Assessing MOOCs Discussion Forums

Gonçalo Duarte Varela

Thesis to obtain the Master of Science Degree in
Information Systems and Computer Engineering

Supervisor: Prof. Maria Luísa Torres Ribeiro Marques da Silva Coheur

Examination Committee
Chairperson: Prof. Mário Jorge Costa Gaspar da Silva
Supervisor: Prof. Maria Luísa Torres Ribeiro Marques da Silva Coheur
Member of the Committee: Prof. João Miguel de Sousa de Assis Dias

November 2015
Dedicated to my mother.
Acknowledgments

Foremost, i want to thank my mother for the education and unconditional support during these long years.

To my family, that were always there, who helped me with words of encouragement, useful advices and monetary support when i needed most.

To professors Luísa Coheur and Cláudia Antunes, for their guidance, time and knowledge transmitted. Also, to Instituto Superior Técnico for providing me the conditions to complete this course.

Finally, to my friends, those who were present all the time, who helped me abstract all problems and those who proportionated a joyful time even in difficult situations.
Resumo

Com a recente popularidade dos MOOCs, os instrutores destes cursos enfrentam agora o problema de ter de escolher, de entre as centenas de posts dos fóruns dos seus cursos, os que precisam de resposta mais imediata. Nesta tese usamos técnicas das áreas de Análise de Sentimentos e Processamento de Língua Natural para classificar/extrair informação destes posts, com o objetivo futuro de contribuir para esta escolha. Num primeiro estudo, desenvolvemos um modelo de classificação que nos permite identificar se uma mensagem pertence a um instrutor ou estudante. Os melhores resultados do cálculo da F-measure (80.76% para categoria estudante e 80.38% para categoria instrutor) foram obtidos usando unigramas como features e tendo usado um stemmer sobre os posts. O segundo estudo visou a implementação de um classificador que devolve a polaridade de um post com base na polaridade dos seus termos, tal como definida no léxico SenticNet. Os melhores resultados obtidos no cálculo da F-measure foram de 74.6% na identificação de termos positivos batendo os resultados do SentiStrength e de 38.3% na identificação de termos negativos. Finalmente, num terceiro estudo identificámos as expressões mais frequentes por parte de instrutores e estudantes, bem como os termos mais comuns aos diferentes e específicos cursos. Concluímos que existem de facto expressões específicas e que podem ser úteis na identificação de instrutores e estudantes, bem como a diferentes cursos.

Palavras-chave: Cursos Online, estudantes, instrutores, polaridade, fóruns de discussão, mensagens, sentimento.
Abstract

With the recent popularity of Massive Open Online Courses (MOOCs), instructors of these courses now face the problem of having to choose from among the hundreds of posts from forums of their courses, who need more immediate response. In this thesis we use techniques from the fields of Sentiment Analysis and Natural Language Processing to classify / extract information from these posts, with the future goal of contributing to this choice. In a first study, we developed a classification model that allows us to identify whether a message belongs to an instructor or student. The best F-measure (F1) results (80.76 % for student category and 80.38 % for instructor category) were obtained using unigrams as features and having used a stemmer on the posts. The second study aimed at implementing a classifier that detects the polarity of a post based on the polarity of their terms, as defined in SenticNet lexicon. The best F-measure (F1) results were 74.6 % in the identification of positive terms beating the results of SentiStrength, and 38.3 % in the identification of negative terms. Finally, a third study identified the most frequently used expressions by instructors and students as well as the most common terms to the different and specific courses. We concluded that there are in fact specific expressions that could help in the identification of students and instructors as well as for the different courses.

Keywords: MOOCs, student, instructor, polarity, discussion forums, posts, sentiment.
Contents

Acknowledgments ... v
Resumo .. vii
Abstract ... ix
List of Tables .. xiv
List of Figures .. xvi
Nomenclature .. 1
Glossary .. 1

1 Introduction .. 1
 1.1 Motivation .. 1
 1.2 Objectives ... 2
 1.3 Structure .. 2

2 Related Work ... 3
 2.1 Useful Resources ... 3
 2.1.1 Coursera Discussion Forums .. 3
 2.1.2 EmotiWorld .. 3
 2.1.3 Linguistic Inquiry and Word Count ... 4
 2.1.4 WordNet and WordNet-Affect ... 4
 2.1.5 SentiWordNet ... 4
 2.1.6 SenticNet .. 4
 2.1.7 Sentiful .. 5
 2.1.8 AFINN .. 5
 2.1.9 SentiStrength ... 5
 2.1.10 Merged Lexicon: WordNet-Affect + SenticNet 6
 2.2 General Sentiment Analysis ... 8
 2.2.1 Addressing the Difficulties of Sentiment Classification 8
 2.2.2 Methodology for Sentiment Classification in Textual Reviews 10
 2.2.3 Sentiment Classification Algorithm ... 11
 2.2.4 Sentence Oriented Classifiers ... 12
 2.3 Sentiment Analysis in MOOCs and Forums .. 16
List of Tables

2.1 [40]. Features used from the International Survey on Emotion Antecedents and Reactions (ISEAR) columns. ... 6
2.2 [7]. Phenomena which influence the valence of text. .. 9
2.3 [32]. Dataset used for SemEval-13 with the distribution of tweets and Short Message Service (SMS). ... 11
2.4 [19]. Examples of the different categories of affect .. 17
2.5 [19]. Test results of the automatic classification of the affect. 18
2.6 [56]. Examples of Sink and Source ... 19
2.7 [8]. Results of the classification algorithms[8] .. 23

3.1 Example of easy assessment posts. .. 30
3.2 Example of posts that can cause confusion. ... 30
3.3 Results of the classification on dataset considering Instructor as expected category. 34
3.4 Results of the classification on dataset considering Student as expected category. 34
3.5 Results of the classification on dataset without stopwords considering Instructor as ex-
pected category. ... 34
3.6 Results of the classification on dataset without stopwords considering Student as ex-
pected category. ... 35
3.7 Results of the classification on dataset only using stems, with Instructor as expected
category. ... 35
3.8 Results of the classification on dataset only using stems with Student as expected category. 35

4.1 Example of the structured lists containing the posts and the terms present in both lexicon
and post .. 41
4.2 (Ax)- Annotator x. Inter-annotator agreement using Cohen's kappa values. 42
4.3 Results of the classification on different experiences when expecting a positive result. 44
4.4 Results of the classification on different experiences when expecting a negative result. 44
4.5 Results of the SentiStrength algorithm on different experiences when expecting a positive
result. .. 44
4.6 Results of the SentiStrength algorithm on different experiences when expecting a negative
result. .. 45
4.7 Results of our classifier when compared with the Spedial project scores. 45
4.8 Results of our classifier when compared with the Pang&Lee sentences dataset scores. . 45

