Fuzzy Modeling and Simulation of Purse-seine Fishing Skippers Behavior

Joao Paulo Carvalho
TU Lisbon – Instituto Superior Técnico
INESC-ID
R. Alves Redol, 9, 1000-029 LISBOA, PORTUGAL
joao.carvalho@inesc-id.pt

Laura Wise; Alberto Murta
IPIMAR: Institute of Fisheries and Sea Research
lwise@ipimar.pt ; amurta@ipimar.pt

Abstract— This paper focus on the modeling of a qualitative real world dynamic system: the day to day behavior of purse seine fishing fleet skippers. The model is based on a Dynamic Cognitive Mapping approach (Rule Based Fuzzy Cognitive Maps – RB-FCM) where several developments had to be made in order to obtain a workable system. The model is intended to be used to test the effectiveness of different biological management scenarios, such as catch restrictions, marine closed areas, seasonal fishing bans, etc.

Keywords: Rule Based Fuzzy Cognitive Maps, Purse-Seine Fishing, Modeling of dynamic qualitative systems.

I. INTRODUCTION

Fishermen are the most important predators in marine ecosystems, with a high impact on the mortality on marine populations and destruction of marine habitats. A dynamic model of such predatory behavior that would allow simulating and predicting the responses of the skippers of fishing vessels to a wide range of relevant factors, whether of natural or human origin, would provide an invaluable tool to study and prevent the current trend on marine resource depletion. This work focus on modeling the Portuguese purse-seine fishing fleets, and the model was obtained by combining recent advances in qualitative modeling techniques (dynamic cognitive maps) with a privileged source of real-time information on the behavior of skippers taken onboard during fishing trips. When connected to existing models of the population dynamics of different fish stocks, the model will provide a framework to test the effectiveness of different management measures, such as catch restrictions, marine closed areas, seasonal fishing bans, etc.

II. DYNAMIC COGNITIVE MAPS

The term Dynamic Cognitive Maps has been recently used to describe techniques that allow simulating the evolution of cognitive maps through time. Axelrod [2] work on cognitive maps (CM) introduced a way to represent real-world qualitative systems that could be analyzed using several methods and tools. However, those tools only provided a way to identify the most important structural elements of the CM. Complete, efficient and practical mechanisms to analyze and predict the evolution of data in CM were not available for years due to several reasons. System Dynamics tools like those developed by J.W. Forrester [15] could have provided the solution, but since in CM numerical data may be uncertain or hard to come by, and the formulation of a mathematical model may be difficult, costly or even impossible, then efforts to introduce knowledge on these systems should rely on natural language arguments in the absence of formal models. Fuzzy Cognitive Maps (FCM), as introduced by Kosko [19][20], were developed as a qualitative alternative approach to system dynamics. However, although very efficient and simple to use, FCM are causal maps (a subset of cognitive maps that only allow basic symmetric and monotonic causal relations between concepts) [10], and, in most applications, a FCM is indeed a man-trained Neural Network that is not fuzzy in a traditional sense and does not exploit usual fuzzy qualitative capabilities. Rule Based Fuzzy Cognitive Maps (RB-FCM) were introduced in [5][6][7][8][10][11][12] and were developed as a tool that models and simulates real world qualitative system dynamics while trying to avoid the limitations of those approaches.

RB-FCM allow a representation of the dynamics of complex real-world qualitative systems with feedback, and the simulation of events and their influence in the system. They can be represented as fuzzy directed graphs with feedback, and are composed of fuzzy nodes (Concepts), and fuzzy links (Relations). Concepts are fuzzy variables described by linguistic terms, and Relations are defined with fuzzy rule bases. RB-FCM are essentially iterative fuzzy rule based systems where we added fuzzy mechanisms to deal with feedback, introduced timing mechanisms and new ways to deal with uncertainty propagation, and where we defined several kinds of Concept relations (Causal, Inference, Alternatives, Probabilistic, Opposition, Conjunction, etc.) to cope with the complexity and diversity of the dynamic qualitative systems we are trying to model.

