for the study is designed, concerning the primary goal of the research,

which is extracting and using available linguistic knowledge in the data to resolve

dependency mapping using ML methods. The linguistic knowledge is encoded in

STRING and Bosque in the form of rules and features, and the data convey them. Thus

pre-processing of the data is a vital part of this research. The extracted data can then be

used to design the model and experimented with different features to incorporate in the

model to improve its performance.

1.3.1. Data Pre-processing.

The model will be designed using the output of two different parses. Thus the training

dataset needs to be parsed by both parsers. The amount of human modified data though,

has been limited by the size of the dataset of Bosque. So, the raw text from the Bosque

will be extracted and then parsed using the STRING NLP Chain. The parsed tokens are

produces differently by each parser thus, token level alignment will be required for the

proper data analysis and modeling using both parses. So, the data processing will start

with processing the Bosque. We shall extract the raw text form the data and at the same

time the parsed output will be transferred into a predefined data-structure.

1 Distribution at http://www.linguateca.pt/floresta/

http://www.linguateca.pt/floresta/

6

Figure 1 - 1: Primary data processing of the Bosque.

The raw text then will be parsed with the STRING NLP Chain and the output in XIP

eXtensible Markup Language (XML) format will be used for this study. The output

data will then be processed into the detailed data-structure for future processing. From

the data-structures of both Bosque and XIP sentence level alignment data will be

produced.

Figure 1 - 2: Alignment data generation.

Raw alignment ready text from the two systems will then be aligned using automatic

aligner GIZA++ (Och, 2000). The automatic aligner align tokens by their relative index

in the sentence, thus a transformation module will be needed to extract proper token

level alignment. Once proper alignment is achieved the data is ready to be used to

extract the modeling parameter distributions. The framework that we are developing

within the scope of this research allows all such preprocessing in a structured manner

and with any number of dataset.

1.3.2. Experimental setup.

The primary experiments conducted in producing the model is the parameter evaluation.

First of all the dataset has been split into 90% training set and 10% test set. The

7

distribution of each of the feature selected will be extracted from the training dataset.

The test set has been evaluated by human annotator for the correctness of the data. This

test dataset will be the reference dataset, thus all evaluations will be performed using

this data. Both training and test dataset will be made up of only the modifier elements

that are PPs to model the attachment behavior. This dataset will be used to evaluate the

proper feature set for the model.

1.3.3. Implementations.

As a part of this research, we implemented a simple annotation tool to annotate head

dependency. This tool will be used to produce the reference dataset. The tool will have

an innovative interface to allow the annotator perform the task without too much

training and instructions. The design and implementation issues regarding the tool will

be discussed in the Chapter 5.

For the research the tool is needed to generate the reference test data, annotated by

human annotator. The framework’s core is the reversed engineered data-structure that

provides a simple interface to produce experimental data needed to model and later use

that model to perform specific tasks. The data-structure and the manipulation system

built on top of it provide a fluid interaction between the objects defined to represent the

data. In Chapter 5 the framework will be used to model and then evaluate a statistical

model for PP attachment disambiguation.

1.4. Structure of the dissertation.

The dissertation will be divided into six chapters. In the first chapter, a general

presentation of the problem domain will be made. In this chapter we have also made the

general introduction to the tools and resources to be used for the research. We have also

presented the general outline of the research methodology to be used and the

organization of the dissertation.

The second chapter will introduce the problem domain in finer details and report the

findings of recent researches on the subject. We will be trying to model structural

ambiguity, in particular attachment ambiguity, and resolution methods will thus be

introduced along with the recent development in the field. We will be using ML

methods and thus different methods and algorithms will be briefly introduced. The

research trends and their performance will also be reported in this chapter.

8

The third chapter is dedicated to the data and its representation. The systems under

study will be introduced and a reasonable analysis of their underlying theoretical

background will be presented. The data pre-processing methods and the design

decisions will also be discussed. One of the major issues that will be presented in this

chapter is the data structures.

The forth chapter will discuss the data preprocessing steps, primarily the parsing the

Xerox Incremental Parser - eXtensible Markup Language (XIP XML) (XRCE, 2011)

data into the data-structure. The other important issue is the token level alignment to

allow the framework to use data from two different systems. The evaluation of the

automatic alignment process will be presented and the results will be discussed. The

alignment process will require some pre-processing and this chapter will present the

tools required for the task.

The fifth chapter will discuss the experimental setup and the underlying algorithms. The

design and development of the annotation tool Dependency Annotator (DpAn) will also

be presented in this chapter along with the qualitative evaluation of the tool. The

statistical model for PP attachment disambiguation will be introduced and performance

with the reference data will be discussed. It will also present the automatic evaluation

process and report the findings of the research.

The final chapter will present a general discussion on the achieved results. Along with

the future direction of the research this chapter will also include some concluding

remarks regarding the possibility of multi-lingual aspect of the work.

9

Chapter 2: Related work.

This chapter discusses the theoretical background of the problem domain and the

studies conducted to explore the scope of structural ambiguity. It will also explain the

relevant research regarding solving the problem, especially Prepositional Phrase (PP)

attachment disambiguation. Moreover, Machine Learning (ML) methods will be

explored for some of the experiments, thus a general overview of ML research and its

involvement in resolving PP attachment will also be provided. In the later part of this

chapter, relevant work done for Portuguese language will be presented.

2.1. Structural ambiguity.

The presence of more than one interpretation or meaning of a single sentence is

traditionally designated as ambiguity. Although the conflict of meaning interpretation

puts ambiguity to be a problem in semantic or other higher level of analysis (pragmatic,

discourse etc.), the source of the ambiguity can be defined in all the possible linguistic

levels (morphological, lexical, syntactic, pragmatic, discourse etc.). Structural

ambiguity is best defined in Hindle & Rooth (1993) as the ambiguity caused by the

possibility of multiple syntactic representation of a single sentence i.e. having more than

one parse-tree.

Let us meet the new European literature teacher. (example.2.1)

Example.2.1 is syntactically ambiguous because of the two possible syntactic

representation of the sentence, i.e. one attaching the adjective European to teacher and

the other one to history. The sentence is though is ambiguous because of the two

distinct meaning that can be extracted, i.e. new literature teacher is from Europe or the

new teacher will teach European literature.

A sentence having multiple parse-trees does not automatically corresponds to

ambiguity, rather each tree representing unique meaning for the sentence makes it

structurally ambiguous. Hindle & Rooth (1993) argued that, Prepositional Phrase (PP)

attachment is the most recognized instance of structural ambiguity. Therefore, this

research will try to formulate a Machine Learning (ML) method to reduce PP

attachment ambiguity in Portuguese using parsed output of the shallow parser and rule-

10

based automatic linguistic analysis tool, STRING Natural Language Processing (NLP)

chain. The following sections will give a brief overview of the specific problem domain

followed by different approaches attempted to resolve this ambiguity so far.

2.1.1. Prepositional Phrase (PP) Attachment.

Attachment ambiguity occurs when a particular syntactic constituent of a sentence, such

as a prepositional phrase or a relative clause, can be correctly attached to two other

syntactic constituent of that sentence. The most well-known pattern of attachment

ambiguity is a Prepositional Phrase (PP) that may modify either a Verb Phrase (VP) or

a Noun Phrase (NP). The general form of the ambiguity can be explained by the

following example (example.2.2).

The girl hit the boy with a book. (example.2.2)

The PP with a book can be attached with either the VP hit or the direct object of the VP

the boy. The ambiguity is structural and (Figure 2.1) shows the possible parses.

Figure 2 - 1: Possible Parse-Trees for Example.2.2.

The first parse attaches the PP with the Noun Phrase (NP) thus, representing the

meaning where, the girl hits a boy who had a possession relation with the book; whereas

the second parse attaches the PP with the Verb Phrase (VP) and that expresses the

meaning that, the book is an instrument of aggression (i.e. there is no possession

relation). These structures though represent two different semantic representations for

the sentence and thus can be considered ambiguous. However, this is an over simplified

representation of the PP attachment ambiguity.

11

Nadh & Huyck (2009) argued that the presence of the frame [VP NP PP] introduce such

ambiguity in English and they also presented the experiments by Ford et al. (1982) with

human subjects using the example.2.3, where 35% of subjects attached the PP to the VP

and 65% to the NP.

She discussed her daughter’s difficulties with the teachers. (example.2.3)

The problem thus appears to be more complex since even native speakers have

disagreement over the attachment issue. Hence, a general overview of the problem

domain is presented in the following sub-section.

2.1.2. Syntactic Environment of the PP Attachment Ambiguity.

Prepositions are often characterized as syntactic connecting words. However, they have

both syntactic and semantic disclaimers that are distinctive to them. According to Merlo

& Ferrer (2006, p. 341) PP attachment has been presented by many researchers as a two

way i.e. binary syntactic disambiguation problem considering that the PP can attach to

the verb or the direct object of the verb.

The idea was originally introduced by Hindle & Rooth (1993) as a means of

disambiguate PP attachment using ML methods. Lexical association of the preposition

in the PP with the verb or the verb’s direct object was used to formulate the problem. A

later study by Brill & Resnik (1994) extended the feature set to four elements, which

contains the noun inside the PP as well.

The authors (Merlo & Ferrer, 2006, p. 341) however considered the problem as a four

way disambiguation problem, considering the type of the PP in the disambiguation

process, namely, PP argument and PP adjunct. For example,

The girl put the book on the table in the morning. (example.2.4)

The sentence in (example.2.4) contains two PPs and both are attached to the verb put,

but the type of relation is quite different. The first PP, on the table is a locative PP and it

has an argument or necessary relation with the verb; whereas the second PP in the

morning is an optional descriptor of time and has an adjunct relation with the verb. The

authors (Merlo & Ferrer, 2006) also presented the difficulties in such distinction and

introduced a method using corpus-based statistical correlates for the diagnostics used in

linguistics to decide whether a PP is an argument or an adjunct. They found that the

12

most significant feature to be used for their proposed method was lexical classes (noun,

verb etc.).

I saw the girl with the basketball (example.2.5)

Niemann (1998) studied the PP attachment in relation to the semantic role that it plays

in the sentence. The authors provided (example.2.5) as a general presentation of the

study, explaining that, intuitively the PP with the basketball cannot play the semantic

role of instrument for the verb saw. A human speaker would rather expect it to take the

role of possession, thus attaching the PP with the NP the girl. He (Niemann, 1998) also

refers to the seminal work of Taraban & McClelland (1988), which reported the regular

anticipation of such roles by human speakers.

Fellbaum & Miller (1990) demonstrate that the semantic associations given as

hypernym and troponym trees in WordNet (Miller et al., 1990) can be used to categorize

lexical items when parsing PP attachment. They used partially parsed corpus and

reported that clear preference patterns were presence and that assist the disambiguation

with “relative success”. They reported 80% accuracy for PP attachment disambiguation

and also mentioned that, the presence of word sense ambiguity reduce the accuracy by

8%.

Another work that explores the scope of the PP attachment ambiguity was conducted by

Mohanty et al., (2005). They performed a detail study of six English prepositions (for,

from, in, on, to, and with) and the thematic role they play depending on the semantics of

the preceding and the immediately following lexical heads. They used the British

National Corpus (BNC) and reported that these six prepositions account for about 45%

of the total 11 million PPs in the corpus. They studied these prepositions within the

frame such as [V NP1 P NP2] among the eight frames defined in the study. They found

up to eight sentence patterns for some of the prepositions. In conclusion, they argued

that a deep linguistic analysis is needed to resolving the ambiguity and that, instead of

analyzing millions of sentences, only a set of sentence types containing the relevant

patterns, are needed to be tested.

2.1.3. PP Attachment Disambiguation.

Human speakers possess the knowledge about the environment where PPs occur, and

thus have the natural ability to resolve the ambiguity, especially during oral

13

communication. Eysenck & Keane (2000, p. 339) made a general observation about the

cognitive progression in a human speaker to resolve ambiguity using prosodic feature as

follows,

“Spoken speech contains prosodic cues in the form of stress, intonation, and so on.
This information can be used by the listener to work out the syntactic or grammatical
structure of each sentence. For example, in the ambiguous sentence, ‘The old men and
women sat on the bench’, the women may or may not be old. If the women are not old,
then the spoken duration of the word ‘men’ will be relatively long and the stressed
syllable in ‘women’ will have a steep rise in pitch contour. Neither of these prosodic
features will be present if the sentence means that the women are old.”

Ratnaparkhi et al. (1994) obtained PP-attachment resolution performances of three tree-

bank experts on a set of three hundred randomly selected test events from the Wall

Street Journal (WSJ) corpus. They reported that human experts could reach an accuracy

of 93.2%, resolving PP attachments, if cases were given as whole sentences out of

context.

Altmann (1985) studied a number of syntactic resolution experiments to determine

whether ambiguity resolution by humans is based on syntactic information alone or

some other basis, e.g. the presence of contextual information. He found that syntactic

ambiguity resolution by humans is largely based on existing knowledge. Even an

isolated sentence with no context, that has a PP-attachment ambiguity, could be

resolved based on prior knowledge.

The author concluded that computational models of syntactic ambiguity resolution

which ignore contextual considerations are not true models of NLP, thus emphasizing

the importance of semantic models. The general approach to the problem is to use a

preference heuristics and the common preference heuristics used are presented in the

next section.

2.1.4. Preference Heuristics for PP Attachment Disambiguation.

Linguistic information-based computational systems often use structure-based

preference heuristics to resolve parsing ambiguities. One such approach is Right

Association (RA), originally presented by Kimball (1973, p. 24), which states that

constituents should be attached to the nearest (lowest i.e. right most) non-terminal node

because of the tendency of natural language to be organized in a right-branching

14

structure. For PP attachment, this means that the PP should always be attached to the

nearest constituent, i.e. the NP, in a [VP NP PP] frame.

Another approach to resolve the problem is the Minimal Attachment (MA), originally

proposed by Frazier (1983) as a part of the Garden-Path Theory. This approach

essentially suggests that potentially unnecessary nodes will not be proposed and the new

items will be attached to the recently processed phrase or clause. So, in a [VP NP PP]

frame, the PP will always attach to the VP.