5.1 The most common expressions belonging to instructors and students when searching with 5-grams. ... 48
5.2 The most common expressions belonging to instructors and students when searching with 5-grams. ... 50

A.1 The 5 most used specific terms found in each course using unigrams as search feature ordered by their occurrence frequency. ... 66
List of Figures

2.1 [33]. Steps for sentiment classification. .. 10
2.2 [51]. The segmentation and classification process in the Joint Segmentation and Classifica-
 tion Framework (JSC) sentiment classifier. CG represent candidate generation model,
 SC the sentiment classification model, SEG refers to the segmentation ranking model.
 The arrows means the use of a specified model (Down) and the update of a model (Up). 13
2.3 [35]. Dependency subtrees polarities. Each subtree contains its respective polarity ac-
 cording their terms. ... 14
2.4 [35]. Probabilistic Model based on Dependency Tree. The node s_2 is the head modifier,
 which shift the polarity of the sentence and consequently gives the polarity of the root
 node. ... 14
3.1 An excerpt of the data contained in our dataset (format JSON). 26
3.2 Format of our data after extracting the author and respective post. 26
3.3 Posts containing no information regarding their author type. 27
3.4 The result of applying the regex removal function in an excerpt of posts. 27
3.5 Post before e-mail/URL expression removal.. .. 27
3.6 Post after e-mail/URL expression removal.. .. 27
3.7 Excerpt of a post containing a mathematical/code function before the regex transformat-
 ion. ... 27
3.8 Excerpt of a post containing a mathematical/code function after the regex transformat-
 ion. ... 27
3.9 Example of 2 posts before the execution of the line processing function. 28
3.10 Example of 2 posts after the execution of the line processing function. 28
3.11 Excerpt of the dataset without the blank lines. ... 28
3.12 The posts generated by the partition of 2 posts (Figure 1.9/10). 29
3.13 A set of posts before the application of the stemmer. 29
3.14 The set of posts after the application of the stemmer. 29
3.15 Architecture. ... 30
3.16 An excerpt of the evaluation process of the TalKit SVM Machine Learning classifier. 31
3.17 Example of ngrams: green - unigrams, blue - bigrams, red - trigrams. 31
3.18 Excerpt of dataset after pre-process phase. ... 32
3.19 Excerpt of dataset after the removal of stopwords. 32
3.20 Excerpt of dataset after the employment of a stemmer. 33
3.21 Examples of posts classified as incorrect and their faulty expressions. 36

4.1 Architecture of the posts classification framework. 38
4.2 Excerpt of SenticNet lexicon before the processing and extraction of concept and polarity. 39
4.3 Excerpt of SenticNet lexicon after the extraction and formatting. 39
4.4 Example of expressions with their polarity altered by adverbs or negation. 40
4.5 Example of expression matching and capture. .. 40
4.6 Example of the final presentation of the results. 41
4.7 Example of posts that were incorrectly classified due to the absence of stems. 45
4.8 Example of posts that were incorrectly classified due to the presence of expressions of difficult assessment. .. 46
4.9 Example of posts that were incorrectly classified due to the absence of Part of Speech (POS) tagging. .. 46
4.10 Example of posts that were incorrectly classified due to the presence of expressions where students do not explicit their sentiment. 46
4.11 Example of posts that were annotated as neutral but contain foreign words. 46
Chapter 1

Introduction

1.1 Motivation

Massive Open Online Courses (MOOCs) are an in expansion web-based resource for e-learning that offer students the possibility of distance education. These courses are usually free and offer the opportunity of proper education to people, only requiring a computer and an internet connection. There are numerous companies that provide MOOCs. Amongst the most notorious: Coursera.org1 and edX2. These courses, like traditional classes, comprise several aspects of presential learning where students can attend and participate in different classes.

One of the most important features in MOOCs are the discussion forums. These forums are the only way that students have to interact with the instructors, allowing them to submit their work and share their knowledge and doubts, not only with instructors but also with others students, forming what we can call an online community.

Due to the large amount of participants in these courses, these forums tend to have large amounts of posts and threads making the instructors’ job very difficult in terms of data analysis. Thus, we will work on some tasks that could assist the instructors, such as the detection of written students’ emotional expressions.

In this work we are going to analyze discussion forums of Coursera courses to determine, based on the posts of instructors and students in a training set, which features offer better results in the classification of posts’ authors referring to instructors and students. These forums were used as corpora during the development of this thesis and were kindly provided by Lorenzo Rossi, Rossi and Gnawali \cite{45}. The purpose of this study, is to establish, based on our dataset that already include this type of information, a starting point and useful knowledge for helping future works where this kind of information may be lacking. Then, we will propose an approach to evaluate the polarities of these posts, making it possible to instructors identify which posts are most likely to contain doubts or dissatisfaction by students. Also, we will identify in all courses which students’ expressions are the most commonly used.

In this thesis we discuss topics of different study fields, such as Natural Language Process-3
Natural Language Processing (NLP) to address text processing techniques to assess the written posts of students, and Opinion Mining/Sentiment Analysis to determine the emotion polarities and the affect these words and expressions infer. These assignments will have the assistance of useful resources such lexicons that will provide the polarities and scores for the classification process.

1.2 Objectives

In summary, the objectives proposed in this thesis are the following:

- Survey the state of the art of related fields such as emotion detection in e-learning, discerning emotional expressions in discussion forums and several algorithms of sentiment classification.
- Development of a model of classification for training classifiers for distinguishing post authors in education forums.
- Development of a classifier for identifying polarity in students' posts on MOOCs discussion forums.
- Study of the most common expressions used in MOOCs.

1.3 Structure

This thesis is organized as follows: In Chapter 2 we present the dataset we will use and the related work. In Chapter 3 we specify the methodology for training a classifier to distinguish the post authors in a dataset. The task of developing a methodology for polarity assessment in students posts are explained in Chapter 4. In Chapter 5 a study of the most common expressions used in MOOCs is made. Finally, in Chapter 6, we present a conclusion and a starting point for future work.
Chapter 2

Related Work

In this section we will describe the related work; in the Section 3.1 we present the dataset and a survey of resources that we will use; in Section 3.2 we present the difficulties and the existing work on sentiment classification; and finally in Section 3.3 we mention papers on capturing emotional expressions in MOOCs and the role of sentiment analysis in emotion detection.