III. MODELLING FISHING FLEET SKIPPERS BEHAVIOR

The concept of management of marine resources corresponds in fact to controlling the human predatory action over marine ecosystems. Man is the top predator in the marine ecosystems, being responsible for the over-exploitation of several animal species and by the destruction of marine habitats. One would believe that the human behavior, regarding fishing activities, would be much easier...
to model and predict than the behavior of other top predators in the ecosystem. However, the published scientific literature [1][3][13][14][16][17][18][21][22][23] still puts in evidence many methodological and knowledge gaps in this subject. In none of the published work have the reasoning and decisions of the skippers been really modeled in an individual basis, being instead just inferred from observation of indirectly related data, such as the placement of fishing effort. In some works, direct interviews were formally made to fishermen, but most of the interviewed persons were retired from work (which may give a biased view of the fishing decisions at present) and those qualitative data were not further included in any model. In this work we aim to fill in some of these gaps in the modeling methodology and knowledge on the dynamics of fishing fleets having as a starting point the reasoning and individual decisions of the skippers. The model was developed by analyzing data collected from the purse-seine fishing fleets in the Portuguese coast. Qualitative information like on which variables do the skippers base their decisions, and which decision do they take for different levels of those variables, was collected onboard through informal conversations with the skipper during navigation time and in between fishing operations and biological sampling work. This information gathering was carried out during a four year period by a biologist team that, along the years, gained a great experience of direct onboard contact with fishermen from different fleets. At the same time, it was also collected quantitative information on meteorological, oceanographical, economical and other variables that are likely to be taken into account by skippers.

IV. PURSE-SEINE FISHING

Purse-seine fishing on the Portuguese coast is done on small ships with a cargo capacity of less than 20000 Kg, manned by a crew of 15-20 people. The primary catch is sardine, although 3 other species are common: anchovy, shub mackerel and horse mackerel. On purse-seine fishing, skippers look for fish using an echo-sounder while the ship is on the move. After fish is located, a purse net is dropped and used to capture the fish. The net dimension is 1000m long by 120 m tall. A fishing operation takes around 2 hours to complete. Skippers act independently from other skippers in the fleet, although cooperation (information exchange regarding fisheries) is possible and common. Several fishing operations can be made in one day. A fishing day starts after 5PM, and usually ends early in the morning, although end time can vary a lot due to several factors.

V. MODEL DESIGN

The modelling design initially followed a standard (static) cognitive map approach. First, a team of biologist experts were gathered and asked to provide an initial list of all concepts considered relevant to model the problem. This step obviously took several iterations until the experts agreed on a stable set of concepts. The concepts were graphically displayed on a white sheet, and the next step consisted on establishing direct relations between those concepts. These relations started as simple directed links. During this process new concepts were found necessary, others were removed, and some were somehow combined or divided into several concepts. These concept rearrangements were often repeated until the final version of the DCM, presented in this paper, was obtained. The next step consisted in trying to indicate major causal effects and positive or negative influences in the proposed relations. During this step it was found that the simple mechanisms proposed by standard FCM to represent relations between concepts would not be sufficient to model the involved knowledge. Since the experts could express the knowledge using linguistic rules, and linguistic rules were deemed sufficient at the time, the option to move to RB-FCM was definitely taken. This also initiated the process of thinking in terms of designing a dynamic cognitive map instead of a static one.