The other approach to the problem is to define Lexical Preferences (LP) for the noun,

the verb, or the preposition. The LP for verbs regarding PPs has been presented by Ford

et al. (1982) while Rappaport (1983) studied the LP for nouns. Preposition themselves

may have different likelihood to get attached to certain constructions. Preposition acting

as functions, for example, in temporal PPs may be associated to pattern in attachment to

events that have temporal properties, for details see Wilks et al. (1985). Huyck (2000)

also presented this heuristic mentioning that, in the case of the preposition of, this

approach is entirely effective; i.e., a PP with the preposition of always attaches to the

NP.

Another heuristic searches for a similar PPs as modifiers with in the discourse and if a

match is found the attachment take the appearance of the antecedent. Crain & Steedman

(1985) termed the theory to be the principle of Referential Success (RS). They stated

that this principal can be generalized as a kind of presupposition satisfaction method i.e.

the reading that satisfies the most presuppositions is the one to be preferred. They

(Crain & Steedman, 1985, p. 170) explained the method as follows,

“A definite NP presupposes that the object or event it describes exists and that it is
available in the knowledge base for unique reference. The attachment of a PP to an NP
results in new presuppositions for the NP, but cancels its uniqueness. The attachment
of a PP to a VP creates no new presuppositions but rather indicates new information”.

Volk (2001, p. 34) use the method to perform PP attachment disambiguation for

German. He explained the method such that, if the attachment to a definite NP mapped

to an undefined pattern, the verb attachment will be considered. On the other hand if the

NP attachment is mapped to a definite reference, NP attachment will be accepted as

proper. Finally, he concluded that in this process the definiteness is a feature to be used

while deciding the attachment of the PP. However, he stated that such a detailed

15

knowledge representation is only possible for strict domain specific implementation

with semantic analysis.

Hirst (1987) introduced a modification to the theory and conclude that, definite noun

phrases require “the recipient of a discourse” to attempt a connection to the existing

knowledge. So it is necessary to search the whole discourse space to locate the

antecedent and thus the author concluded stating that indefinite, generic or simple plural

noun phrases are preferable for searching over definite noun phrases. His method

though relies more into the semantic representation than syntactic representation.

Whittemore et al. (1990) presented a comparative study on the preference heuristics

presented above. These heuristics are the basis of any structural solution to the PP

disambiguation strategy thus the result this study is quite significant. The author used a

dataset of 910 sentences distributed equally over 13 different dialogs containing 745

sentences with potential attachment ambiguity. The author reported a 55% success

using the RA heuristic whereas, the strict MA performs worse, with 36% accuracy. The

author also reported that 81.86% instances of LP has been successfully extracted which

is fairly high accuracy. In the case of RS, the author reported that, with all the NPs the

performance was rather poor with 52% accuracy, but the accuracy increase to 90%

when the definite NPs are excluded.

2.1.5. PP Disambiguation and Dependency Grammar (DG).

In this section some of the works that specifically used lexical dependency as a means

to resolve PP attachment ambiguity. Nivre (2005), in his detailed work on Dependency

Grammar (DG) and dependency parsing stated that modern DG is considered to achieve

its formal structure with the inspiring work of Tesnière (1959). In another work on

stochastic model for DG, Nivre (2002, p. 1) describes DG as follows,

“Dependency Grammar (DG) is a rather vague concept and can probably best
understood as an umbrella term covering a large family of grammatical theories and
formalisms that shares certain basic assumption about grammatical structure. The
most significant assumption is that syntactic structures consist of lexical nodes linked
by binary relations called dependencies. This representation thus lacks phrasal nodes
unlike the traditional representation based on constituency”.

Blevins & Sag (2011, p. 1) argued that, “most of the history of linguistics is the history

of DG”. It is widely used as a method of syntactic representation by traditional

16

grammarians, especially in Europe, and predominantly in Classical and Slavic domains

Nagao (1990) developed an experimental system called Dependency Analyzer. The

system used, “instances of dependency structures” extracted from a terminology

dictionary (IBM Dictionary of Computing) as a knowledge base. The process is

explained by the author as follows,

”Structural (attachment) ambiguity is represented by showing that a word has several
words as candidate modifies. The system resolves such ambiguity by searching the
knowledge base for modification relationships (dependencies) between the word and
each of its possible modifies, then assigns an order of preference to these relationships,
and finally selects the most preferable dependency. It was aimed to overcome two
serious problems in realizing practical semantic processing; semi-automatic
construction of knowledge and efficient use of that knowledge. (Nagao (1990: 282)”

He used a knowledge base which includes about 20,000 instances of dependency

structure. The author evaluated the system by disambiguating the prepositional phrase

attachment of about 2,000 sentences. He reported that out of 4,290 PPs, the system

correctly disambiguated 3,569, which gives an 83.2% success for disambiguation.

A step forward is to choose the attachment based on the n-tuple formed by the

preposition, verb, and noun. The authors (Hindle & Rooth, 1993) used 1,000 sentences

with potential PP ambiguity and perform analysis based on some the structural

heuristics mentioned on the previous section along with their proposed methodology.

They reported 67% accuracy for RA heuristic and only 33% accuracy for MA heuristic.

While human analyst performs with an average accuracy of 85% - 88%, the LP heuristic

was found to have accuracy around 80%. They also reported that with their method

which is a modified LP, the accuracy achieved was up to 89%.

Nuria & Lafourcade (2005) presented a system that used the output of the Xerox XIP

parser using the grammar implementation for French. They extracted all possible

attachments for a given sentence. Then they query the World Wide Web (WWW) for

the attachment distribution statistics and lexical signatures of the components of the

pattern. Then all these information has been used to weight the dependency produced by

the parser. Although they did not report the final results, they presented there estimate

of 80.6% correct attachment.

17

Hsieh et al. (2007) presented an automatic method to produce erroneous yet unlimited

amount of “word association” data to evaluate the best trees produced by a feature-

extended PCFG grammar. The error in the data was mainly because of the word sense

ambiguity and parsing error produced by the parser. They added lexical dependency or

word-to-word dependency as a type of semantic information in the resolution process,

extracted for the phrasal heads. They used a Gigaword Chinese corpus (from three

different sources, namely, Taiwan's Central News Agency, Xinhua News Agency and

Central News Agency) to extract word dependency pairs. Their system was evaluated

by standard PARSEVAL metrics and they only used sentences longer than six words for

testing. They reported F-Score between 83.99 and 88.83 on three separate test data set.

In another work to incorporate dependency parsing with PP attachment was attempted

by Kübler et al. (2007). They investigated the performance of a DP’s output in

comparison to an independent PP attachment classifier. They also present a method to

integrate the PP attachment information into the output of a parser without modifying

the parser itself. The experiments used data extracted from the Tübingen tree-bank of

Written German. TüBa-D/Z (Telljohann et al., 2005) is a syntactically annotated corpus

consisting of newspaper articles comprised of approximately 27,000 sentences, or

470,000 words. For dependency parsing, MALTParser (Nivre et al., 2007) was used.

MaltParser is an implementation of deterministic inductive dependency parsing, based

on a memory-based or a Support Vector Machines (SVM) classifier.

An extensive study by Nivre et al. (2007) tested the parser on 10 different languages.

They presented that the approach is language-independent and reaches state-of-the-art

results. The independent module for PP attachment was reported to reach an accuracy of

81.4% in contrast to the parser output accuracy of 71.8%. Incorporating PP attachment

module to annotate parser output shows insignificant improvement in overall parsing

output (0.3%). The output accuracy improvement for PP attachment was minor (3.1%)

as well.

Cahill et al. (2009) presented a system to automatically extract large lists of tri-lexical

dependencies from [PP NP VP] triples taken from a corpus of 230 million tokens of

parsed newspaper text. They investigated how effective they are in PP attachment

disambiguation by integrating them into a log-linear model (Agresti, 1990) for parse

disambiguation. They used the FSPar parser (Schiehlen, 2003) to create dependency

18

structures for each sentence. They reported the F-Score of 80.05% using 10,000

dependency samples. They also reported that increasing the sample size to 250,000

reduces the F-Score to 79.85%. They conclude that higher number of samples may

introduce noise to the system thus reducing the performance.

We are proposing a system that is using a form of RA heuristic. The basic idea is to

model the PP attachments on the basis of the number of phrases between the modifier

and the governor phrases. Using the training data this feature will be modeled and we

have termed it Linier Phrase Distance (LPD). A similar traversal distance heuristic was

used for the Bosque trees. It tries to obtain the traversal distance between the modifier

and the governor token element and we have termed it Tree Travers Distance (TTD)

Heuristic. The heuristics were modeled manually but each heuristic value will be

learned from the training data by the system.

2.2. Machine Learning (ML).

This section will provide a brief overview of basic concepts of Machine Learning (ML)

and its components. Learning covers such a broad spectrum of processes that it is

difficult to define it properly. ML or Data-Driven Learning (DDL) though deals with

the processes that allow computer systems to learn patterns from data and later identify

those patterns in unseen data. Blum (2002, p. 2) presented a concise definition of ML:

“Machine Learning Theory, also known as Computational Learning Theory, aims to
understand the fundamental principles of learning as a computational process. This

eld seeks to understand at a precise mathematical level what capabilities and
information are fundamentally needed to learn different kinds of tasks successfully,
and to understand the basic algorithmic principles involved in getting computers to
learn from data and to improve performance with feedback.”

DDL can be crudely named as classification problem or regression problem depending

on the type of data the system is dealing with. If the data contains discrete values, the

term classifier is used and for real values regression analysis is often used. ML methods

relevant to the research will be presented in the next subsection.

2.2.1. Machine Learning Methods.

The learning method categorization is primarily based on the representation of available

experience and broadly categorized as Supervised Learning, Unsupervised Learning and

Semi-supervised Learning. In supervised learning (Farley & Clark, 1954) the experience

19

representation or data is labeled with the class of pattern it is representing, often by

human data resource provider. When the data is not labeled and the learning algorithm

has to determine the label by recognizing a finite set of patterns present in the data, it is

called unsupervised learning (Marr, 1970). A hybrid approach known as semi-

supervised learning (Scudder, 1965) uses a small amount of labeled data to define a

preliminary class definition and later use the acquired knowledge over a larger set of

unlabeled data.

This research though will be dealing with discrete values once the training data is

produced. The result we will be searching can have only two possible values, either an

attachment between a modifier and a governor is correct or incorrect. Thus the problem

can be defined as a binary classification problem. The training data production is a

heuristic based method. Once the heuristics are defined, the process is an unsupervised

method, even if it is not a clustering method. Thus the whole process is often termed as

a semi-supervised or boot-strapping method. The heuristics were defined by studying

examples but the modeling was performed automatically by extracting the parameters

from the data.

The classification algorithms can be based on different learning philosophies regardless

of the method. Furthermore, some algorithms classify data into finite discrete classes

(Linear Classifiers, Support Vector Machine etc.). Learning philosophy for the

algorithms include, Multi-Dimension Vector Geometry (Linear Classification, Support

Vector Machine etc.); Statistical Inference (Maximum Entropy Model, Hidden Markov

Model etc.); Logical Inference (Decision Tree) and Biological concept Based Models

(Artificial Neural Network, Evolutionary Algorithm etc.). Most of these approaches

have been used in some Natural Language Processing (NLP) tasks, more specifically

for structural ambiguity resolution (See Duda et al., 2000). The model we are trying to

devise can be classified as a linier combination of statistical inference i.e. results of

multiple feature probability combined together.

2.2.2. Data and Feature.

Machine learning, like any learning process relies on acquiring knowledge. Increasing

knowledge in a system to improve the solution for a target problem is the primary goal

for ML methods. The source of the knowledge is the data and features are the

knowledge units representing each datum. In NLP, data can be in different forms,

20

namely, speech, digitized text and images. Each data type poses unique set of issues

regarding machine learning methods and algorithms. Data representation is another

issue that deals with how the data may look like (numeric values, text, frequency values,

etc.). Furthermore, the specific research question that a certain study is trying to answer

often shapes the use of a certain data representation and the ML method that are applied

to them.

The features are the backbone of any machine learning method. The distributions of the

features are the key observation in a machine learning method to obtain a classifier. ML

methods try to generalize the pattern present for one or a set of features in a dataset for

each decision class. A real world problem may have hundreds of features. In most cases

most of the features are noise or useless to the actual problem domain. Worse than that

is, if a classifier manages to find patterns in those noises to classify. Feature selection

thus is an important task in ML system.

The basic approaches in feature selection are Filtering, Wrapping and Feature

Weighting. Filtering is the process of selecting features on the basis of prior knowledge

such as, selecting only the feature that has strong correlation to the problem. A more

practical example can be in the problem space of the study, while resolving structural

ambiguity syntactic and semantic features may be more appropriate than lexical features

or word length. In basic wrapping method will try to solve the problem or a small sub-

set of the problem using all possible feature sets. Since the exponential nature of the

new problem is impractical and greedy heuristics are often employed.

The more intuitive approach though is associating a weight to each feature and in the

process of measuring performance the weights can be adjusted to an optimal level. A

possible modified version of the proposed model thus can be a weighted linear

combination i.e. each of the feature probability weighted with a co-efficient.

2.2.3. Resolving Structural Ambiguity Using Machine Learning.

Machine learning algorithms have been used to derive information that could be used to

resolve the attachment decision. Ratnaparkhi et al. (1994) proposed a Maximum

Entropy (ME) model that used lexical information within verb phrases obtained from

the Penn Treebank WSJ corpus and no external semantic knowledge. They trained the

model with both word features and word class features and a binary hierarchy of word

21

classes derived by mutual information clustering from the corpus obtaining a resolution

accuracy of 81.6%.

A non-statistical supervised method by Brill & Resnik (1994) attempted a

transformation-based approach (Brill, 1995) and incorporating word-class information.

The system attained 81.8% accuracy in resolving PP attachment ambiguity. They also

report that the top 20 transformations learned involved specific prepositions supporting

the claim of Collins & Brook (1995) that the preposition is the most important lexical

item for resolving the attachment ambiguity. The authors (Collins & Brooks, 1995)

adopted a backed-off model to smooth for undetected cases. They manage to achieve

84.5% accuracy. They also discovered that preposition is the most informative lexical

item for attachment disambiguation and keeping low frequency cases improve

performance.

Stetina & Nagao (1997) presented a corpus-based supervised algorithm that employs a

semantically tagged corpus based model using decision trees. They also used an

unsupervised word-sense disambiguation algorithm with WordNet to sense-tag each

word in a labeled corpus. They reported 88.1% attachment accuracy which is nearly as

good as what humans can accomplish (88.2%) as it has been reported by Ratnaparkhi et

al. (1994).