2.1 Useful Resources

For the implementation of this thesis were provided useful resources that include several types of lexicons and a dataset containing information from discussions forums.

2.1.1 Coursera Discussion Forums

For this work a dataset containing threads from forums of 60 different courses of Coursera \(^1\) was thoughtfully facilitated by Lorenzo Rossi who worked on it for a paper, Rossi and Gnawali [45]. For his paper, the author studied these forums and captured data that gives insight about the basic data of the courses (name, id, duration, number of users and threads, etc); threads and subforums (course and thread ids, name of the forums, etc); and data about the posts (posts, threads and courses ids, the author and their type, number of votes, etc).

2.1.2 EmotiWorld

EmotiWorld\(^2\) is a lexicon conceived only with emoticons. Usually each emoticon represents an emotion state and consist in using several characters and symbols, like punctuation, to draw in most cases, a representation of a facial expression, like a smile (:) or a grin (:D). EmotiWorld contains a database with emoticons to express and represent states such as happiness, sadness, surprise, confusion among others. In discussions forums these emoticons are largely used and to address them the EmotiWorld could be useful.

\(^1\)https://www.coursera.org/
\(^2\)http://en.emoteworld.com/
2.1.3 Linguistic Inquiry and Word Count

Other available resource is the Linguistic Inquiry and Word Count (LIWC), (James W. Pennebaker and Francis [15]). It is a text analysis software that, based on the lexicon LIWC2007 dictionary, calculates how many times a word category is used across a wide array of texts such as speeches, emails, etc.

This dictionary contains around 4500 words and stems individually representing one or more word categories or subdictionaries. These categories will have their scores incremented when each of their respective words were found in text. For example, the word ‘cried’ is represented by 5 word categories: sadness, negative emotion, overall affect, verb and past tense verb, meaning that each of these categories will have their scores incremented when the word cried were found in text.

2.1.4 WordNet and WordNet-Affect

WordNet is an available online lexicon developed by Miller [29] which organize in synsets several English words, adjectives, verbs and adverbs related with the same lexical concepts. The WordNet-Affect Valitutti [53] is an extension of WordNet referring to affective concepts. The synsets of WordNet containing emotional words that express emotional states, moods or responses are selected and labeled to suitably represent affective concepts. For example, the word joy, is associated with a positive emotion, and amusement and contentment are two of the several words that are in the same synset of joy.

2.1.5 SentiWordNet

In their work Esuli and Sebastiani [10] describe another resource for opinion mining, named SentiWordNet. SentiWordNet also makes use of the WordNet synsets and allocate to each of their terms, one of three possible labels: objective, positive or negative. Also it quantifies the association of these labels with the synsets through a numerical score ranged between 0.0 and 1.0.

These scores are determined through a combination of eight classifiers that are trained in different training sets, thus providing different results, and the agreement about a score assignment is made proportionally according to the classifiers that have assigned it.

2.1.6 SenticNet

SenticNet developed by Cambria et al. [4] is a public available opinion mining resource containing the most common used concepts associated with polarities, and their respective scores regarding the strength of its positivity and negativity. In contrast with SentiWordNet it does not contain words with neutral polarity being them eliminated when their scores are neutral. Also, it takes into account not only polarities at a syntactical level but also in a semantic level being able to attribute polarities at concepts such ‘accomplish goal’ or ‘bad feeling’.
2.1.7 Sentiful

Another useful resource available was described in Neviarouskaya et al. [36], Sentiful is a sentiment lexicon that automatically assigns sentiment scores to terms, with the peculiarity of being able to classify terms which are not present in the lexicon database.

In this process of classification is explored the relation of the terms with their synonyms, antonyms and hyperonyms, and also, their derivations and compositions, to find and score these non-existent terms. Examples of each relations are shown below.

- Synonym: pride | congratulations.
- Antonym: falsehood | truth.
- Hyponym: success | winning.
- Derivation: honest | dishonest, honestly, etc...
- Composition: risk and free | risk-free.

2.1.8 AFINN

The AFINN, Nielsen [37], is an affective lexicon labeled by Finn Arup Nielsen containing a list of 2477 English words and phrases along with its valence from a range between -5 and 5, with the particularity of including obscene words.

This lexicon has the particularity of taking into consideration Internet slang acronyms, like “LOL”, “WTF” or “LMAO” which are also scored regarding its sentiment strength and can be useful when working with short informal texts like microblogs or forums.

This lexicon started with a version of 1468 different words (AFINN-96) and then updated to a version containing 2477 words (AFINN-111).

2.1.9 SentiStrength

SentiStrength (Thelwall et al. [52]) is an algorithm developed for sentiment detection focused in user behavior. It extracts the sentiment strength from English texts contemplating the spelling styles of cyberspace. The SentiStrength predicts the sentiment strength of texts in a range of [-5,-1] for negative emotions and [1,5] for the positive ones, differing from other different sentiment detection algorithms by mixing both positive and negative emotions. In this way a written text can possess both positive and negative scores which according to a psychological study it is how we process emotions.

This algorithm started to be developed exploring a corpus of from 2600 MySpace comments and resorts to a machine learning approach to enhance the sentiment weights of the terms.
2.1.10 Merged Lexicon: WordNet-Affect + SenticNet

To enhance the capabilities of the actual lexicons such as WordNet-Affect, Poria et al. [40] provided a weighted in-depth lexicon to be used in sentiment analysis as a more resourceful alternative of the existing emotion lexicons. Their work offer a methodology that combines two frequently used lexicons, the already mentioned WordNet-Affect and SenticNet, and merge them to greatly increase the knowledge and performance in affect classification, offering the largest emotion lexicon. As previously said, SenticNet provide values for sentiment words accordingly with their polarity, positive or negative. Nevertheless it cannot offer detailed information about specific emotions. WordNet-Affect relate the word polarities quantified in SenticNet labeling them with more appropriate and different concepts such as the words ‘angered’ and ‘infuriated’ that have the same label.

The features used for the classification of assigning emotion labels to the concepts were based on 16 data columns of the ISEAR[48] (Table 3.1), and on 13 similarity measures:

- 1 from SenticNet score-based similarity.
- 9 from WordNet distance-based similarity.
- 1 from text-distance based similarity.
- Pointwise Mutual Information (PMI) \(^3\).
- and emotional affinity (degree of relationship between concepts).