Timing is one of the more important issues when modelling the dynamics of a real world CM. However, most DCM approaches seem to ignore this fact. In order to maintain consistency in the process of modeling the dynamics of a qualitative system, it is necessary to develop and introduce timing control mechanisms. To allow the representation of time flow, delays, and the inhibition of certain relations when they have no influence on a given instant, new mechanisms and changes to the engine of RB-FCM have been previously introduced in [9]. In what concerns this model, the problems regarding timing issues started when a decision regarding the duration of each iteration of the simulation (b-time [9]) had to be taken. The problem was in the fact that the system simulations should cover from several months to a few years (one cannot see the effects of fishing politics in less time), but skipper decisions are taken on an hourly basis. If one opted to model the system on a daily basis one would not be able to model skipper behaviour during fishing trips and one would have flaws as those presented in section III. On the other hand, if one opted to model the system on an hourly basis, it would mean runs consisting of a few thousand to tens of thousands of iterations. On a regular DCM, the high number of feedback links would mean that, with such a high number of iterations, results would be highly unreliable (in the same sense that it is unreliable to make long term weather predictions) [7]. The solution found to solve this problem was to use a hierarchical approach: a “fishing” day would consist of several DCM, each being simulated on an hourly basis.

This led to the definition and implementation of what one called Meta states. A simpler version of this approach had been introduced in [12]. Each Meta state is a DCM that is simulated only when its Meta state is active. Transitions between Meta states occur when, during simulation, the DCM reaches certain conditions. Although each Meta state is active in different timing instants, a concept from a given Meta state can still get its inputs from concepts in other Meta
states (the value it gets is the one assumed by the concept in the last active iteration of its Meta state.) Meta states can be represented using state diagrams. Fig. 1 shows the five Meta states and Meta state transitions that are used to model a fishing day (further details are given in the next section.) Note that when a Meta state is inactive, its concepts maintain their last computed value. A collateral advantage of using Meta states was the fact that it really does not make sense to update all concepts in every iteration. For example, in the proposed model it makes not sense to update the concept that calculates the best departure time when the ship is already at sea…

Another issue involving timing simulation was noted by the experts: several skipper decisions had to be made without delay (in a short time, less than 1 hour), although the decision process involved several chained related concepts. This was however easily solved using the FSS (Fuzzy Sub Systems) mechanisms previously proposed in RB-FCM [11]: FSS are used to model the process of (more or less immediate) decision making by system entities: on a regular DCM each step of a chain decision process (involving several sequentially related concepts) suffers a delay corresponding to a single iteration (B-time); on a FSS such delay does not exist, all steps of the decision making process are resolved in a single iteration.

During the modelling process several kinds of concepts and relations were deemed necessary. The model needed to operate quantitative, qualitative, probabilistic and stochastic data indiscriminately, which led to the creation of a few mechanisms to implement those relations. These mechanisms are concretized in the next section.

The overall modelling process was obviously not instantaneous; it took several months until a version deemed satisfactory by all involved parts was completed.

VI. PURSE-SEINE FISHING SKIPPERS BEHAVIOR MODEL OVERVIEW

This section gives an overall description of the proposed Dynamic Cognitive Map of Purse-seine Fishing Skippers Behavior. A detailed description, which is not possible here due to lack of space, will be done on a dedicated paper.

The model considers b-time as 1 hour, i.e., each iteration represents 1 hour. Although b-time is rather short, the model is intended to be used for medium to long term simulations (few months to several years), which means runs consisting of a few thousand to tens of thousands of iterations. In this model it is viable to perform such a high number of iterations because Meta states were used to represent one fishing day.

Fig. 2 shows all concepts of the DCM and the connections (relations) among them. It also shows the five meta-states – a solid rectangle surrounding several concepts –, and the fuzzy subsystems (FSS) – a dashed rectangle surrounding several concepts. Remember that the effects of relations within a FSS have an almost immediate effect in the consequent concept (within the same iteration), while the effects of relations outside a FSS have a 1 hour delay (corresponding to a single iteration of the CM). Note that the representation of the relations among concepts are very simplified and expressed by a single directed arrow.

Four different kinds of concepts can be identified:
- Levels – fuzzy variables represented by rectangles;
- Variations – fuzzy variables represented by an ovals;
- Crisps – crisp level variables represented by a rounded corner rectangles;
- Inputs – crisp or fuzzy external inputs represented by hexagons.

All Level, Variation and Input concepts are associated with several fuzzy membership functions that represent their linguistic terms.