Sopena et al. (1998) used neural network for the PP attachment disambiguation. They

scored higher than previous approaches on the Wall Street Journal corpus, namely

86.8%, and class information taken from WordNet not only for the NP1 and NP2 but for

verbs as well. They explain their very good results by the fact that the previous

approaches did not use classes over NP1, NP2 and VP, and if they did, they did not

consider them simultaneously.

An unsupervised method attempted by Ratnaparkhi (1998) using an extraction heuristic,

unambiguous prepositional phrase attachments of the form [V P N] and [N1 P N2] are

extracted from a large corpus. Co-occurrence frequencies are then used to disambiguate

examples with ambiguous attachments. 81.9% attachment accuracy was reported by the

author.

Gamallo et al. (2003a) used an unsupervised method to model word classes (syntactic

and semantic sub-categorization) from shallow parsed text corpora and only significant

22

work found during the research. The usage of sub-categorization information for parsing

was originally introduced by Gamallo et al. (2003b). The authors attempted the learning

strategy over a Portuguese Procuradoria Geral de República (PGR) Corpus with

178,522 syntactic context and 1,543,659 binary dependencies. They evaluated three

syntactic structures namely [NP PP PP], [VP PP PP] and [VP NP PP], found over the

corpus. They reported an average precision of 91.20% over their test data of 633

manually disambiguated, randomly selected sentences from the test corpora.

Toutanova et al. (2004) applied a Random Walk (RW) model to the task of PP-

attachment attaining a resolution accuracy of 87.5%. They worked with the Penn

Treebank Wall Street Journal data (Ratnaparkhi et al., 1994), a widely used dataset used

by many researchers. It consists of four-tuples of head words and a specification of the

type of attachment. There are 20,801 samples in the training set, 4,039 in the

development set, and 3,097 samples in the test set. Their supervised method used a

Markov chain model that used the training set to estimate empirical distributions and the

development set to train the parameters of the random walk.

Zhao & Lin (2004) proposed a nearest-neighbor method that did not rely on any

manually constructed knowledge bases, but instead worked by computing distributional

word similarities. Their training set comprised of 4-tuples of ambiguous sentences [V

N1 P N2] with attachment information, which were extracted from the Ratnaparkhi et

al. (1994) dataset. Given a 4-tuple with no attachment information, the training set was

searched for its top priority nearest neighbors and the PP attachments were determined

based on the known classifications of the nearest neighbors. The experiment yielded a

high resolution accuracy of 86.5% and they concluded that cosine of point wise mutual

information was better than most commonly used word similarity measures.

Nakov & Hearst (2005) proposed a method that exploited the web as a very large

training dataset, extracting its surface features and paraphrases based on the assumption

that phrases found on the WWW are sometimes disambiguated and annotated by

content creators. Using the Ratnaparkhi et al. (1994) dataset, they obtained an accuracy

of 83.82% using N-gram models with statistics obtained by querying exact phrases

including inflections and all possible variations of words derived from WordNet against

WWW search engines.

23

We are trying to model the PP attachment using a different approach where the system

learns the statistical parameters from the data but the specific feature distributions were

chosen on the basis of the analysis of the data. It is a novel approach to the problem

regardless of the fact that we are using a very limited feature set.

2.3. Summary.

To the best of our knowledge, very little research had been done for Portuguese. The

other significant tree-bank based research other than the Floresta Sintá(c)tica is the

CINTIL Treebank. Silva et al. (2010, p. 86) tried to “assess to what extent the available

Portuguese tree-banks and available probabilistic parsers are suitable for out-of-the-box

robust parsing of Portuguese”. They first commented on the previous attempt of Wing

& Baldridge (2006) who trained the Bikel Parser (Bickel, 2002) over the Bosque. The

authors reported that their implementation of the Bikel Parser trained using Bosque

(9,374 sentences) yielded PARSEVAL F-Score of 36.3%. They also reported that after

enriching Bosque annotation the parser manage to achieve F-Score of 63.2%.

The authors then presented the CINTIL Treebank (1205 sentences) “was produced from

the output of LXGram, a deep linguistic processing grammar (Branco & Costa, 2008)

by manually selecting the correct parse for a sentence from among all the possible

parses that are delivered by the grammar”. According to the authors, Bickel’s Parser

trained with this corpus reported to achieve F-Score of 76.18%, by the authors.

However, these results are only indicative of the parser's performance on this new

corpus, since its size and content is different from that used by Wing & Baldridge

(2006). The authors then selected three freely available, open-‐source parsers for

performance analysis, namely, the Bickel parser, the Stanford parser (Klein & Manning,

2003) and the Berkeley parser (Petrov et al., 2006). They reported that trained with

CINTIL Treebank, these parsers attained F-Score between 85% and 90%. They also

reported the Barkley parser as being the best and that it could be improved to attain

95.61% F-‐Score, after using dedicated POS Tagger, among other enhancements,

namely, named entity recognition and lemmatization. The following chapter will give a

brief overview of the parsing systems (i.e. PALAVRAS and STRING NLP chain and its

parsing backbone XIP) and the data (i.e. Portuguese tree-bank Bosque).

24

Chapter 3: Data and Systems.

The research is designed to investigate the Prepositional Phrase (PP) attachment

ambiguity in Portuguese text and devise possible disambiguation solution. The source

data for the experiments are machine outputs (automatically generated output). The

training data is the publicly available tree-bank Bosque2. Bosque is available in

different output format and the Constraint Grammar (CG) (Karlsson, 1990) numbered

format will be used for this research. The data will also be processed with the STRING

Natural Language Processing (NLP) chain. STRING can produce outputs in many

formats but the Xerox Incremental Parser (XIP) (XRCE, 2011) eXtensible Markup

Language (XML) format will be used in this research. This chapter will provide an

overview of the data, the environment of the underlying systems and the pre-processing

performed to make the data useable.

3.1. Data and systems overview

The source data for the research is the largest freely available tree-bank for Portuguese,

Floresta Sintá(c)tica (Afonso et. al., 2002). Floresta Sintá(c)tica or Syntactic Forest was

created as a collaboration project between the Visual Interactive Syntax Learning

(VISL)3 project, and Linguateca4 which is formerly known as the Computational

Processing of Portuguese (CPP)5 project. It is a set of trees automatically created from

the CG output of the PALAVRAS (Bick, 2000) parser. The corpus corresponds to the

first million tokens of the CETEMPúblico6 and CETENFolha7 corpora, with a size of

roughly 1,640,000 words. The text came from the PÚBLICO8 newspaper and the Folha

de São Paulo9 newspaper respectively.

The underlying system that produces the tree-bank i.e. the Portuguese parser

PALAVRAS is designed in the framework of CG parsing. It was originally proposed by

Karlsson (1990) and fully documented in Karlsson et al. (1995) and Tapanainen (1996).

2 http://www.linguateca.pt/Floresta/ficheiros/Bosque_CP_7.4_cgd.txt
3 http://visl.sdu.dk
4 http://www.linguateca.pt
5 http://www.linguateca.pt/proc_comp_port_en.html
6 http://www.linguateca.pt/cetempublico/
7 http://www.linguateca.pt/cetenfolha/
8 http://www.publico.pt/
9 http://www1.folha.uol.com.br/fsp/

http://www.linguateca.pt/Floresta/ficheiros/Bosque_CP_7.4_cgd.txt
http://visl.sdu.dk/
http://www.linguateca.pt/
http://www.linguateca.pt/proc_comp_port_en.html
http://www.linguateca.pt/cetempublico/
http://www.linguateca.pt/cetenfolha/
http://www.publico.pt/
http://www1.folha.uol.com.br/fsp/

25

It is a reductionist parsing framework based on the introduction and subsequent

resolution of morphological and shallow syntactic ambiguities. The philosophy behind

the formalism is to produce declarative constrains i.e. rules that will tell the system

about patterns that are not possible rather than defining patterns that are possible. One

of the main features of such a system is the high success rate. It is reported by Karlsson

(1990) that the earliest system scored above 90% even for languages lack of

considerable sized corpus to perform extensive study.

The target system is the STRING NLP chain. The system uses the XIP as its parsing

backbone and also the inbuilt rule-based dependency extraction system to produce head

dependency links. The dependency extraction rules were implemented at Laboratório de

Sistemas de Língua Falada (L2F) (Spoken Language Laboratory). XIP uses Incremental

Finite-State Parsing (IFSP) as its implementation specific computational framework to

parse natural language text. The next subsections will provide details on the data

environment and the underlying systems that produced the data.

3.2. CG parsing with PALAVRAS.

CG is an operational paradigm for natural language parsing. Instead of generative rules

which is more common for grammar frameworks, it uses the notion of constrain which

restricts certain forms or structures to be formed during parsing. The parsing philosophy

of CG parsers in general has been clearly described in Karlsson (1990). This parsing

formalism is designed to deal with running text (real world regular sentences) and not

only the pre-processed, pre-defined perfect sentences.

As the name suggests, descriptive statements or constrains basically tries to discard as

many alternatives as possible in a syntactically ambiguous sentence. Constraints are

formulated by extensive corpus study. The rules can have structured formal rule-like

pattern or probabilistic patterns. The rule-like constraint structure is considered to be

preferable over probabilistic constraints. One of the central ideas is the use

morphological information as extensively as possible. The parsing process as it has been

described in (Karlsson, 1990), is very implementation oriented and explained as a

process of resolving six sub-problems,

 “Preprocessing, morphological analysis, local morphological disambiguation,
morpho-syntactic mapping, context-dependent morphological disambiguation,
determination of intra-sentential clause boundaries and disambiguation of surface
syntactic functions.”

26

In Karlsson’s (1990) implementation the first four modules were executed in sequence

and the last two were executed in parallel, making it a five stage parsing process.

Several modifications over the basic CGP design have been made over the years during

the development of PALAVRAS. Bick (1996) introduced attachment direction markers

to all argument tags and double tags to the central linking word in sub-clauses to

improve some weakness in the original CGP design, such as, lack of hierarchically

motivated clause boundary, certain unsatisfactory valence feature and improve the

overall dependency information over constituent information. He (Bick, 1996) also used

a CGP for automatic grammatical analysis of spoken language data for Portuguese by

introducing additional rules and by disambiguating pauses (in-utterance) and breaks

(inter-utterance). He (Bick, 2000) later introduced the complete CG-based parsing

system PALAVRAS for Portuguese.

PALAVRAS is a statistical robust Portuguese parser based on CG formalism and it was

developed at the Institute of Language and Communication of the University of

Southern Denmark. According to Bick (2000), it always returns at least one analysis

even for incomplete or ungrammatical sentences, and has a high accuracy (96%). The

parser also has a named entity recognizer (Bick, 2000) and provides some semantic

information for nouns, verbs and adjectives (e.g. organization, date, place, etc.).

Bick (2003) introduced a Phrase Structure Grammar (PSG) and CG hybrid

representation with the suggestion that a complete bias towards either formalism

(Dependency Grammar (DG) and PSG) is also practical and possible. Later he (Bick,

2005) presented a system to create a CG-Treebank with full dependency specification.

In (Bick, 2006) and (Bick, 2007), he improved the PALAVRAS for semantic prototype

annotation using CG framework. Later in (Bick, 2009), he introduce statistical

information regarding the feature tags used by CG rules. Both the training and test data

is coming from a corpus created by the CG parser PALAVRAS.

3.3. Bosque Tree-bank.

Bosque is a subset of the Floresta Virgem that has been fully revised and corrected in

the scope of the Floresta Sintá(c)tica project. The version used for this research is

marked as version 7.4. It is available in several significant formats such as Constraint

Grammar Format (CGD), Phrase Structure Format (AD), Penn Tree-Bank and Tiger

27

XML. The significant statistics regarding the compilation of Bosque version 7.4 can be

summarized as, it contains 9,368 trees, corresponding to 1,962 different extracts,

featuring 162,484 tokens and it has approximately 140 thousand words. The CGD

format output of the Bosque in a text editor looks as follows (Figure 3.1),

Figure 3 - 1 : CGD view of a sentence in Bosque.

The annotation schema for all the sentences is identical, although lots of inconsistency

has been found in the annotation during the manual analysis of the corpus. A detail

analysis of the data has been done to identify and later compensate during the parsing

process. In a proper structure the first section of a sentence annotation is the sentence

header. A header section can be depicted as in Figure 3.2.

Figure 3 - 2 : A typical header in the CGD view of a sentence in Bosque.

The XML type tag [<s>] marks the starting of a sentence. The tag also carries several

attributes that conveys important information regarding the sentence such as source of

the sentence, the raw text of the sentence etc. Primarily the [text] attribute that

contains the raw text was used to prepare the raw text file to be parsed by the STRING

NLP chain. The attempt was a failure since many sentences were found to have

discrepancy between the text found in the tag and the actual parsed text. One such

irregular sentence has been presented in the following figure (Figure 3.3). It was one of

the early experiments and regardless of the outcome of those experiments provided

valuable information regarding the corpus.

28

Figure 3 - 3 : Inconsistency in raw text found in Bosque.

Figure 3.4 presents some of the parsed lines that contain all the sub elements of a parsed

output are presented. There are seven (7) unique segments in each word representation

in CGD format output of a sentence denoted by numbers 1 to 7 in Figure 3.4. The first

element marked as 1 is always the token itself.

Figure 3 - 4 : Different segments of CGD output of a sentence in Bosque.

One significant issue is that tokens are not necessarily words, rather the unique lexical

units processed by the parser as tokens. In Figure 3.4 the token [do=que] in line 66 and

the token [$,] in in line 82 are the examples of diverse types of tokens produced by the

29

parser. The tokens in line 70 and 71 are originally a single word [na] which is a

Portuguese contraction10 [em+a=na] and decided by the parser to split it. The marking

[sam-] is a special parsing marker to indicate contraction splits.

The second element marked as 2 always appears within square braces. This element is

the lemma or the selected reading for the token. This particular element though is absent

for punctuation tokens (see line 82 in Figure 3.4). The lemma is insignificant for tokens

that are made up of multiple words (see line 66 in Figure 3.4). The third element

marked as 3 in Figure 3.4 will always appear between angular braces and multiple such

elements can be present. These elements are for semantic features and special parsing

features generated by the parser.