The first ten are lexical resource based measures and the latter three co-occurrence based measures.

| A. Background data related to the respondent: age; gender; religion; father’s occupation; mother’s occupation; country |
| B. General data related to the emotion felt in the situation described in the statement: intensity; timing; longevity |
| C. Physiological data: ergotropic arousals; throphotropic arousals, felt change in temperature |
| D. Expressive behavior data: movement, non-verbal activity; paralinguistic activity |
| E. Emotion felt in the situation described in the statement |

Table 2.1: [40]. Features used from the ISEAR columns.

The ISEAR\(^4\) was a project where a large group of psychologists asked students to report situations where they had experienced all of the 7 major emotions (joy, fear, anger, sadness, disgust, shame, and guilt) and how they appraised and reacted to these situations. These questions were then gathered and together was formed a dataset containing all these information.

\(^3\) (Fano [11]): PMI is a similarity measure which calculate the difference between the probability of the co-occurrence of two discrete random variables from their joint and individual distributions assuming independence

\(^4\) http://www.affective-sciences.org/researchmaterial
For the ISEAR data-based features, in the data columns of Table 3.1, each column value corresponded to a feature (treated as a categorical feature), for example, in the column 'country' which contained 16 numerical codes (each representing a country) were selected 16 features. This was made for all the columns except in the age column which was divided in three categorical features representing the intervals established (18-23 years, 23-28 and older than 28). In total, 100 categorical features were selected.

These features were then applied as dimensions for a feature vector being term frequency used to count the occurrences of each value. Concerning the case of the example above, if there was 5 occurrences of a country code 1, and 3 occurrences of country code 2, the feature vector would be (..., 5, 3, ...).

Regarding similarity measures, in SenticNet-based similarity, the similarity was given calculating the inverse of the distance between the polarities of each SenticNet concept.

In WordNet distance-based similarity was used a WordNet package (WordNet::Similarity) (Pedersen and Patwardhan [39]) for distance measurement between tokens. Some of the concepts of SenticNet that were not found in WordNet-Affect had to be rephrased manually (concepts like ‘make mistake’ were reduced to ‘mistake’), or had their similarity, regarding other concepts, set to random values. The similarity for each pair of WordNet concepts was calculated as the maximum similarity between all of the first concepts in the pair and all of the second.

In ISEAR text distance-based similarity, the similarity was given calculating the inverse of the minimum average distance between the concept tokens, according with their positional information.

For PMI and emotional affinity between two concepts, the similarity was defined by measuring the occurrence of both concepts in a sentence, but in the latter instead of sentences, was calculated regarding the complete statement.

For classification purposes, it was assigned one emotion label for each concept present in the WordNet-Affect lists. The classification was taken care by a Support Vector Machine (SVM) framework using a library from the WEKA toolset (libsvm), Hall et al. [12].

For evaluation they used 10-fold cross validation to estimate the precision of the features combined. It was observed that the use of both similarity measures and ISEAR features combined obtained better results (85.12%) than using only the similarity measures (59.27%). Nevertheless word sense ambiguity and the co-occurrence of related words in the same statement but in different sentences still offer some problems.

5 SVM (Cortes and Vapnik [6]) is a non-probabilistic classifier, associated with supervised learning algorithms, that consists in a set of points which defines the separation plan between different classes. The major asset of this classifier is its capacity, of alongside with Kernel functions, handle non-linearly separable instances in a defined space transforming them into a high dimensional space, and thus become linearly separable.

6 The k(10)-fold cross validation consist in splitting the dataset in k equal and mutual exclusive subsets, using one subset for tests and the other k-1 subsets to estimate the parameters and accuracy of the model. This process is used several times changing the subset of test each time.[23]
2.2 General Sentiment Analysis

In this section, we will address the difficulties found when classifying emotional expressions and documents (Section 3.2.1). Also, we exposed a sentiment classification framework, in Section 3.2.2, which present a sentiment classifier and the steps involved in the process of sentiment classification. Although the work in this paper are made in a movie review dataset, this approach could be adapted and extended to a discussion forum environment. In Section 3.2.3, we present an algorithm for sentiment classification for small portions of text such as tweets or SMS. Finally, in Section 3.2.4, are presented two algorithms for sentiment classification considering entire sentences.

2.2.1 Addressing the Difficulties of Sentiment Classification

Denis et al. [7] focused on the creation of a general purpose tool for sentimental analysis and emotion detection, and how they could prevent the difficulties met on creating a sentiment analysis tool for emotion detection. These problems, are usually associated with text mining and the emotion classification of text, e.g. the different polarities that a word can have according with the context where the term is used.

The Difficulties of Sentiment Classification and Possible Solutions

This study addressed the potential problems that a general purpose tool could face and a set of alternatives were discussed. One of the problems is the erroneous attribution of polarity to emotional expressions. There are several situations where this problem can be found, such as negation, common sense, points of view, etc. Different examples of these situations are shown in Table 3.2. For this research, the datasets from SemEval-07 affective task with 1000 utterances and SemEval-13, containing 7500 utterances, were employed.

Denis et al. [7] revised some works and approaches to respond the complexity of these problems, such as: the use of machine learning with an unsupervised approach which used PMI to assess the differences in the valence of words in reviews; the use of annotations to label reviews to train classifiers such as SVM; and the study of Conditional Random Fields (CRF) (Nakagawa et al. [35]) and autoencoders (learning networks that transform efficiently inputs into outputs with the least possible amount of distortion Rumelhart et al. [46]), to assess sentimental analysis.

Also, this general purpose tool took into consideration three other different problems: domain dependence, interoperability and multilinguality.

The first problem refers to the use of supervised machine learning and its dependence to the available training sets. To solve this problem, the most appropriate approaches are the semi-supervised and unsupervised machine learning, and hybrid methods. The interoperability problem is related with the lack of consensus in emotional representation. W3C\(^8\) proposed a recommendation for these representations, the EmotionML. The problem of the multilinguality is that most of the works and developments are made

\(^7\)Sentiment classification focuses on the text classification of documents, through the categorization of the terms in these documents according with association rules previously defined. Each category (e.g. positive or negative) corresponds to a distinct collection with different labels which are assigned to their terms.

\(^8\)http://www.w3.org/
Table 2.2: [7]. Phenomena which influence the valence of text.