Relations are not explicitly represented in the figure due to lack of space. It is however possible, to differentiate relations expressed by fuzzy causal rule bases (FCR), from fuzzy and crisp rule bases (FRB, CR) – represented by black dots. Other relations (represented by different symbols) will be explained in the relevant Meta state.

The current model contains nearly 40 concepts, over 20 different membership function sets representing linguistic terms and 16 fuzzy rule bases (FRB) containing approximately 930 fuzzy rules.

A. Meta States

There are 5 different Meta states that simulate one fishing day (Fig. 1). Each fishing day starts with the system in the At Port (Start) state, where decisions whether to start a fishing trip and when to leave port must be made. After leaving port, the skipper heads on a given direction and starts looking for fish using the echo sounder (Search). While searching, and according to the echo sounder results, a decision must be made on whether to start a fishing operation, continue searching or return to port. During the fishing operation (Fishing Op), fish is captured using a purse-net. At the end of a fishing operation, the skipper must decide on keep searching or return to port. The return Meta state (Return) is used to simulate the duration of the return trip. At the end of
the fishing day, the ship arrives to port (*At Port Landing*) where we have the landing operation (the catch is unloaded and sold at the auction market), and the skipper makes a balance of the fishing day.

The following subsections describe the most important issues in modeling each meta state DCM.

B. At Port (Start)

The *At Port (Start)* DCM consists of a single FSS where the skipper decides whether to leave or not to leave on a fishing trip, and, in affirmative case, what is the best departure time. All knowledge involved is expressed using fuzzy rule bases. The decision to leave is based on the predicted profit (which is itself based on the latest fish observations), and on the existence of external restrictions, like for example, ship damage or seasonal fishing bans. Departure time is influenced by the season of the year (sunset time influences the behavior of the target species), predicted profit and last profit. FCR are used to calculate the variation of departure hour since last day. Some of these FCR are non-linear and non-symmetric [10]; therefore a common FCM could not be used to express the relations among the involved concepts.

C. Searching

After leaving port, the skipper spends most of its time observing the info given by the echo sounder. Echo sounder markings are usually not conclusive, and can at best be described qualitatively. The skipper usually qualifies the markings using linguistic terms Good, Average or Bad (in the system there is also the membership function Null, to represent marking absence), and also tries to determine the fish species. Based on these data and on the fish sell price, the skipper has an idea of how good is the potential catch (Echo Sounder Info). The above reasoning is implemented in the model by a FSS that uses FIRs. When combined with the current hour and last day catch, the FSS result is used to determine if the search should continue, the trip should end, or a fishing operation should start. A FIR is used to model this decision. The system also takes into account how far the ship is from port in order to use this information on the return trip.

D. Fishing Operation

In order to model the fishing operation, one had to mix crisp, fuzzy and probabilistic random data. This resulted on the following FSS:

- The catch values are computed based on the echo sounder markings using a table of probability distributions per species. The table was built based on observations gathered through a 4 year period, and relates real world skipper predictions (based on their qualitative interpretation of the echo sounder markings), with the catch from the respective fishing operation. Note that the catch is often far different from the skipper prediction (in both quantity and composition);
- As a result of the fishing operation, the model returns a quantitative amount of fish – ranging from a couple of hundreds of Kg to more than 15000Kg – depending on the involved species (*CatchQ species*).
- This quantitative value is then evaluated qualitatively (also depending on the captured species), and is accumulated with eventual previous catches to obtain the qualitative value “Total Catch *species*”. Due to political seasonal restrictions on the catch maximum quantity, some of the captured fish may have to be thrown back to the water (slipping). The qualitative result of the current day fishing operation (*LndCatch*) is obtained using FIR that combines the qualitative values of each species total catch.
- The model will use the qualitative evaluation of the day catch and the current time to simulate skipper decision on returning to the port to land the catch or to continue searching. This is done using a FIR that basically relates the skipper satisfaction degree with its appreciation of “how good was the day” using rules like:
 - “If *LndCatch* is Very Good then I am Satisfied”
 - “If *LndCatch* is Ok and it’s Late then I’m Satisfied”
 - “If *LndCatch* is Ok and it’s Early then I’m Not Satisfied”
- The total Fishing Operation lasts roughly 2 hours (which means that is completed in 2 iterations).