The fourth group of elements (denoted by 4), are always in capital letters and multiple

elements can appear. These are the morphological features associated to the specific

token. The first element and in many cases the only element in this group is the word

class tag. The word class tag generated by the PALAVRAS parser roughly represents

the Parts Of Speech (POS) category of the token. It followed by (if any) the infliction

tags such as gender, number, case, tense, mood, finiteness etc. This block ends with the

start of the fifth block tagged as 5 in Figure 3.4.

The fifth block is the syntactic tag associated with a token. This tag always starts with a

[@] symbol and often have a [<] or [>] symbol in the block, denoting the tokens

association with either a previous element or an element posterior to the token.

PALAVRAS is a CG based parser and thus bi-lexical (considering tokens to be lexical

entities) relation is represented through this block. In CG representation each lexical

entity is connected to only one other element, its parent. This block represents the type

of the relation and the type of the expected parent block but not the exact identity of the

parent (i.e. the token ID of the parent).

The next two blocks denoted as 6 and 7 in Figure 3.4 contains the unique identity of

both the lexical element and its parent. The sixth element is the unique identifier for the

lexical element and the seventh element is the parent. Some of the sentences have to be

discarded because of faulty identity of the parent. Part of the flawed elements that have

been listed by a regular expression search is presented in Figure 3.5. The manual

10 Contraction (grammar) -‐ From Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Contraction_(grammar)

30

analysis of the data yield that the flaw appears to be in the parent ID only and it is

difficult to define a transformation function to correct the flawed mapping.

Figure 3 - 5 : ID error in CGD output of Bosque.

A total of 850 instances of such error have been identified and from the manual analysis

of the data it is found that the errors are trend to group together i.e. if a sentence

contains an error many can be found in the same sentence. Thus the sentences that

contain such irregularity had to be ignored since a gap in the lexical mapping makes it

unmanageable to be used in any experiment.

Figure 3 - 6 : Irrelevant random element error in CGD output of Bosque.

Any machine generated output is expected to be consistent, even when making errors

(i.e. it is expected that the system will make errors consistently). Bosque however had

erroneous parse output and in the analysis of the data they appear to be random. Figure

31

3.6 shows some random tags often found in the data that make any regular expression

based data extraction impossible.

Moreover, the online version of the parser11 has not been reported to make such random

errors i.e. the errors appear to be exclusive to the corpus. The documentation for the

corpus is rather poor and thus a manual error analysis of the corpus was the only

alternative to properly evaluate the quality of the data. The difficulties faced at different

stages of the pre-processing of the data will be reported in the later subsections as

appropriate and necessary.

3.4. Finite-State Parsing.

The STRING NLP chain uses XIP as its parsing backbone and XIP is an

implementation of finite-state parsing. Finite-state parsing at sentence level falls into

two categories, the constructive approach and the reductionist approach. The

reductionist approach was influenced by the CG approach (Karlsson et al., 1990). The

main idea is to reduce all possible readings of a sentence (represented by finite-state

automata) to one correct reading by a set of elimination rules (Loftsson &

Rögnvaldsson, 2007). On the other hand a common constructive approach is to string

together a sequence of transducers to build incremental (or cascading) shallow parsers

(Abney, 1997). Each transducer in this approach adds syntactic information into the

text, such as brackets and names for grammatical functions.

Incremental Finite-State Parsing (IFSP) is an implementation specific computational

framework that adopts a hybrid method that merges the constructive and the

reductionist approaches. Syntactic information is added at the sentence level depending

on the contextual information and often reported to achieve broad coverage and include

richer information than typical chunking systems (Megyesi & Rydin, 1999).

One of the significant practical implementations and within the scope of the interest of

the research is, XIP (Aït-Mokhtar et al., 2002). XIP is a natural language analysis tool

designed for extracting dependency functions between pairs of words within the

sentences. Sándor et al. (2006) explains that the concept-matching grammars are built

on top of a general rule-based robust dependency grammar that has been developed in

Xerox Research Centre Europe (XRCE).

11 http://beta.visl.sdu.dk/visl/pt/parsing/automatic/dependency.php

http://beta.visl.sdu.dk/visl/pt/parsing/automatic/dependency.php

32

3.5. STRING NLP Chain.

Portuguese rule-base grammar for XIP was initially developed in collaboration with

Xerox, since 2004 and it is the parsing backbone for the STRING NLP chain. STRING

is a hybrid statistical and rule-base NLP chain for Portuguese, which has been

developed by L2F, at INESC-ID Lisboa. The modular structure of STRING is its

fundamental feature and it performs all the basic NLP tasks in four steps: Preprocessing,

Lexical analysis, POS Disambiguation and Parsing. Figure 3.7 provides a detail process

flow of the STRING NLP chain.

Figure 3 - 7 : The STRING NLP Chain.

The pre-processing stage is comprised of three modules. The first one, the tokenization

module, is mainly responsible for dividing the input into individual segments or tokens.

For example, consider the sentence [O Pedro foi ao Brasil] (Pedro went to Brazil)

given as input to the tokenization module, the output would be,

33

word[0]: |O|
word[1]: |Pedro|
word[2]: |foi|
word[3]: |ao|
word[4]: |Brasil|
word[5]: |.|

The next module is the lexical analyzer LexMan (Diniz & Mamede, 2011). This module

assigns each token with its part-of-speech and any other relevant morpho-syntactic

features (gender, number, tense, mood, case, degree, etc.). The rich tag set has a high

granularity featuring 12 POS categories and 11 feature fields. Some of these fields are

category (CAT), subcategory (SCT), mood (MOD), tense (TEN), person (PER), number

(NUM), gender (GEN), degree (DEG), case (CAS), formation (FOR) etc. (Mamede,

2011). At this stage, the output of the same sentence would be:

word[0]: |O| POS >[o]Td...sm... [o]Pp..3sm.as
word[1]: |Pedro| POS >[Pedro]Np...sm...
word[2]: |foi| POS >[ser]V.is3s=... [ir]V.is3s=...
word[3]: |ao| POS >[ao]S...sm..f
word[4]: |Brasil| POS >[Brasil]Np...sm...
word[5]: |.| POS >[.]O.........

At this point each token is assigned a POS tag and each tag has a corresponding code.

For example, [Pedro] have the corresponding code [Np...sm...], which basically

means that they are proper nouns, singular and the gender is male. Whenever a token is

ambiguous and might belong to several categories, all possible readings will be listed.

The token [foi], which might mean either the verb [ser] (to be), or it might be [ir]

(to go). So, both the readings are kept at this stage. The final step of the pre-processing

stage is the sentence splitter module. In order to build a sentence, the system matches

sequences that end with one of the following characters [.|!|?].

The next stage of the processing chain is the POS disambiguation modules. The first

module in the process is a rule based disambiguation module called the Rule Driven

Converter 2 (RuDriCo2) (Diniz, 2010). RuDriCo2 provides adjustments on the results

produced by a morphological analyzer to the specific needs of each parser. It makes

segmentation changes such as [ex-] and [aluno], into one segment: [ex-aluno] or

[nas] into two segments: [em] and [as] depending on the parser’s necessity. The new

version RuDriCo2 is reported to be significantly (10 times) faster than the previous

version. RuDriCo2 also validates the input data, displays error messages, and warns for

potential problems (Mamede, 2011).

34

The next process is the statistical part-of-speech disambiguation module MARv

(Ribeiro et al., 2003). Its function is to choose the most likely POS tag for each word,

using the Viterbi algorithm. The language model used by MARv3 (newer version) is

trained on a 250K word Portuguese corpus. The current implementation of MARv3

performs at over 97% precision and it is significantly (9 times) faster than the previous

version (Mamede, 2011).

The final stage of the processing chain is the syntactic analysis performed by XIP. XIP

makes use of a rich set of lexical resources, which add linguistic (syntactic and

semantic) information to the output of the POS tagger. XIP parses the text by dividing it

into chunks, that is, elementary phrases such as NP, PP, and identifies their heads. Then,

it extracts the syntactic relations between the heads of those chunks. These

dependencies correspond to the major deep parsing relations of Subject, Direct Object,

Modifier, etc., but they also include auxiliary dependencies between different chunks

and words, such as those necessary to link verbal chains formed of strings of auxiliaries

(Baptista et al., 2010).

XIP is a language-independent parser that takes textual input and provides linguistic

information about it. XIP can modify and enrich lexical entries, construct chunks and

other types of groupings, and build dependency relationships. The fundamental data

representation unit in XIP is the node. Being able to extract dependencies between

nodes is very important because it can provide richer, deeper understanding of the texts.

Dependency rules take the sequences of constituent nodes identified by the chunking

rules and identify relationships between them. A special type of regular expression,

Tree Regular Expression (TRE), is used in XIP in order to represent the connections

between distant nodes. Dependency rule files written in TRE are used by XIP to

produce the dependency relations during the parsing.

This research is interested in the process of defining the dependency between a PP and

its governor by the XIP system. While defining the dependency between chunks, the

current version of the Portuguese grammar implemented in XIP deals with the issue of

PP attachment using a three step disambiguation strategy. Firstly, a Modifier

dependency (MOD) relation is set between the PP head and all other prior chunk heads

within the same sentence. Some of the MOD dependencies are then eliminated to avoid

the extraction of long-distance dependencies.

35

Secondly, some of the MOD dependencies are converted to complement dependency

(COMPL); this is a binary dependency that links a predicate (verb, noun or adjective) to

each of its essential complements. Finally, depending on the context, the remaining

multiple MOD dependencies issuing from a single chunk are reduced to just one

dependency by attaching it to the nearest prior Noun Phrase (NP) or PP or the MAIN

head (this later is an unary dependency that extracts the main predicative element of a

sentence; e.g. the main verb); this final stage may be considered to be a base-line for

many parsing evaluation.

3.6. XIP XML Structure.

 The STRING NLP chain can output a parsed sentence in several formats and this

research will be interested in the XIP XML format output. The output is generated

basically using the pre-defined XML Document Type Definition (DTD) of XIP (XRCE,

2011). A brief understanding of the DTD was required to process the data and to

understand the significance of each segment produced by the XIP system. The common

elements in a XIP XML output (an exact output of a sentence from Bosque) has been

presented in the following figure (Figure 3.8).

Figure 3 - 8 : First level of DTD’s in XIP XML.

Each output produced by the XIP can be found within the XIPRESULT element.

LUNIT (linguistic unit) element roughly represents one sentence and the XIPRESULT

36

contains a list of LUNITs. Each lexical element (tokens or chunks) are considered to be

NODE elements. Each NODE element can have child NODE elements and having so

the NODE element can be inferred to be chunk NODE. Token level NODE element will

not have any children. Each LUNIT will have only one NODE child which is the top

level node with attribute [tag="TOP"]. Each LUNIT element may also house several

DEPENDENCY elements. The hierarchy that exists in a NODE element has been

presented in the following figure (Figure 3.9).

Figure 3 - 9 : Hierarchy of a NODE element in XIP XML.

As it has been mentioned, in Figure 3.9 we can see just one top level NODE element

with attribute [num="26"]. The node hierarchy can be clearly seen in the figure and it

37

roughly corresponds to the parse tree (or chunk tree considering the nature of XIP being

a shallow parser) of the sentence. Each NODE element always contains four (4)

attributes and they are presented in the following table,

Attribute Description
num A unique identifier for each NODE element.
tag The name of the NODE element.

start The character count of the first character of the first word in a NODE.
end The character count of the last character of the last word in a NODE.

Table 3 - 1: NODE element attributes.

Each NODE element can also have embedded FEATURE elements. Each FEATURE

element has two (2) attributes, [attribute] and [value]. Using the FEATURE

elements all possible features associated to a particular NODE can be encoded as binary

features. It can be easily seen from Figure 3.9 that the presence of each feature

[attribute] indicates its presence in the NODE element. The NODE elements that

represent tokens rather than chunks also have another child element, TOKEN. Within

the TOKEN tag the text or the PCDATA element represents the actual token found in

the input. Each TOKEN element contains the result of tokenization, morphological

analysis and lexical disambiguation and it can have FEATURE elements as child. It also

has another child element READING, which provides the disambiguated lexical unit. A

TOKEN element can have multiple READING elements and each READING element

have a lemma of the token for the specific reading.

Figure 3 - 10 : DEPENDENCY elements in XIP XML

The other significant child element of the LUNIT element is the DEPENDENCY

elements (Figure 3.10). Each DEPENDENCY element corresponds to one dependency

38

relation between two NODE elements. Each DEPENDENCY element has an attribute

[name] and the value of this attribute is the type of a DEPENDENCY element (MOD,

MAIN, CDIR etc.).

DEPENDENCY elements are results from linguistic analysis performed on the NODE

elements. Each DEPENDENCY element contains two child elements, PARAMETER

and FEATURE. FEATURE elements in a DEPENDENCY element represent in a

similar manner as in NODE elements. PARAMETER elements contain the reference to

the NODE elements among those the dependency relation is between. Each

PARAMETER element contains three (3) attributes, an index ([ind]) a NODE

element’s number ([ind] attribute), a number ([num]) that corresponds to the

parameter’s count (starts from zero (0)) and the word ([word]) attribute that contains

the token if the node is a TOKEN element.

3.7. Summary.

The understanding of the data and the system is vital for the proper execution of the

research. Both systems have rule-based and statistical components yet they are not quite

similar. Looking at the data representations from the systems provided an overview of

the source data and possible interaction between the systems. It is important to

understand the choices made in selecting the data, i.e. Bosque, to conduct the research

on PP attachment disambiguation using only machine produces data.

The target system i.e. XIP XML output of the STRING NLP chain, using the heuristics

from both systems provides target system specific features to identify potential

candidates and human influence in one of the source system’s features (Bosque have

human input embedded in the parsed output) to improve accuracy of each selection.

Regardless of the automated nature of the outputs, the complexity of a rule-based

system and the hierarchy in the rule triggers embed significant amount of discrepancies

in the output. Thus, a lot of the pre-processing was significant in the research. During

these pre-processing stages one of the major objectives came to light, designing a

framework to conduct research on PP attachment disambiguation using two parsers. The

next chapter will provide details on these pre-processing experiments.

39

Chapter 4: Data Pre-Processing.