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Example</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negation</td>
<td>it’s not good; no one thinks it is good</td>
<td>negative</td>
</tr>
<tr>
<td>Irrealis</td>
<td>it would be good if...; if it is good then...</td>
<td>neutral</td>
</tr>
<tr>
<td>Presupposition</td>
<td>how to fix this terrible printer? can you give me a good advice?</td>
<td>negative; neutral</td>
</tr>
<tr>
<td>Word sense</td>
<td>this camera sucks; this vacuum cleaner sucks</td>
<td>negative vs positive</td>
</tr>
<tr>
<td>Point of view</td>
<td>Israel failed to defeat Hezbollah</td>
<td>negative or positive</td>
</tr>
<tr>
<td>Common sense</td>
<td>this washer uses a lot of water</td>
<td>negative</td>
</tr>
<tr>
<td>Multiple entities</td>
<td>Ann hates cheese but loves cheesecake</td>
<td>negative wrt cheese</td>
</tr>
<tr>
<td></td>
<td></td>
<td>positive wrt cheese</td>
</tr>
<tr>
<td>Multiple aspects</td>
<td>this camera is awesome but too expensive</td>
<td>positive wrt camera;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>negative wrt price</td>
</tr>
<tr>
<td>Multiple holders</td>
<td>Ann hates cheese but Bob loves it</td>
<td>negative wrt Ann</td>
</tr>
<tr>
<td></td>
<td></td>
<td>positive wrt Bob</td>
</tr>
<tr>
<td>Multiple time</td>
<td>Ann used to hate cheese and now she loves it</td>
<td>negative wrt past</td>
</tr>
<tr>
<td></td>
<td></td>
<td>positive wrt present</td>
</tr>
</tbody>
</table>

Sentiment Analysis Tools

The proposed tools for emotion and sentiment analysis were integrated in a WebAPI, which transformed the text given as input to an emotion formatted in EmotionML. For emotion detection, WordNet-Affect was used as an emotion lexicon, and to respond the negation problems, semantic rules and a naive treatment were added.

For sentiment analysis a machine learning and a symbolic approach were followed. The latter aimed to solve the linguistic problems, like the contextual valence mentioned earlier, extracting the prior polarity of words found in the Liu Lexicon (Hu and Liu [14]) and build the dependencies using the Stanford CoreNLP Library for POS tagging and parsing. These dependencies were then filtered and the prior word valence propagated, along the dependencies, according to handmade rules for valence shifting or inversion.

In the machine learning approach a Random Forest classifier\(^ {10} \) (Breiman [3]) was trained and evaluated in the SemEval-13 dataset, and then used with stemmed words and POS features. For evaluation purposes a 10-cross validation was employed to estimate the accuracy of the classifier. In the symbolic approach, the accuracy obtained was of 56.3% and 65.86% in the SemEval-07 and SemEval-13 datasets, respectively. Also, the rules used for negation were evaluated and improved the overall results in 5%. The machine learning approach for the same datasets had an accuracy of 64.30% (SemEval-07) and 60.72% (SemEval-13).

\(^9\) A POS tagger allows to identify the lexical class of each term or word (e.g. verb, noun, adjective, etc) in a text.

\(^{10}\) A Random Forest is a classifier consisting in a set of tree classifiers, each one containing a random vector. After the generation of the trees, each one vote for the class to determine the most popular.
2.2.2 Methodology for Sentiment Classification in Textual Reviews

To enhance precision in document level classification, Mouthami et al. [33] proposed a new algorithm called Sentiment Fuzzy Classification algorithm. This algorithm was conceived to classify textual reviews, more precisely a movie reviews dataset, in order to better represent the ambiguity of sentiments. For this research, the dataset with positive and negative reviews of the Cornell movie-review corpora were adopted, with a limit of 20 posts for each reviewer.

In this method fuzzy set theory and POS tagging were applied. Fuzzy set theory Lowen [25] allows elements of a set to have a gradual degree of membership (values between the interval of [0,1]) contrasting with bivalent condition where an element either belongs to a set or not.

![Figure 2.1: Steps for sentiment classification.](image)

- **Figure 2.1: [33]. Steps for sentiment classification.**

The figure 3.1 illustrate the steps and techniques of the sentiment classification proposed in this work. In the text pre-processing step, the author used a tokenizer to parse the documents into tokens, and a stop word removal, which eliminated stop words (e.g. “a”, “of”, “the”, “it”) from a stop word list, as they do not had any meaning and offered no support.

In the transformation process, the sum of the terms' weights of each sentence were calculated to determine their score. These weights were computed by tf.idf taking into account the previously extracted POS tagged adjective words.

For the feature selection step, were chosen the frequent words and identified their polarities. Then, they were grouped to increase the probability of the document to be part of the correct category (accordingly with its polarity).

In the Sentimental Fuzzy Classification process, sentiment classes were redefined by a function

12 The tf.idf (Manning et al. [27]) is weighting measure that takes into account the number of occurrences of a term in a document or text considering its rarity across the whole corpus.
into three fuzzy sets (positive, negative or neutral). This function made use of the documents opinions weights previously calculated through tf.idf.

The measures accuracy, precision, recall and F-measure were used in the evaluation process. Nevertheless no results were shown neither comparisons with other algorithms.

2.2.3 Sentiment Classification Algorithm

From time to time, a Conference on Semantic Evaluation Exercises (mostly known as SemEval) is organized, focusing on semantic analysis and scrutiny of natural language used in computation. In these events, several competitions are hold where teams compete to develop the best project related with this area of expertise. In one of these conferences (SemEval-2013), a team (NRC-Canada) formed by Mohammad et al. [32] developed two classifiers to detect emotions on both message-level and term-level tasks. Two SVM for sentiment detection (positive, negative or neutral) were created, one for tweets and SMS and other for terms within a message. For this research, two lexicons were developed as well as semantic and sentimental features. The results of the algorithms were good, being ranked in first on both classifiers.