E. Returning

After a decision is made to return, the model must simulate the returning trip. This consists on a given number of iterations where basically only the current hour is changed. The arrival time is computed based on time and distance from port when the decision to return was made.

F. At Port (Landing)

At the end of the trip, a very simple qualitative economic model is used to compute the day’s profit/loss. The model only takes into account variable costs:

- Trip duration and cost of fuel per hour is used to calculate the expense using a FIR;
- The qualitative sell price and the qualitative catch landing are used to calculate revenue using a FIR;
- A qualitative Profit indication is calculated using a FIR.

The indicative qualitative profit value is used by the model (and the skipper) as a factor in next day operation.

VII. RESULTS

The presented system is very close to its final version, although further changes and/or developments are obviously still possible (namely in the optimization of the fuzzy rule
bases). In order to validate the model, the Fishing Operation Meta state was altered the following way: instead of using the table probability distributions to generate a random catch based on the echo sounder observation, we used real world data obtained on fishing trips during a one year period (not all outings were recorded, though); the data was taken from the echo sounder and the catches obtained on those fishing trips. The external inputs used by the model were also taken from real world data.

By using this approach, we were able to compare the model of the skipper behavior with the real world skipper’s behavior when faced with similar data. Analysis of the results show that the total number of fishing trips and of fishing operations was the same, which means that the major decisions (when to leave port; when to start a fishing operation, when to return) were modeled correctly, even though the hour of return to port had usually some differences. Those differences could be explained by the fact that we lacked a complete record of the necessary echo sounder data: we had access to the data of all fishing operations, but the data records corresponding to the situations where the echo sounder shows some fish but the skipper decides not to start a fishing operation was not complete. Therefore it was possible that the real world trips continued because fish markings appeared on the echo sounder (although not good enough to start a fishing op), while the model decides to return because it had no data records indicating fish presence at all.

On a side note, profit analysis shown that, given the high price of fuel during the simulated period and the recorded fish availability, the fishing trips results barely covered the operation costs. This is consistent with the state of mind of the real world skippers when interviewed regarding the state of their business (precise financial records are confidential, therefore there is no data to make a more proper analysis).

While using the model in its regular operation mode, no strange behaviours have been noticed, although no extensive simulations of complex cases have been seriously analyzed yet. Therefore we can conclude that, for now, the model behaves as intended, and can be used to simulate “what-if scenarios”.

VIII. CONCLUSION AND FUTURE DEVELOPMENTS

This paper presents a Dynamic Cognitive Map model of Purse-seine Fishing Skippers Behavior. The presented model had to evolve from a standard DCM and adopt features that bring it closer to a state machine. However it still keeps the essential elements that characterize a DCM, namely a set of cyclic interrelated concepts describing real world entities whose evolution through time is simulated using an iterative model. The biggest difference lies essentially in the fact that not all relations are active simultaneously.

Although the model is close to its final form, an important future development lies in its connection to existing (or new) models of the population dynamics of different fish stocks, which currently are generated from external inputs. In fact, an important factor influencing, and at the same time being influenced by the fleet dynamics is the abundance of the different resources. A possible approach to expand the model could be to estimate abundance of relevant resource by using surplus biomass dynamics fisheries assessment models, based on the logistic or in the Lotka-Volterra equations. A different (and more challenging) approach could be the use of DCM to model abundance.

The presented model exhibits a sound behavior and has been validated using real world data. Therefore, when integrated with the above mentioned models of the population dynamics of different fish stocks, it can start to be used to test the effectiveness of different management measures, such as catch restrictions, marine closed areas, seasonal fishing bans, etc.

REFERENCES

Fig. 2 Purse-seine Fishing Skipper Behavior Dynamic Cognitive Map