Data pre-processing is a significant part of the research because all the data is text

outputs. Raw text output is considered to be useless for any formal processing, either

generic data analysis or using Machine Learning (ML) to model a phenomenon. The

first processing tasks were to produce suitable data-structures for both systems. The task

led to several experiments and to improve the original code several times. The primary

assumption was that machine produced data follows strict patterns and thus producing

data-structure was considered to be defining all patterns, but during the experiments the

assumption was proven to be wrong. The details of these processes and the problems

that had to be dealt with will be reported in the following subsections.

Once the data-structure was produced, the next step was to establish token level

alignment between the outputs of the systems. During the parsing of Bosque to produce

the data-structure, raw text was extracted. The raw text was then parsed with the

STRING NLP chain. The XIP XML output did not have sentence level alignment

because the sentence splitter of the system always splits according to pre-defined

sentence marker. So, alignment was achieved in two levels, at sentence level and later at

token level. After achieving alignment, the experimental data was produced. The later

sections will provide the details of the process and their evaluation.

4.1. Data-structure generation.

Data-structure generation process can be split into three sub-tasks, (1) parsing the

Bosque corpus; (2) parsing the same text with the STRING NLP chain and (3) XIP data

model generation. Each of these sub-tasks may perform more than one task that

contributes to other tasks. Each of these tasks and the challenges they present will be

discussed in the following sub-sections.

4.1.1. Parsing Bosque.

The data presented in Bosque is in text format and each parsed token contains seven

distinct features, token, lemma, semantic information, morphological information,

syntactic information, token ID and the parent ID. The primary parsing modules output

has been presented in the following figure (Figure 4.1).

40

Figure 4 - 1: Bosque data-structure of one sentence.

Each sentence will be parsed into a separate line in the data-structure file and the format

is Unicode (UTF-8 encoded) text. Each line will be in the same format and always start

with a sentence ID. Sentence IDs are given to each sentence in a sequential order and

regardless of the sentence ID present in the header of each sentence in Bosque. Sentence

ID’s in the parsed output are presented within parenthesis and they are always integers.

Each token element is presented between the token start marker and token end marker

shown in the figure. One token component is shown in the figure within the rectangular

selection. Each component within a token element is enclosed within component start

marker component end marker. One significant point is the number of components in

each token is eight (8) rather than seven (7). While testing the parsing with the output of

the web interface of PALAVRAS, it was found that the newer version contains an

additional feature. Although, Bosque does not have the specific feature, the data-

structure has been designed with the provision for both newer version of the corpus or

in case of being used to parse the automatically produced output.

All the components of each token are kept as text including the node ID and the parent

ID. Some components such as the morphological information component is actually

space separated multiple features. These features are kept together at this stage since

they are not expected to be used for this research. Semantic and special features are also

kept in their original format within the angular brackets.

41

Figure 4 - 2 : Redundant parsed output in Bosque.

The most significant parsing issue during this stage was the redundancy in the parsed

output. Figure 4.2 is taken from the actual parsed output of Bosque and the circled lines

indicate the start of the same parsed output three times. Although the total number of

occurrences had not been counted, significant numbers of cases were encountered

during the primary parse attempt. Later consistent sentence boundary had been

established by considering the start of each sentence. Throughout the corpus all the

sentences always starts with the sentence tag (<s id=”999” … >). So, once a sentence

start-point is found an identifier is initialized and it was only reinitialized if another start

point is found.

Moreover each sentence starts with token ID one (1), thus once a sentence boundary is

initialized only one token with ID one (1) is expected. The algorithm starts to ignore all

the lines from the line where a second token with ID one (1) is found. The parsing of

42

lines only restarts once the sentence start identifier is reinitialized. This algorithm also

helps to ignore irregular tags in between the parsed output. The output parsing

algorithm has been tested with all irregular outputs found during the first attempt and

found to parse properly.

4.1.2. Parsing with STRING NLP chain.

The parsing process with the STRING NLP chain is rather straight forward and dealt

with a shell script to access the processing module in the server provided the input file.

The input file is produced by extracting the raw text from the corpus. The extraction

was initially attempted from the XML attribute of the sentence header. Due to the

inconsistency in the attribute text and actual parsed token made the attempt a failure

since token level alignment was not possible from such data. So, later text tokens were

extracted directly from the parsed data.

The corpus had its own tokenization protocol and thus the tokens do not correspond to

running text. A systematic pattern based token concatenation protocol was established

to produce the transformation method to generate reasonable text to be parsed. One of

the primary concerns was the representation of the reflexives in the Bosque corpus.

Since, the XIP tokenize on the basis of patterns, the input text representation is very

important for proper tokenization. The reflexives representation in Bosque is presented

in the following figure (Figure 4.3).

Figure 4 - 3 : Representation of the reflexives in Bosque.

The general transformation method designed to extract text from the parsed output was

to insert a space character between each token. The reflexives were one of the

exceptions, since inserting a space character between these tokens presented in Figure

4.3 introduced tokenization complexity for XIP. The third example in Figure 4.3 is

found to be unique and just one such entity was found in in the corpus where the token

43

is split into three tokens. The algorithm used to extract raw text compensate for this

entity. The other lexical level choice made during the parsing was to discard any

sentence that has less than three (3) words or sentences without a verb.

One of the primary experiments was an attempt to align the outputs of the parsers

manually and it was found that some of the punctuation characters in the sentences were

causing inaccurate sentence splitting while parsed by the STRING NLP chain.

Moreover, these punctuation characters do not influence the research and thus can be

discarded. The raw text extraction algorithm implements a transformation map to

replace specific punctuations at specific locations. A list of the map is presented in the

following table (Table 4.1).

Punctuation
Character Location Mapped

Character Mapped Character Description

Missing termination -‐ ͎ ONE DOT LEADER
… End of line … HORIZONTAL ELLIPSIS
.. End of line ͏ TWO DOT LEADER
: In the line WHITE SMILING FACE
; In the line ͦ INTERROBANG
! In the line DOUBLE EXCLAMATION MARK
? In the line Ͱ DOUBLE QUESTION MARK
-‐-‐ In the line — EM DASH
. In the line ͎ ONE DOT LEADER
... In the line … HORIZONTAL ELLIPSIS
.. In the line ͏ TWO DOT LEADER

Table 4 - 1 : Punctuation map for raw text extraction.

The other punctuations the algorithm had to handle directly, was the termination

characters. The primary punctuation characters that XIP deals with are full stop (.),

exclamation mark (!) and question mark (?). If a sentence ends with any other

punctuation characters or missing punctuation character, a predefined punctuation

symbol is put in its place. It is important to end a sentence with a proper punctuation

because if XIP does not find a proper termination punctuation it marge the sentences,

yet create another inconsistency. The Bosque also make compound words, mostly noun

phrases and it is constructed by putting an equal (=) character between individual words

elements. The equal (=) characters were replaced with space character during the raw

text generation.

 Regardless of all the efforts, the system still creates some sentence splitting because of

the presence of some ambiguous elements such as date that contains the dot (.) character

44

(e.g. 13.12.2000). After all the selection 4663 sentences were selected to be parsed with

STRING NLP chain and 4671 parses were produced.

4.1.3. XIP data model generation.

The raw text is parsed with the STRING NLP chain and the output in XIP XML is

extracted. The data then is parsed using an XML parser specifically designed for the

Document Type Definition (DTD) of XIP XML. The XML parser extracts the data

directly into the data-structure designed within the scope of the research. The data-

structure is designed to access all the information directly as required for the

experiments. The class interaction diagram for the data-structure is presented in the

following figure (Figure 4.4).

Figure 4 - 4 : Class interaction in XIP data model.

The process can be defined as reverse engineering the parsed data to generate the parser

environment that allows the interaction between different elements. In the figure

XPhraseNode, XWordNode, XSentence and XDependency are the basic data-structure

elements readily corresponds to chunk nodes, token nodes, sentence and the dataset

components of the XIP output. The XNode class encapsulates the generic node attributes

common to both types of node. All node elements and the dependency structure have

45

feature elements and it is encapsulated by the abstract class

ElementFeatureImplementation. The proper definition of the dependency structure

requires identifying the word nodes and the chunk nodes explicitly. Each phrase node

contains a list of child nodes, both chunk and word nodes. The sentence element is

primarily a structure to contain all the nodes and thus the phrase structure map of the

sentence.

The dataset component contains a map of all the sentences in the dataset according to

the sentence ID. The XMLFactory class contains the XML parser and the means to

generate the dataset. It also uses the XSentenceFactory to create and populate a

sentence object for each sentence in the dataset. The dataset object creates an

XMLFactory object and calls the method responsible for parsing the input XML file and

populate the data-structure with the data. The XDataSet object can be extracted for the

future processing once the parsing is completed. It also acts as the entry point to call

different methods for further processing. The next stage of the processing will be

described in the next subsections.

4.2. Token alignment.

The second major data processing task was achieving token level alignment between the

tokens of XIP XML and Bosque. These two parsers tokenize text in different ways thus,

alignment was absolutely necessary if the tokens are to be used in the experiments. The

alignment process was quite complicated once the experimentation started. For the

actual alignment, automatic statistical aligner Giza++ (Och, 2000) was used. The whole

process was split into three sub-tasks alignment data structure alignment data

generation, automatic alignment with Giza++ and head alignment generation.

Before even start the token level alignment process sentence level alignment was

required to be achieved. The first step was to generate a compound form of data

structure for the Bosque since all the components of the data-structure is not necessary

for the alignment process. Moreover the automatic aligner, Giza++, tokenize each

sentence considering that the input is a stream of tokens separated by space. Thus the

output acquired from the Giza++ is the alignment data between the token ID’s specified

by the aligner’s tokenizer. Thus, a transformation method was needed to map the

alignment token ID to the parsing output’s token ID. The following sub-sections will

provide the details of each of the sub-tasks.

46

4.2.1. Data-structure for Alignment.

The first sub task was to create a reduced data structure just for the alignment data

generation. The task of achieving alignment between two sets of tokens is a task

performed at the lexical level. Thus, having the tokens is enough to perform the pre-

processing but the symbols, introduced to produce proper text for the input of STRING

NLP chain and the punctuation symbols are not needed for this task, yet can only be

identified using the POS information extracted from the XIP XML data file. Moreover,

the token ID for the XIP nodes were extracted from the XIP XML a data file as given by

the system during parsing. Punctuations for example were rather simple to handle since

they represent a small and unambiguous set of characters. Symbols on the other hand

were sometimes presented ambiguity since some predefined character sequences such as

currency symbols (USD, GBP), measuring units (KM, KG) etc. was considered to be

symbols. So for the XIP Data structure only three (3) elements were selected the token

itself, the POS tag and the token ID.

The Bosque data-structure was kept as it was primarily to reduce one level of

unnecessary processing. The reduced XIP XML data-structure was generated using the

same data element split markers used in the generation of Bosque data-structure. Thus a

single parser can be used to parse both data-structures once saved in text format for

future use. The data-structure parser was designed by reverse engineering the actual

data parser for Bosque. Although token types such as punctuation and symbols was

decided to be excluded in the alignment input data, all the tokens were kept in the data-

structure.

4.2.2. Alignment data generation.

The first step of data generation is the sentence level alignment processing. The

sentences from the dataset are found to split sometimes but multiple sentences do not

marge together since the termination of each sentence is handled at pre-processing level.

So, a crude yet effective method was employed that compares the last non-punctuation

and non-symbol type element from the XIP output dataset with the non-punctuation

type element in the Bosque data-structure. If they are not similar, the sentence is

supposed to be split and a matching end element is searched in the next XIP outputs’

data-structure. The sentences that are found to get split were discarded and all the other

sentences are recorded in a text file by putting the sentence ID from each dataset

47

together with a [:] separated each of them. This alignment information is crucial for

the next stage of the alignment process.

Alignment data is generated from the primary data-structures produced by the alignment

data-structure generation module. The data-structure contains the tokens in the original

format, so the tokens are in the form as there were found in the parsed output. The

primary inconsistencies in this data are the phrase representation where multiple words

are found to be a single token (e.g. the phrase um pouco (a little) is represented as

um=pouco). In Bosque output these phrases are words connected by the equal sign [=],

whereas in the XIP XML output these tokens are words separated by space. The data

generation module thus produces an intermediate data-structure and saved it for later

use to reconstruct the token elements and create the token ID groups representing these

phrases. It is important to mention that only the sentences that have been aligned are

converted to the data-structure.

The intermediate data-structure is a transformational representation where the phrase

elements are represented in a similar structure yet identifiable. Each of these compound

tokens are split into word lists and a similar data-structure is created for each of the

words. The first word element will contain all the feature elements of the compound

token whereas the rest of the words do not contain any feature element.

All the elements other than the first one contains the token ID –1, which is an indicator

that it is a part of the last element that has a positive token ID. These features can be

used during the reintegration stage. Once the data-structure is produced the alignment

text generation is rather simple. The token text of each data element is put in a text file

with a space separating each element. The same process is performed for both datasets

and it outputs the data-structure and a raw text alignment input file.

4.2.3. Automatic alignment with Giza++.

Automatic alignment is a very important part of this research, since the human bias that

will be introduced can only be achieved by once token level alignment is achieved.

Giza++ was the tool of choice for the task and it managed to achieve high accuracy

during the experiments. Giza++ (Och & Ney, 2000, 2002) is an extension of the Giza

program (Al-Onaizan et al., 1999) and it is a part of the Statistical Machine Translation

48

(SMT) toolkit EGYPT12). Giza++ is a free statistical word alignment system that

implements International Business Machine (IBM) Models 1-5, Hidden Markova

Model (HMM) alignment, and parameter smoothing (Och & Ney, 2003). The Giza++

implementation used for the experiments had a default alignment model that performs

the estimation using five iterations of each of Model 1, Model 2, Model 3 and Model 4.

For the experiments though, two different parameter settings were tested.

Figure 4 - 5 : Primary alignment output.

Giza++ also finds the most probable alignment for each sentence pair based on the

estimated parameter values. This alignment is called the Viterbi alignment. Although,

the implementation used for the experiments, outputs the alignments in a space

separated token ID pair in a text file. The output is then subjected to several post-

processing to achieve the required alignment format. An example of the primary

alignment format is presented in the following figure (Figure 4.5).