For this competition two datasets were provided by the organization, one for tweets with labels regarding the sentiment and divided in sets for training, development and testing, and one for SMS where the total of messages were used for testing (no training or developments sets used). Table 3.3 shows the distribution of data throughout both datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Positive</th>
<th>Negative</th>
<th>Neutral</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tweets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message-level task:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train</td>
<td>3,045 (37%)</td>
<td>1,209 (15%)</td>
<td>4,004 (48%)</td>
<td>8,258</td>
</tr>
<tr>
<td>Dev</td>
<td>575 (35%)</td>
<td>340 (20%)</td>
<td>739 (45%)</td>
<td>1,654</td>
</tr>
<tr>
<td>Test</td>
<td>1,572 (41%)</td>
<td>601 (16%)</td>
<td>1,640 (43%)</td>
<td>3,813</td>
</tr>
<tr>
<td>Term-level task:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train</td>
<td>4,831 (62%)</td>
<td>2,540 (33%)</td>
<td>385 (5%)</td>
<td>7,756</td>
</tr>
<tr>
<td>Dev</td>
<td>648 (57%)</td>
<td>430 (38%)</td>
<td>57 (5%)</td>
<td>1,135</td>
</tr>
<tr>
<td>Test</td>
<td>2,734 (62%)</td>
<td>1,541 (35%)</td>
<td>160 (3%)</td>
<td>4,435</td>
</tr>
<tr>
<td>SMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message-level task:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>492 (23%)</td>
<td>394 (19%)</td>
<td>1,208 (58%)</td>
<td>2,094</td>
</tr>
<tr>
<td>Term-level task:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>1,071 (46%)</td>
<td>1,104 (47%)</td>
<td>159 (7%)</td>
<td>2,334</td>
</tr>
</tbody>
</table>

Table 2.3: [32]. Dataset used for SemEval-13 with the distribution of tweets and SMS.

Sentiment lexicons were created using other established lexicons like NRC Emotion Lexicon (Mohammad and Turney [30], Mohammad and Yang [31]), Multi-Perspective Question Answering (MPQA) Lexicon (Wilson et al. [55]) and Bing Liu Lexicon (Hu and Liu [14]). The add-ons made to these new lex-
icon included hashtag sentiment polarity detection, being the hashtags from tweets extracted and analyzed. The previous mentioned PMI was used to calculate the score of a term regarding their association with positive (or negative) sentiments. Also, different pairs of unigrams, bi-grams, and a combination of both were generated and some punctuation removed. The second lexicon was created using the same methodology but dedicated to sentiment emoticons instead of hashtags.

SVM was applied for sentiment detection in messages. The tweets were normalized, tokenized and POS tagged. Each tweet had a feature vector containing the features: word n-grams and character n-grams, the number of words written all in caps, the number of occurrences of each POS tag, the number of hashtags, lexicons, punctuation, emoticons, elongated words, clusters and negations.

SVM was also used with a linear kernel for the automatic sentiment detection of terms in a message, and the features applied in this classification were: word and character n-grams, elongated words and punctuation if were present, emoticons, upper case, stopwords, lengths, negation, position of the term (beggining, end, or another position), sentiment lexicons, term splitting, and others (if a term contained an user name or an URL).

For evaluation purposes, the classifiers were applied to training, development and testing sets and measured by F-score, obtaining the results of 69.02 and 88.93 in the message-level and term-level tasks, respectively.

2.2.4 Sentence Oriented Classifiers

Joint Segmentation and Classification Framework

With the purpose of obtaining better results in sentiment classification, Tang et al. [51] conceived a JSC where the sentence segmentation and the sentence sentiment classification processes were made at the same time, upgrading the segmentator with better sentiment results and the classifier with more reliable segments.

In this study, was proposed a framework to analyze the documents and statements as sentences instead of word by word, making possible to catch expressions with inconsistent polarities, e.g. “not bad” or “a great deal of” that would be wrongly classified.

This method has an advantage over pipeline methods considering that is unaffected by error propagation. Pipeline methods of sentiment classification are a two-step method that performs sentence segmentation, through techniques such as “bag-of-words” followed by feature learning and sentiment classification with the segments retrieved from the previous segmentation. However, these methods can be affected by error propagation because the segmentation and the classifications are not made simultaneously.

This framework uses a log-linear model for scoring purposes and a marginal log-likelihood\(^{13}\) (Harris and Stöcker [13]) for updates. The former scores each segment of a sentence and the latter is used for optimization, taking into account the segments. Both are applied simultaneously, forming a joint model and used for sentiment classification based (only) in the sentiment polarity of the sentences.

\(^{13}\)Statistical function that simplifies the calculation of the maximum likelihood, estimating unknown parameters for given statistical
Figure 2.2: [51]. The segmentation and classification process in the JSC sentiment classifier. CG represents candidate generation model, SC the sentiment classification model, SEG refers to the segmentation ranking model. The arrows means the use of a specified model (Down) and the update of a model (Up).

The segmentation model consists in a segmentation candidate generation that makes use of unigrams and bi-grams to generate the segmentation candidates, and a segmentation ranking model that evaluates which are the best candidates and ranks them. This evaluation is made through the log-linear and marginal-likelihood models mentioned earlier. An illustration of how the algorithm works is shown in Figure 3.2.

Two kinds of features were used: segmentation-specific features and phrase-embedded. Segmentation-specific features correspond to the number of units in each candidate, the ratio and difference between the number of units, the length of the sentence and the number of units with more than 2 words. Considering phrase-embedded features, these are due to their ability in representing phrases of variable lengths in a distributed vector space.

For sentiment classification, were extended features from the sentiment classifier of Mohammad et al. [32] and devised specific features for each segmentation.

The classified dataset was the one provided in SemEval-2013 for tweet sentiment classification, divided in three different sets, training, development and testing. In this dataset only the positive and negative polarity tweets were used.

The evaluation for this research was the macro-F1, where the JSC showed a score of 85.51.

Dependency Tree-based Sentiment Classifier

Other sentiment classifier focused on the shifted polarity valence on sentences was developed by Nakagawa et al. [35]. The main purpose was to present a sentiment classifier based in dependency trees for the English and Japanese language using CRF with hidden variables. These hidden variables correspond to the polarity of the dependent sub-trees of a sentence, which are then used with other sub-trees’ polarities of the same sentence to calculate the polarity of the entire sentence, (Figure 3.3).

This classification takes only into account the subjective sentences and the relations between the words of each sentence enabling to assess the phenomena that contradicts the sentiment polarity of the words.
This research addresses a sentiment classifier that enables the treatment of sentences with polarity contradictions, e.g. “The medicine kill cancer cells”, where, despite of the words found and classified alone have negative polarity, the complete sentence has positive polarity because the word “kill” negates the polarity of the words “cancer cells”. This method was called Dependency Tree-based Sentiment Classification and uses CRF and hidden values. This approach, unlike other methods that use bag-of-features, takes into account the syntactic structure of the sentences.

For sentiment classification were used a probabilistic model (Figure 3.4). In this model, each phrase in the sentence contained a random value with the polarity of the dependency sub-tree. These sentiment polarities were calculated applying a joint probability distribution using log-linear models (Knoke and Burke [22]).