4.2.3.1. Statistical alignment.

In the statistical approach to token alignment, a statistical alignment model is estimated

directly from parallel texts with sentence level alignment. An alignment model models

the conditional probability of a source token given a target token. These probabilities

are estimated from corpora using an alignment model that connects tokens in a source

sentence with tokens in a target sentence. Several models are used to create the

alignment between the token lists of two systems.

12 http://old-‐site.clsp.jhu.edu/ws99/projects/mt/toolkit/

http://old-site.clsp.jhu.edu/ws99/projects/mt/toolkit/

49

For this research the aligner is used strictly as a monolingual aligner regardless of its

original purpose to be used as bilingual aligner. Moreover instead of estimating a

translation models from the parallel corpus to train the alignment probabilities, a

similarity model will be used, although the pure statistical nature of the process there is

not much difference between these models.

Statistical alignment models introduce a temporary alignment that is defined as the set

of all possible connections between each token position in the source string to exactly

one token position in the target string. The similarity probability (|)	 can be

calculated as the sum of (, |)	 over all possible alignments, where (, |)	 is

the joint probability of the source string and an alignment given the target string

(Eqn 4.1).

(|) = (, |)	 	 …	 	 .

The joint probability (, |)	 is not estimated directly from a parallel corpus.

Instead, the process of mapping the source string from the target string is broken

down into smaller steps and the probability of each step is estimated from the corpus.

The IBM models 1-5 (Brown et al., 1993) decompose the alignment model into a set of

parameters that describe this generative process. Model 1 and 2 is built on simple

process of mapping how source token is generated from the target token. Whereas,

model 3, 4 and 5 are more complex model dealing with relevant factors that affect

alignment probability.

4.2.3.2. The models.

Since this research will use only models 1 through 4, Model 5 will not be discussed.

The simplest of the IBM-models is the Model 1 and in this model the probability

(, |)	 only depends on one parameter, the mapping probability | . This is

the probability that the target token aligned to the source token at position can be

mapped to the token	 . Model 2 includes an additional parameter for alignment

positions (| , ,) where the position of the target token depends on the position of

the source token , the length of the target sentence and the length of the source

sentence	 . In this model, the alignment depends on the source and target tokens as well

as the absolute position of the source token (Holmqvist. 2008).

50

The IBM Model 3 adds several new parameters to the alignment model. In this model,

each target token can give rise to several source tokens as in juntar-se (to join with

something) in the XIP XML output can be mapped to the tokens juntar and -se. The

fertility (the probability of the source token set) parameter (|) models the

probability that a target token generates source tokens. Model 3 also assumes that

source tokens can be generated from an empty token token at each position in the target

sentence. The probability of generating such an empty token is also used as a parameter

in this model. Finally, a reversed position model (| , ,) is used that models the

probability of the source token position based on the target token position .

Model 4 adds two additional parameters, a relative token order model and a first order

dependence on token classes. The word order model acknowledges the fact that tokens

(since these tokens are representative of a natural language) tend to appear in groups.

This is modeled by having two reversed alignment models, one for the first token of a

group | (), and the second model for the relative positions of the

following tokens | . is the relative position of the source token being

placed and () and () are the token classes of a target token and a source token

respectively. Consequently, in Model 4, the placement of the first token of a token

group depends on the token class of the previous aligned target token and the token

class of the source token being placed. The placement of the other tokens in a group

depends only on the token class of the source token. Token classes are automatically

induced from data (Och & Ney, 2003).

4.2.3.3. Parameter estimation.

The Expectation-Maximization (EM) algorithm (Dempster et al., 1977) is used to

iteratively estimate alignment model probabilities according to the likelihood of the

model on a parallel corpus. In the Expectation step, alignment probabilities are

computed from the model parameters and in the Maximization step, parameter values

are re-estimated based on the alignment probabilities and the corpus. The iterative

process is started by initializing parameter values with uniform probabilities for IBM

Model 1. The EM algorithm is only guaranteed to find a local maximum which makes

the result depend on the starting point of the estimation process. Therefore, the result of

simpler models is used as initial guesses to bootstrap more complex models.

51

4.2.4. Alignment data generation.

Alignment data was generated in multiple steps and the first step is to use the automatic

aligner. The data generative previously has been used at this step. A predefined

implementation of the automatic aligner Giza++ at the University of Wolverhampton

was used. This particular implementation uses four IBM-models and five iterations for

each by default. A script has been developed to pass the parameters in a systematic way

along with the iteration count for each of the models. The data for the aligner have to be

process before actually being used for the alignment task.

The input text is general in nature and thus contains all the formatting common to

running text. It is important to understand the working principals of the statistical

aligner to grasp the requirement of this pre-processing step. Each token is a stream of

characters to the aligner and an upper-case letter in a token is makes it a different token

then the same token having only lower-case letters. Thus, all the tokens are converted

into lower-case strings to have more accurate statistical data. A script written in Perl at

the University of Wolverhampton application server is used to perform this task.

Both the data from the XIP XML output and Bosque were case converted and saved as

a separate file. The script to run the training data needs to be passed several parameters,

the source file, the target file, the name of the output file and the pass count for each of

the models (total 4). Once the alignment data is generated it was evaluated using an

automated system. The system was designed following the evaluation method proposed

by Lopez (2007). The comparison for a correct link was rather crude and it basically

tries to find if the tokens are the same or the token with smaller length is a part of the

larger one. Either way it is considered to be correct and on the basis of the findings the

evaluation is performed.

There were two models generated for the alignment of the datasets. The first model used

five passes for all the models and the evaluation of the output shows 99.27% of the links

produced were accurate. Moreover, 99.69% of the Bosque tokens and 99.81% of the

XIP XML tokens were found to be aligned. The other experiment was performed with

ten passes for Model 1, five passes for both Model 2 and Model 3 and 3 passes for

Model 4. The evaluation showed 99.11% of the links were accurate. It also showed that

99.73% of the XIP XML tokens and 99.77% of the Bosque tokens were aligned. The

very high accuracy of both the models made testing any other patterns to be

52

unnecessary. For the rest of the experiments the basic model (5 passes for all models)

was used. Once the alignment was achieved, the next step was to generate the

experimental data and perform the experiments to model the Prepositional Phrase

attachment from the dataset and evaluate the models performance.

The output obtained at this stage is similar to what had been presented in Figure 4.5.

The specific token level representation is not useful for the research under investigation.

Thus the first level of transformation was to convert the token ID produced by the

automatic aligner into corresponding token ID from the data-structure of the

corresponding data file. The converted data-structure and the alignment systems tokens

have a one to one correspondence at this level. Our objective though, is to achieve the

alignment at the token level identified by the systems. During the data structure

generation, dummy nodes with token ID -1 were created to represent the compound

tokens. From the aligners representation these tokens are unique entities and at this

stage, those tokens are grouped as a single element.

Figure 4 - 6: Token level alignment map.

The representation in the original file was a one to one map between two tokens from

the systems, whereas, the final token level map is a one to many map between Bosque

nodes ID to XIP XML nodes ID. The same map can eventually be used to have a many

to many map at the processing level. To reach this level of alignment a complex set

generation algorithm was developed that generates the alignment map set using a

clustering method.

4.3. Summary.

53

The pre-processing of the data is an important part of the experiment. Since the data

from two different systems will be used to model the phenomenon, token level

alignment is the most important part of the pre-processing. To reach the stage of

alignment, proper data-structure is a primary requirement and later the manipulation of

the data-structure made the task possible. Once the alignment is achieved, the map can

be used for further processing. The next step is thus is the experimental data generation

and performing the experiments. Experimental data generation requires some

experiments and data analysis themselves to isolate significant data elements for the

experiment. The next chapter will illustrate the experimental setup and the results

acquired.

54

Chapter 5: Experments & Evaluations.

The objectives of this research and thus the experiments can be split into two categories;

experiments for designing a framework for dependency based research, especially

Prepositional Phrase (PP) attachment research and a PP disambiguation method using

machine generated data and its evaluation. The framework generation is a complicated

subtask and comprised of several components such as, experimental data generation and

dependency annotation tool etc. On the other hand, once the framework is designed,

experiments were designed to devise a model for the PP attachment from the data. The

following subsections will provide details on the experimental data analysis, designing

of the annotation tool and the PP attachment model generation and evaluation.

5.1. Experimental data analysis.

This research was trying to create a framework that can be used for PP attachment

disambiguation and evaluation. Once the pre-processing was completed, the data was

ready to be analyzed for the specific research task. The framework is designed to work

with any types of dependency relations present. For the research though, only PP

attachments were chosen and they are presented as modifier (MOD) dependencies in the

parsed output. Each dependency has two components, the modifier and the governor.

The following figure (Figure 5.1) illustrates a modifier dependency represented in XIP

XML output.

Figure 5 - 1: Dependency representation in XIP XML

In Figure 5.1 the word grave (serious) is modifying the word aparelho (equipment) and

the type of modification is POST. There are two major types of MOD dependencies

POST and PRE. They represent the relative position of the modifier with respect to the

governor. For the PP attachment disambiguation system designed using the framework

will be using POST type dependencies only. The experimental dataset is the properly

aligned Bosque dataset and it is split into two segments, 10% of the trees (442

sentences) were separated and used as the test data and the rest were used as the training

55

data. The test sentences were annotated manually by a human annotator, thus for this

research we used these fixed sentences. The POST modifiers were distributed among

several chunk types. Some of these chunk types are PRON (pronoun), PASTPART

(past participle), VTEMP (tense feature verb phrase), VPP (past participle verb phrase),

VCOP (copulative verb phrase), VCPART (past participle verb phrase), NP (noun

phrase), VGER (gerundive verbal phrase), VINF (infinitive verb phrase), VF (finite

verb phrase), ADVP (adverbial phrase), NOUN (common or proper noun), AP

(adjectival phrase), PP (prepositional phrase) etc.

The distribution of the modifier (head) chunk types among 21377 dependencies found

in the training data has been presented in the following figure (Figure 5.2).

Figure 5 - 2: Modifier (head) distribution in the training data.

56

It is found that the modifiers (head) in the MOD relationship can be of different chunk

type. Our interest was the PPs for this research and it is found that 64.08% of the total

modifiers were PP’s. Rests of the distributions were calculated for the PP modifiers

only. The governor distribution among the PP modifiers is presented in the following

figure (Figure 5.3).

Figure 5 - 3 : Governor distribution of PP in the training data.

The numbers in Figure 5.3 presents that the governors are distributed among many

chunk elements. Although the major numbers of governors are actually fall into four (4)

types of chunks (token groups above the token level are more precise), Noun Phrases

(NP), PP, Adjective Phrases (AP) and seven (7) different types of Verb Phrases (VP).

The other significant information discovered that each modifier can modify up to seven

(7) governors. A distribution of the modified governor count is presented in Figure 5.4.

57

Figure 5 - 4: Modified governor count of PP in the training data.

In Figure 5.3 the distribution is presented in the form of MOD n Nodes, and n

represents the number of nodes modified by a modifier. From the graph it can be seen

that 90% of the modifiers modifies only one governor. Moreover, the experiments

designed to model the PP attachment will be far too complicated if one PP modifier is

allowed to modify more than one element. So, it is considered to be a trade-off between

complexity and accuracy. It is also taken under consideration that the amount of data

available for multiple modifications is not significant enough to be used to model the

phenomenon. Once the data is purged of the modifiers that modify multiple governors,

58

the distribution changed drastically. The following figure (Figure 5.5) is an illustration

of the modified governor distribution.

Figure 5 - 5: Modified governor distribution of PP in the training data.

59

The distribution presented in Figure 5.5 is the training data distribution to be used for

the actual modeling process. From the distribution we found that there can be roughly

four governor types, VPs, NPs, PPs and APs. The AP’s though are very small

percentage of the total governors and do not agree to the general PP attachment theories.

If it is considered to be wrong annotations and removed from the distribution, the

distribution agrees with the previous studies of the PP attachment presented in chapter 2

of this dissertation. Thus, the Machine Learning (ML) method has to learn how and

when a PP is modifying PP’s, NP’s or VP’s. The next section will explain the

framework’s dependency annotation tool “DpAn”.

5.2. The dependency annotation tool DpAn.

An important part of the framework was to design a simple tool to produce human

annotated dependency data. The designed system is capable of annotating only one type

of dependency using one input file at one time. The input data initialization can be

supported by specific dependency model, depending on the application and the specific

implementation. For this research the distribution model presented in the previous

section was used to initialize the PP attachment annotation input file. The tool was used

to produce the human annotated PP attachment test data that was used for the evaluation

of the model.

The tool was designed using The Eclipse Graphical Editor Framework (GEF). GEF is

consists of three frameworks, Draw2D, Zest and GEF. DpAn is designed using Zest, a

layer on top of Draw2D for adapting a data model to a graphical interface. Zest provides

an easier way to present model information in diagram but it has limits to the

presentation format and the ability of the user to edit that information. The graphics is

generated by creating a viewer then specify a content provider for providing dynamic

data to the viewer and a finally a label provider to display the data in the viewer. Since

it is a diagram rather than a list, tree, or table, it is also possible to specify the layout

algorithm to tell the viewer how to display the data. Regardless the fact that Zest is a

simpler framework with limited functionality, it is a very fast development

environment. The tool only provides the basic functionality such as next and previous

tree traversal, adding a new dependency link and deleting an existing dependency link.

The objective of the tool is to be simple yet effective for the annotators with basic or no

annotation experience. Figure 5.6 is an illustration of the basic window of the tool.

60

Figure 5 - 6: DpAn Basic Window.

The basic window is the main operational window for the tool. It contains few

controllers that can be used by the annotators to perform their task. The interactive

visualization area is the designated area, where the Phrase Structure Trees (PST) are

displayed. The navigation buttons allow the user to move among the dataset, one

sentence at a time. The “+” button is a toggle type button. Once it is put to active state,

the annotators only have to select the nodes that have a relation in proper order. The

connections are directed thus proper order is very important, although it entirely

depends on the objectives of a specific research. The “delete” button is used to remove

a pre-existing dependency link. The instructions how to annotate are provided at the

point of loading of each sentence. The updated data is only saved at the end of each

session, i.e. once the program is closing it will ask the user if he/she wishes to save the

changes. The following figure (Figure 5.7) presents the screenshots of the instructions

and save prompt window.

61

Figure 5 - 7: DpAn Prompts.

Each tree in this tool is presented as a modified tree since it is easier to present a tree

that is both easy to read as a sentence and to represent the dependency links. The

following (Figure 5.8) figure presents different components of a tree representation.

Figure 5 - 8 : DpAn Parse Tree Representation.

The development framework Zest provides the necessary structures to build the

graphical interface. The tree representation is adopted for the specific task and it

represents the XIP XML phrase tree in the figure. The tree structure can be described by

the following elements,

62

1. On the top-left corner of the window the sentence ID associated with a tree is

displayed as can be found in the input file.

2. The trees always initialized with a virtual “TOP” node. All the nodes are

children to this node.

3. All the edged that connects a parent node to its child are tree nodes (Figure 5.7)

and they are different from the dependency links and cannot be selected for

deletion.

4. To keep the token nodes in the same level null nodes are inserted using an

algorithm developed within the scope of the research. Chunk nodes or null nodes

cannot be selected for dependency mapping.

5. Dependency links can connect two token nodes and can be deleted if required.

The tool has been used to produce the test data for the PP attachment disambiguation

model evaluation. The tool has been tested by annotator to annotate PP attachment with

a fifty sentence test dataset. The five aspects of the tool have been asked to three

annotators to evaluate on a scale of zero to five (0-5). The results have been compiled

below in Figure 5.8.

Figure 5 - 9: DpAn response from the annotators.

As it can be seen that the evaluation is not quantitative, rather qualitative from a small

number of evaluators yet the significant features to evaluate the system was adopted

63

from the features presented by Dipper et al. (2004). It can be clearly seen that although

the tool is easy to use and functional, the way to use it does not seem to be intuitive to

the evaluators. Attractiveness or how a user feels about the look of the tool receives an

above average score.

The evaluator’s general complaint was about the viewing area. All of them reported that

it is easy to follow a sentence, even a very long sentence. Nevertheless the complicated

each sentence tree becomes, the more difficult it is to follow the tree. All of them

reported word overlapping in some sentences. The layout algorithm is called

GXTreeLayoutAlgorithm (courtesy of Michelle Tadmor13 at Eclipse™ open-source

community) and the most effective algorithm found so far. Regardless of the difficulty

of resolving overlapping nodes the algorithm works fairly well. Since it is an open-

source algorithm, in future versions of the tool the algorithm can be modified to perform

better with the overlapping issue.

As mentioned before, Zest is a very simple framework for developing applications like

DpAn. The framework thus does not allow customized edge generation and it makes

the dependency links somewhat unmanageable. All the dependency links are rendered

under the node row that represent the sentence and makes it difficult for the annotators

to understand the start and the end of a link. Using the more advanced framework (i.e.

GEF) this problem can be resolved. All the evaluators reported that they could not

understand the use of the tool intuitively i.e. even with the guideline, it took some time

to get used to the tool.

The input data can be generated using another tool that uses the same data-structure and

developed within the scope of the framework. The data generation tool is needed to

provide a set of sentence ID’s to use to produce a dataset. The sentence IDs themselves

can be compiled using the dataset generator on the basis of predefined criterions such as

n% of the total input or sentences having certain chunk element (PP, NP etc.) present

etc. The input for data for the tool is split into two files. One file contains the node

configuration of each sentence (i.e. Tree Descriptor) and the other file contains

dependency links for the sentence (i.e. Dependency Descriptor). It is a way to split the

model from the data and the following figure (Figure 5.9) shows the input files and its

representation.

13 http://www.eclipsezone.com/forums/profile.jspa?userID=264977

http://www.eclipsezone.com/forums/profile.jspa?userID=264977

64

Figure 5 - 10 : DpAn Input File Format.

Each sentence representations have the same format and as it can be seen in Figure 5.9

starts with the sentence ID. Each data-structure elements are split by data-structure

element separator (). The second set of components is the token node descriptors. Each

token node is consist of the token, its Parts of Speech (POS) and the node ID separated

by word element separator (›). The third set of components is the chunk descriptors, the

name of a chunk and its ID again separated by word element separator (›). The last set

is the tree map, list of children node IDs for each chunk node since only chunk nodes

can have children. The dependency descriptors represent only one type of dependency

and the representation is a list of pairs followed by the sentence ID.

The data representation is basic test format and difficult to standardize. A future

modification can be generating the data in XML format. If the size of each dataset can

be regulated, a basic Document Object Module (DOM) parser implementation can be

used for data representation and quicker navigation. Moreover a XML based data

representation is considered to be a standard. The module to generate this data is

implemented within the data-structure implementation. It can be used to generate

specific dataset which is a subset of the extracted dataset. For the XML representation

this data generation module has to be modified as well. The tool is an important part of

the framework and it provides a means to produce gold standard data for both training

and testing of dependency based applications.

65

5.3. PP attachment disambiguation model.

 The framework allows the developer to model a phenomenon of interest from the

output data of the STRING’s XIP XML output. Moreover, the alignment module allows

incorporating information from the parsed output of the PALAVRAS parser. To

demonstrate the use of the framework this subsection will present the development of a

PP attachment disambiguation model. The evaluation of the system will also be

presented, although the performance of the model is not the primary objective of the

experiments.

Designing a statistical model to extract PP attachment relations was a two-step process.

The data analysis presented in section 5.1 is the basis of the primary data selection

process. Only PP’s modifying one element were considered for the training process.

Moreover the definition of POST was enforced using only modifiers with head node ID

appear later in the token sequence than governor head node ID. Then that model train

itself using the data for the predefined heuristics. For this research two heuristic based

model were defined from two different systems i.e. PALAVRAS CG output and the

XIP XML output.

5.3.1. Linier Phrase Distance (LPD) Heuristic.

This heuristic was developed on the basis that PP’s were found to modify phrases closer

to them according to the input data. The distribution observed in the data is presented in

the following figure (Figure 5.11).

Figure 5 - 11 : LPD distribution observed in the data.

66

On the basis of the observed distribution the heuristic was designed. This heuristic

calculates the joint probability of the number of phrases between the modifier and the

governor given the chunk type of the governor. The distribution was computed over the

correct modifier data and it can be formulated as follows,

(,) = (|) ()	 … 	 . .

In the equation is the number of chunks between modifier and governor node and

 is the governor’s chunk type. The governor’s chunk type is computed separately

over the data. For each governor type the distance distribution was extracted.

5.3.2. Tree Travers Distance (TTD) Heuristics.

The existence of a path in the CG parse tree from the modifier head to the governor

head. If such path exists, the inverse distance factor (i.e. given that d is the distance

between the heads) was used. The CG formalism dictates that modifier and governor are

more probable to be in close proximity. The XIP data only provides head dependency

which actually reflects the relationship between the phrases. So, all the nodes of the

phrase were taken under consideration. The aligned node list of all the phrase nodes was

taken under consideration while searching for the inverse path distance. After all the

computation the maximum inverse path distance was used.

If n modifier nodes and m governor nodes were found in the aligned Bosque nodes the

computation time complexity is linear and it is m×n. In our experiments it was found

that some of the alignment nodes were missing within a phrase alignment and thus

makes the alignment incomplete. This phenomenon actually reduces the time

complexity since some of the traversals will be aborted prematurely.

5.3.3. Model evaluation.

We experimented with only two basic models. We attempted the LPD heuristic and the

TTD heuristics as individual models. Several linear combinations were then tested,

starting with the most basic combination of adding the values. We also tried weighted

linear combinations by assigning weights to each of the heuristics.

In a given sentence all the PPs and all possible governor heads that can be modified by

each of the PP’s are listed. The best governor is then selected using the heuristics. The

output data is then used for the evaluation of the model. The test set was originally

67

produced by the STRING NLP chain. The annotation tool DpAn was then used to

revise the annotation by a human annotator. All the evaluation even the original

machine produced output was performed against the reference human annotation. The

evaluation output is listed in Table 5.2.

Model Recall Precision F-‐Measure
Dependency in STRING NLP Chain (Analyzed) 76.86% 75.23% 76.03%

Dependency in STRING NLP Chain 76.86% 72.27% 74.49%
Linier Phrase Distance (LPD) Heuristic 60.97% 63.73% 62.32%

CG Tree Travers Distance (TTD) Heuristics 14.73% 47.05% 22.44%
LPD+TTD Heuristics 55.29% 57.72% 56.48%

Table 5 - 1: Evaluation Results.

As it can be seen the original data is closer the human annotation. The analyzed data

only contains the relations that have been considered consistent. It is notable that the

recall for both analyzed and the whole dataset was the same. The LPD heuristic is

fundamentally modeled the system itself thus shows somewhat similar performance.

The original assumption of incorporating information from CG output namely, CG TTD

heuristic proven to be less useful.

The simple model was designed to evaluate the hypothesis of using two systems output

to improve PP attachment output of the STRING NLP chain. The simple TTD model

was ineffective primarily because of the head based dependency interface in STRING.

It was often difficult to have the heads to be traversable. The head defined in STRING

is basically the right most token thus, does not reflect the function of a phrasal head.

Moreover, the alignment was not totally accurate thus produce a lot of missing tokens in

a chain of tokens. Lot of the times the chains were necessary to find proper traversal

distance. The lack of proper definition of the phrase structure within the CG frame leads

to such poor result. The next chapter will provide an insight on the possible future

prospects of the research.

68

Chapter 6: Future Prospects and Conclusion.

The objectives of this research were mostly achieved, although the models performance

was not better than the original output. The data was generated almost entirely in

automatic manner. Moreover the annotation tool developed provides a means to

incorporate gold standard data in the research. The framework will provide any further

research in the direction of dependency based language processing.

The improvement for the annotation tool is a likely future work that can be useful even

beyond the scope of this research. Improved models can be developed with more

heuristics to disambiguate PP attachment. Better alignment and human annotated gold

standard dataset can improve the performance of the models. The analysis tools can be

used to analyze larger gold standard data to create improved system to model linguistic

phenomenon within the scope of the framework. Moreover, both parses are available in

multiple languages thus the study can be conducted for the common languages.

69

References.

Abney, S. (1996). Partial Parsing via Finite-State Cascades. In Workshop on Robust

Parsing. 8th European Summer School in Logic, Language and Information,

Prague, Czech Republic. pp. 8-15.

Afonso, S., Eckhard, B., Renato, H. and Diana, S. (2002) Floresta sintá(c)tica: a

treebank for Portuguese. In the Proceedings of LREC 2002, the Third

International Conference on Language Resources and Evaluation Las Palmas de

Gran Canaria, Spain. pp. 1698-1703.

Agresti, A. (1990) Categorical Data Analysis. John Wiley & Sons.

Ait-Mokhtar S., Chanod J.-P., Roux C. (2002) Robustness beyond shallowness:

incremental dependency parsing, Natural Language Engineering, 8(2/3) pp.

121-144.

Al-Onaizan, Y., Curin, J., Jahr, M., Knight, K., Lafferty, J., Melamed, D., Och, F.J.,

Purdy, D., Smith, N.A. and Yarowsky, D. (1999) Statistical machine translation.

Final Report, JHU Summer Workshop

Altmann, G. (1985) The resolution of local syntactic ambiguity by the Human Sentence

Processing Mechanism. In Proceedings of the Second Conference on European

Chapter of the Association for Computational Linguistics, Geneva, Switzerland.

pp. 123-127.

Baptista, J., Mamede, N., Gomes, F. (2010) Auxiliary verbs and verbal chains in

european portuguese. In: Computational Processing of the Portuguese

Language. Number LNCS/LNAI 6001, Berlin, PROPOR 2010, Springer

Bick, E. (1996), Automatic Parsing of Portuguese. In García, Laura Sánchez (ed.),

Anais / II Encontro para o Processamento Computacional de Português Escrito

e Falado. Curitiba: CEFET-PR.

Bick, E. (2000) The Parsing System Palavras - Automatic Grammatical Analysis of

Portuguese in a Constraint Grammar Framework. Aarhus University Press.

Aarhus, Denmark.

70

Bick, E. (2003) A CG & PSG Hybrid Approach to Automatic Corpus Annotation, in

Kiril Simow & Petya Osenova: Proceedings of SProLaC2003 (at Corpus

Linguistics 2003, Lancaster), pp. 1-12.

Bick, Eckhard (2005) Turning Constraint Grammar Data into Running Dependency

Treebanks. In: Civit, M. & Kübler, S. & Martí, M. A. (red.), Proceedings of

TLT 2005, Barcelona, Dec 9th - 10th, 2005), pp.19-27

Bick, E. (2006) Noun sense tagging: Semantic prototype annotation of a portuguese

treebank. Proceedings of the Fifth Workshop on Treebanks and Linguistic

Theories (TLT 2006).

Bick, E. (2007) Automatic semantic role annotation for portuguese. Em TIL, V

Workshop em Tecnologia da Informa¸c˜ao e da Linguagem Humana, pp. 1715–

1719.

Bick, E. (2009) Introducing Probabilistic Information in Constraint Grammar Parsing.

Proceedings of Corpus Linguistics 2009, Liverpool, UK.

Bikel, D. (2002) Design of a multi-lingual, parallel processing statistical parsing engine.

In Proceedings of the Human Language Technology Workshop.

Blevins J. P.and Sag I. A. (2011) Phrase Structure Grammar. To be appeared in M. den

Dikken (ed.), Cambridge Handbook of Generative Syntax - Chapter 7.

Cambridge University Press. 2012.

Blum, A. (2002) Machine Learning Theory. Lecture Notes, Carnegie Mellon

University.

Branco, A. and Costa, F. (2008) A computational grammar for deep linguistic

processing of Portuguese: LXGram, version A.4.1. Technical Report DI-FCUL-

TR-08-17, University of Lisbon. Lisbon, portugal.

Brill, E. (1995) Transformation-based error-driven learning and natural language

processing: a case study in part of speech tagging. Computational Linguistics,

21, 543–565.

71

Brill, E. and Resnik, P. (1994) A Rule-Based Approach To Prepositional Phrase

Attachment Disambiguation. In Proceedings of COLING’94. Kyoto. Available

at: http://www.cs.jhu.edu/~brill/pp-attachment.ps.

Cahill, A., Heid, U., Rohrer, C. and Weller, M. (2009) Using tri-lexical dependencies in

LFG parse disambiguation. In: The 14th International LFG Conference, Trinity

College, Cambridge, United Kingdom.