Each sentence has associated a root node, corresponding to the correct sentiment polarity of a sentence, and is the only value that is labeled in the annotating process. This value is calculated through the sum of all possible combinations of hidden values of the same sentence, using a sum-product belief propagation (to calculate the marginal distributions of the nodes) (MacKay [26]).

As features, were used node and edge features: in node features, was only considered the nodes of a sentence individually, and in edge features the nodes and their head modifiers (when two phrases have opposite polarities, the head is the phrase which reverse sentiment polarity).

As features were used combinations of the following:

14The distribution of numerous random variables defined in the same probability space (Prohorov et al. [41])
- The hidden variable representing the polarity of the dependency subtree whose root node in the phrase.

- The prior polarity of the phrase.

- The polarity reversal of the phrase.

- The number of words in the phrase.

- The surface and base form.

- Coarse-grained POS and fine-grained POS tags of a word in the phrase.

JUMAN (User-Extensible Morphological Analyzer for Japanese) and KNP\(^\text{15}\) (Japanese Dependency and Case Structure Analyzer) were used for morphological analysis and processing of Japanese data. For English data, the POS tagger MX-POST (Ratnaparkhi [43]) and the MaltParser\(^\text{16}\), which like KNP is a dependency parser.

In addition, were used different dictionaries\(^\text{17,18}\) of sentiment polarity for both languages experiments.

The data used in this study consisted in eight corpora for sentiment classification, four for each language (English and Japanese). The four corpora used for Japanese classification are the Polarity-tagged corpus (ACP) (Kaji and Kitsuregawa [17]), the Kyoto University and NTT Blog corpus (KNB)\(^\text{19}\), the NTCIR Japanese opinion corpus (NTC-J) (combined the NTCIR-6 and NTCIR-7 corpus) (Seki et al. [49], Seki et al. [50]), and the 50 Topics Evaluative Information corpus (Nakagawa et al. [34]). For the English classification the authors used the Customer Review data (CR)\(^\text{20}\), the MPQA\(^\text{21}\), the Movie Review Data (MR)\(^\text{22}\), and the NTCIR English opinion corpus (NTC-E) (combining NTCIR-6 and 7) (Seki et al. [49], Seki et al. [50]).

For evaluation purposes, the authors conducted a 10-fold cross validation and the accuracy was then estimated. The algorithm were compared with other 6 baseline methods and obtained the best results in all Japanese and English corpora with accuracies of 0.846 (Automatically Constructed Polarity-tagged corpus), 0.847 (Kyoto University and NTT Blog Corpus), 0.826 (NTCIR-Japanese opinion corpus) and 0.841 (50 topics Evaluative Information Corpus) for the Japanese corpora and 0.814 (Customer Review), 0.861 (MPQA), 0.773 (Movie Review Data) and 0.804 (NTCIR-English Opinion corpus) for the English corpora.

\(^{15}\)http://nlp.kuee.kyoto-u.ac.jp/nl-resource/
\(^{16}\)http://maltparser.org/
\(^{17}\)http://cl.naist.jp/~inui/research/EM/sentiment-lexicon.html
\(^{18}\)http://www.cs.pitt.edu/mpqa/
\(^{19}\)http://nlp.kuee.kyoto-u.ac.jp/kuntt/
\(^{20}\)http://nlp.kuee.kyoto-u.ac.jp/kuntt/
\(^{21}\)http://www.cs.ucf.edu/~liub/FBS/sentiment-analysis.html
\(^{22}\)http://www.cs.cornell.edu/People/pabo/movie-review-data/
2.3 Sentiment Analysis in MOOCs and Forums

In this section, we will expose works focused on determining which sentiments are usually present in MOOCs discussion forums, and how these sentiments can be captured, (Section 3.3.1). In Section 3.3.2, we will mention a method that could be used to quantify the user attention on any forum using sentiment analysis, and methods for emotion detection in learning experiments (Section 3.3.3).

2.3.1 Detecting Emotional Expressions in MOOCs

To provide instructors with enhanced information to assess their students regarding performance and discussion outcomes based on interactions in online Question and Answer (Q&A) Kim et al. [19] in their research determined information based in students’ affect. 1030 student posts were analyzed in 210 threads from a Q&A board of an Operating Systems course and presented a set of emotion acts used by students in a computer science class, like frustration or certainty. It also covered the identification of affect categories, their frequency in the corpus by different measures (e.g. gender, types of participants), the influence in instructors’ feedback, the correlation between them in thread resolution and how it can be used to predict discussion outcomes.

Four different emotion roles categories were established - (high and low) certainty, frustration, tension and politeness. Examples of expressions of these categories are shown in Table 3.4.

Cohen’s kappa coefficient was used as inter-annotator agreement and 322 messages in 30 threads were assessed for this purpose. These annotators allowed to assess the affect frequency by type of participants, allowing to determine, for example, which gender seemed less frustrated or polite, and the influence of instructors’ feedback. It was also developed an heuristic with the purpose of classifying threads based on the resolution of threads. Thus, it was possible to determine which students are in need of help.

Regarding automatic classification of emotion acts, the text in annotated threads were pre-processed, removing common typos, transforming all words to formal words and some expressions into keywords replacing, for example, contractions like ‘You’re’ into ‘You are’.

As features were used:

- Expressions and their position in the posts (using n-grams).
- The message position in the thread.
- The emotion acts in the previous message.
- The class of the authors (student or instructor).
- The poster changes.
- The length of the posts.
Table 2.4: [19]. Examples of the different categories of affect