Ceccato, M., Kiyavitskaya, N., Zeni, N., Mich, L., and Berry, M. (2004) Ambiguity

identification and measurement in natural language texts. Technical Report,

University of Trento. Trento, Italy

Collins, M. and Brooks J. (1995) Prepositional phrase attachment through a backed-off

model. In David Yarowsky and Kenneth Church, editors, Proceedings of the

Third Workshop on Very Large Corpora, pp. 27-38, Cambridge, MA, June.

Covington, A. (2001) A fundamental algorithm for dependency parsing. Proceedings of

the 39th Annual ACM Southeast Conference, pp. 95–102

Crain, S. and Steedman, M. (1985) On not being led up the garden path: the use of

context by the psychological syntax processor. In Natural language parsing:

Psychological, Computational, and Theoretical Perspectives. Cambridge:

Cambridge University Press. pp. 320-358.

Dempster, A.P., Laird, N.M and Rubin, D.B. (1977) Maximum likelihood from

incomplete data via the EM algorithm. J. Roy. Statist. Soc. B(39) pp. 1–38.

Diniz, C. (2010) Rudrico2 - um conversor baseado em regras de transformaçao

declarativas. Master's thesis, Instituto Superior Téecnico, Universidade

Téecnica de Lisboa.

Diniz, C., Mamede, N.(2011) Lexman - lexical morphological analyser. Technical

report, L2F / INESC ID Lisboa, Lisboa, Portugal.

Duda, R., Hart, P. and Stork, D. (2000) Pattern Classification (2nd Edition). Wiley-

Interscience.

Eysenck, M. and Keane, M. (2000) Cognitive psychology a student’s handbook 4th ed.,

Hove: Psychology Press.

72

Farley, B. and Clark, W. (1954) Simulation of self-organizing systems by digital

computer. IEEE Transactions on Information Theory, 4(4), pp. 76-84.

Fellbaum, C. and Miller, G. (1990) Folk psychology or semantic entailment? A reply to

Rips and Conrad. Psychological Review 97. pp. 565–570.

Ford, M., Bresnan, J., and Kaplan, M. (1982) A competence-based theory of syntactic

closure, in Joan Bresnan, ed., The Mental Representation of Grammatical

Relations , MIT Press, Cambridge, MA , pp. 727-796.

Foth, K. and Menzel, W. (2006) The benefit of stochastic PP attachment to a rule-based

parser. In Proceedings of the COLING/ACL on Main Conference Poster

Sessions (COLING-ACL '06). Association for Computational Linguistics,

Stroudsburg, PA, USA. pp.223-230

Frazier, L. (1978) On comprehending sentence: syntactic parsing strategies. PhD

Thesis. ETD Collection for University of Connecticut. USA.

Gamallo, P., Agustini, A. and Lopes, G. (2003a) Acquiring Semantic Classes to

Elaborate Attachment Heuristics. In Moura Pires & S. Abreu (eds.), Progress in

Artificial Intelligence 11th Portuguese Conference on Artificial Intelligence,

EPIA 2003, Beja, Portugal Springer-Verlag. Lecture Notes in Artificial

Intelligence, pp. 478-487.

Gamallo, P., Agustini, A. and Lopes, G. (2003b) Learning subcategorisation

information to model a grammar with co-restrictions. Traitement Automatic de

la Langue, 44(1). pp. 93–117.

Goldberg, A. (1995) Constructions; A construction grammar approach to argument

structure. University of Chicago Press. Chicago, USA.

Hindle, D. and Rooth, M. (1993) Structural ambiguity and lexical relations.

Computational Linguistics, 19(1):103–120.

Hirst, G. (1987) Semantic Interpretation and the Resolution of Ambiguity. Cambridge

University Press, New York, NY, USA.

73

Hsieh, Y., Yang, D. and Chen, K. (2007) Improve Parsing Performance by Self-

Learning. Computational Linguistics and Chinese Language Processing. 12(2)

pp. 195-216.

Hudson, R. (1984) Word grammar. Oxford, England: B. Blackwell.

Huyck, C. (2000) A practical system for human-like parsing. In the Proceedings of the

14th European Conference on Artificial Intelligence, ECAI 2000, Berlin, pp.

436-440.

Karlsson, F. (1990) Constraint grammar as a framework for parsing running text. In

Proceedings of the 13th Conference on Computational Linguistics. Helsinki,

Finland. 168-173.

Karlsson, F., Voutilainen, A., Heikkilä, J. and Anttila,A. (eds.) (1995) Constraint

Grammar - A Language-Independent System for Parsing Unrestricted Text.

Natural Language Processing, No 4. Berlin & New York: Mouton de Gruyter.

Kimball, J. (1973) Seven principles of surface structure parsing in natural language.

Cognition, 2(1) pp. 15-47.

Klein, D. and Manning, C. (2003) Fast exact inference with a factored model for NLP.

Advances in Neural Language Processing Systems 15. pp. 3–10.

Kübler, S., McDonald, R. and Nivre, J. (2009). Dependency Parsing. Synthesis Lectures

on Human Language Technologies. Morgan and Claypool Publishers.

Lin, D. (1997) Using syntactic dependency as local context to resolve word sense

ambiguity. In the Proceedings of the Eighth Conference on European Chapter of

the Association for Computational Linguistic (ACL). Madrid, Spain. pp. 64-71.

Loftsson, H. and Rögnvaldsson, E. (2007). IceParser: An Incremental Finite-State

Parser forIcelandic. In Proceedings of the 16th Nordic Conference of

Computational Linguistics (NoDaLiDa, 2007), Tartu, Estonia.

Lopez, A. (2007) Statistical machine translation. ACM Computing Surveys. Earlier

version: A Survey of Statistical Machine Translation. U. of Maryland, UMIACS

tech. Report pp. 2006-47.

74

Mamede, N. (2011) STRING - A Cadeia de Processamento de Língua Natural do L2F.

Slides from seminar at NILC/ICMC/USP, São Carlos, Brasil.

Marr, D. (1970) A theory for cerebral neocortex. In the Proceedings of the Royal

Society of London, Series B, Biological Sciences, 176(1043). pp. 161-234. The

Royal Society.

Megyesi, B. and Rydin, S. (1999). Towards a Finite-State Parser for Swedish. In

Proceedings of NoDaLiDa, Throndheim, Norway.

York Press. Albany, N.Y. USA.

Merlo, P. and Ferrer, E. (2006) The notion of argument in PP attachment.

Computational Linguistics, 32(2) pp. 341–378

Miller, G. A. et al. (1990) WordNet: An on-line lexical database. International Journal

of Lexicography, 3, pp.235–244.

Mohanty, R., Ashish F. and Pushpak B. (2005) Prepositional Phrase Attachment and

Interlingua. In J. Cardenosa, A. Gelbukh & E. Tovar, (eds.) Universal

Networking Language: Advances in Theory and Application. Special Issue of

Research on Computing Science, pp. 242-253, Instituto Politécnico Nacional,

Mexico.

Nadh, K. and Huyck, C. (2009) Prepositional phrase attachment ambiguity resolution

using semantic hierarchies. In Ninth IASTED International Conference on

Artificial Intelligence and Applications, 18th February 2009, Innsbruck,

Austria.

Nagao, K. (1990) Dependency Analyzer: A Knowledge-Based Approach to Structural

Disambiguation. In the Proceedings of 13th International Conference on

Computational Linguistics, Coling-90, 282-287.

Nakov, P. and Hearst, M. (2005) Using the web as an implicit training set: Application

to structural ambiguity resolution. In Proceedings of HLT-NAACL.

75

Niemann, M. (1998) Determining PP Attachment through Semantic Associations and

Preferences. In D. Estival (ed.) Abstracts for the ANLP Post Graduate

Workshop, pp. 25-32.

Nilsson, N. J. (1998) Introduction to Machine Learning: An Early Draft of a Proposed

Textbook. [Accessed August 11, 2011] Available at:

http://robotics.stanford.edu/people/nilsson/mlbook.html.

Nivre, J. (2002) Two Models of Stochastic Dependency Grammar. MSI Report 02118.

Växjö University: School of Mathematics and Systems Engineering.

Nivre, J. (2005) Dependency grammar and dependency parsing. Technical Report MSI

05133, Växjö University: School of Mathematics and Systems Engineering.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S. and

Marsi, E. (2007) MaltParser: A language-independent system for data-driven

dependency parsing. Natural Language Engineering, 13(2), pp. 95-135.

Nuria, G. & Lafourcade, M. (2005) Combining corpus-based pattern distributions with

lexical signatures for PP attachment ambiguity resolution. In Proceedings of the

6th Symposium on Natural Language Processing (SNLP-05), Chiang Rai.

Chaina.

Och, F. J. (2000) Giza++: Training of statistical translation models. Available at

http://www-i6.informatik.rwthaachen.de/ och/software/GIZA+.html.

Och, F.J. and Ney, H. (2000) A comparison of alignment models for statistical machine

translation. In COLING’00: The 18th International Conference on

Computational Linguistics, pp. 1086–1090, Saarbrücken, Germany.

Och, F.J. and Ney, H. (2002) Discriminative training and maximum entropy models for

statistical machine translation. In Proc. of the 40th Annual Meeting of the

Association for Computational Linguistics (ACL), Philadelphia, PA, July.

Och, F.J. and Ney, H. (2003) A Systematic Comparison of Various Statistical

Alignment Models. Computational Linguistics 29(1) pp. 19-51.

76

Petrov, S., Barrett, L., Thibaux, R. and Klein, D. (2006) Learning accurate, compact,

and interpretable tree annotation. In: Proceedings of the 44th ACL. pp. 433–

440.

Rappaport, M. (1983) On the nature of derived nominals. In Papers in lexical-functional

grammar. Bloomington, Ind.: Indiana University Linguistics Club, pp. 113-142.

Ratnaparkhi, A., Reynar, J. and Roukos, S. (1994) A maximum entropy model for

prepositional phrase attachment. In Proceedings of the workshop on Human

Language Technology - HLT ’94. Plainsboro, NJ, pp. 250-255.

Ribeiro, R. (2003) Anotação Morfossintáctica Desambiguada do Português. Master's

thesis, Instituto Superior Técnico – Universidade Técnica de Lisboa, Portugal.

Roth, D. (1998) Learning to resolve natural language ambiguities: a unified approach.

In the Proceedings of AAAI-98, 15th Conference of the American Association

for Artificial Intelligence, 806-813, July 1998, Madison, Wisconsin, United

States.

Sándor, A., Kaplan, A. and Rondeau, G. (2006) Discourse and citation analysis with

conceptmatching. International Symposium: Discourse and document (ISDD),

Caen, France.

Schiehlen, M. (2003) A Cascaded Finite-State Parser for German. In roceedings of the

Research Note Sessions of the 10th Conference of the European Chapter of the

Association for Computational Linguistics (EACL’03), Budapest.

Scudder, H. (1965) Probability of error of some adaptive pattern-recognition machines.

IEEE Transactions on Information Theory, 11(3). pp. 363-371.

Silva, J., Branco, A., Castro, S. and Reis, R. (2010) Out-of-the-Box Robust Parsing of

Portuguese. In Lecture Notes in Artificial Intelligence, 6001, pp. 86-89, Berlin:

Springer.

Sopena, J. M., LLoberas, A. and Moliner, J. L. (1998) A connectionist approach to

prepositional phrase attachment for real world texts. In Proceding 17th

International Conference on Computational Linguistics, pp. 1233–

1237,Montreal.

77

Stetina, J. and Nagao, M. (1997) Corpus based pp attachment ambiguity resolution with

a semantic dictionary. In In Proceedings of WVLC, pp. 66–80.

Tapanainen, P. (1996) The Constraint Grammar Parser CG-2. Number 27 in

Publications of the Department of General Linguistics, University of Helsinki.

Taraban, R. and McClelland, J. (1988) Constituent attachment and thematic role

assignment in sentence processing: Influences of content-based expectations.

Journal of Memory and Language, 27(6) pp. 597-632. Available at: http://www-

psych.stanford.edu/~jlm/papers/PublicationFiles/80-89_ Add_

To_ONLINE_Pubs/T arabanMcClelland88ConstituentAttachment.pdf.

Telljohann, H., Hinrichs, E. W., Kübler, S. and Zinsmeiste, H. (2005) Stylebook for the

Tübingen Treebank of Written German (TüBa-D/Z).

Tesnière, L. (1959) Éléments de syntaxe structurale, Klincksieck, Paris.

Toutanova, k., Andrew Ng Y. and Manning, C. (2004) Learning random walk models

for inducing word dependency distributions. In In Proceedings of ICML.

Volk M. (2001) The Automatic Resolution of Prepositional Phrase – Attachment

Ambiguities in German. Habilitation thesis submitted to the University of

Zurich, Faculty of Arts. Zurich

Walt, C. and Barnard, E. (2006) Data characteristics that determine classifier

performance. In the Proceedings of the Sixteenth Annual Symposium of the

Pattern Recognition Association of South Africa, Parys, South Africa. 166–171.

Available at: http://www.meraka.org.za/pubs/CvdWalt.pdf.

Whittemore, G., Ferrara, K. and Brunner, H. (1990) Empirical study of predictive

powers of simple attachment schemes for post-modifier prepositional phrases.

In Proceedings of the 28th Annual Meeting of the Association for

Computational Linguistics, Pittsburgh, Pennsylvania. pp. 23-30.

Wilks, Y., Huang, X. and Fass, D. (1985) Syntax, preference and right attachment.

Syntax, preference, and right attachment. In Proceedings of the 9th international

joint conference on Artificial intelligence - Volume 2 (IJCAI'85), Aravind Joshi

78

(Ed.), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 779-

784.

Wing, B. and Baldridge, J. (2006) Adaptation of data and models for probabilistic

parsing of Portuguese. In: Proceedings of the 7th Encontro para o

Processamento Computacional da Língua Portuguesa Escrita e Falada

(PROPOR). pp. 140–149.

XRCE (2011) Xerox Incremental Parser - Reference Guide [online]. France: Xerox

research Center Europe (XRCE). [Accessed 14 May 2012].Available at:

http://open.xerox.com/Repo/service/XIPParser/public/XIPReferenceGuide.pdf.

Zhao, S. and Lin, D. (2004) A Nearest-Neighbor Method for Resolving PP-attachment

Ambiguity. In Proceedings of IJCNLP-04.

	iC3maN.Dissertation.Abstract
	iC3maN.Dissertation.COMBO