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension (kappa: 0.74)</td>
<td>Instructor Judgments: Possible student issues with class attendance, judgment or choices</td>
</tr>
<tr>
<td></td>
<td>Student Judgments: Possible student issues with questioner or target</td>
</tr>
<tr>
<td></td>
<td>examples</td>
</tr>
<tr>
<td>Frustration (kappa: 0.92)</td>
<td>Repetitious Actions, Continual Actions: Descriptions of continuous actions without real progress</td>
</tr>
<tr>
<td></td>
<td>Large Quantities: Descriptions of overwhelming amounts of work and other material</td>
</tr>
<tr>
<td></td>
<td>Difficulty/Impassability, Material Denigration: Statements of explicit difficulty in either solution or understanding of issues, as well as frustration about the material itself</td>
</tr>
<tr>
<td></td>
<td>Self-Denigration/Lack of Confidence: Declarations of a personal belief in a lack of ability on the part of the poster</td>
</tr>
<tr>
<td>High Certainty (kappa: 0.80)</td>
<td>Specificity of Question/Answer: Specific phrasing that concisely explains through examples and pre-conditions</td>
</tr>
<tr>
<td></td>
<td>Ease of Understanding/Completeness: Emphasis of the simplicity or completeness of a solution or question</td>
</tr>
<tr>
<td></td>
<td>Necessity: Specifically stating that the presented solution is required, or in the case of a question, its importance</td>
</tr>
<tr>
<td></td>
<td>Logical Presentation: A method of presenting a proposition, solution, or question that makes it a logical proposal</td>
</tr>
<tr>
<td>Low Certainty (kappa: 0.95)</td>
<td>Vagueness in Question/Answer: Statements that imply only general or surface understanding of the material at hand by stating personal understandings over factual presentation</td>
</tr>
<tr>
<td></td>
<td>Lack of Understanding: Statements that clearly state a lack of understanding; differs from other Speech Acts as it implies a continuing lack, rather than an individual issue</td>
</tr>
<tr>
<td></td>
<td>Optional Nature: Statements indicating a not strongly recommended or vital issue, solution, or question</td>
</tr>
<tr>
<td></td>
<td>Weakened Presentation: Phrases that weaken or justify logical proposal statements</td>
</tr>
<tr>
<td>Politeness categories</td>
<td>Positive (kappa: 0.99): Language strategies used according to formal cultural rules to avoid losing face. Commonly identified as typical polite speech</td>
</tr>
<tr>
<td></td>
<td>Negative (kappa: 0.99): Dealing with a face-threatening act, by lightening the request or response into a less pressing, informal status</td>
</tr>
<tr>
<td></td>
<td>Bald on record (kappa: 0.84): Dealing with a face-threatening situation by ignoring or emphasizing the consequences of the threat</td>
</tr>
<tr>
<td></td>
<td>Off record (kappa: 0.82): Attempting to change the request or response into a non-face-threatening statement, i.e., by generalizing a query to a rather than asking for direct help</td>
</tr>
</tbody>
</table>

Examples:

- Tension: If you really want to do this, I stated in class on at least 2 occasions.
- Frustration: Result of this sucks; Wow... That was...
- High Certainty: A lot (15+ times); Never seems to end; High rate of redundancy; Another can of worms.
- Low Certainty: Zillions of references; Super-huge; Simply gargantuan; Monstrous, super-verbose.
- Logical Presentation: Serious disk quota problems; Severe annoyances; A pain to fix; Makes it really hard.
- Positive: I have spent FAR too long; ... I’m stumped. Longer than they should have.
- Negative: The only way; I found the answer; It only appears.
- Necessity: The trick is; Just wait till; Will be simple; All you need to do is.
- Logical Presentation: Must be able to; Vital; important task; Must have something; You will.
- Vagueness: I assume that; Granted; Likewise; On the other hand.
- Lack of Understanding: What is wrong?; If I understand; Seems to me; Read it somewhere.
- Politeness: Thanks; Okay thanks; Good luck with your project.
- Positive: I was wondering if; Thought I’d throw this out there; Get this cleared up early; Just a head’s up.
- Negative: I question the; don’t buzz anything; Change it to this; Do we?
- Positive: Has anyone else had this problem; What would do; Asking for answers directly is way easier.
Table 2.5: [19]. Test results of the automatic classification of the affect.

<table>
<thead>
<tr>
<th>Emotion Act</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Certainty</td>
<td>0.68</td>
<td>0.64</td>
<td>0.65</td>
</tr>
<tr>
<td>Low Certainty</td>
<td>0.80</td>
<td>0.83</td>
<td>0.81</td>
</tr>
<tr>
<td>Frustration</td>
<td>0.73</td>
<td>0.75</td>
<td>0.73</td>
</tr>
</tbody>
</table>

The selection of the features and the feature space was established using Information Gain\(^{23}\) (Quinlan [42]). SVM were also used as well as a 5-fold cross validation and a kernel function Radial Basis Function (RBF)\(^{24}\).

The final classification was evaluated by precision, recall and F-score measures. The obtained results show that the classification of the emotion acts are possible (Table 3.5), but need more annotated data available to be applied in a functional setting.

Also, Yoo and Kim [56] developed an application of online discussion analysis to answer this problem of capturing difficult expressions in forums. This application also focus on gathering participants’ information (questions and answers) and determine their emotions, like frustration or tension, and the degree of certainty, being able to classify students and make predictions about which students’ are in need of monitoring.

In their study, a set of emotion roles were defined. Message role classifiers were presented, which use natural language processing and machine learning techniques to find emotion and informational roles through the use of the generated message and thread-level features. The message features captures emoticons and n-grams in the message and the thread level features use the position of the message. The classified dialogue role information was used to analyze the discussion patterns and to determine the performance of each student.

For the message-level features, in order to capture expressions containing more than one word (e.g. do not, still do not) were used different sizes of n-grams with two (bigrams) and three (trigram) terms.

The data used for the study was made available by the Computer Science department, University of Southern California, and consisted on data collected from 8 semesters with 5056 messages and 1532 threads from 370 participants in the course of Operating Systems.

To determine the emotions, different categories were examined based on the same three different selection criteria as used in Kim et al. [19] research. As a result, four different emotion roles categories - (high and low) certainty, frustration and tension - and two informational roles categories - source and sink (Table 3.6) - were established.

Affect expressions in students’ posts were identified and annotated. For this annotation process, due to misspellings, grammar issues, syntactical errors and/or other irregularities in the message contents, there was a great amount of effort for the selection of annotators and Cohen’s Kappa values were used to reach an agreement between two annotators.

\(^{23}\)The amount of information gained (reduction of entropy) before and after the application of the features

\(^{24}\)A function whose value only depends on the distance to their origin, or the center of another point
Table 2.6: [56]. Examples of Sink and Source

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sink</td>
<td>Requesting information</td>
<td>We are getting error.</td>
</tr>
<tr>
<td></td>
<td>from others</td>
<td>What should I do?</td>
</tr>
<tr>
<td>Source</td>
<td>Providing information</td>
<td>Have you ever looked at the manual?</td>
</tr>
<tr>
<td></td>
<td>for others</td>
<td></td>
</tr>
</tbody>
</table>

Because natural language makes use of a vast set of expressions, e.g. sarcasm or rhetorical questions, it was necessary to define a set of rules for data processing for automated message role classification. This way, messages were converted into keywords, becoming coherent, for example, ‘yea’ and ‘yup’ were converted to ‘yes’. Annotators were used to generate two kinds of features: message-level (to capture standard N-grams and emoticons from the message content), and thread-level (to author changes, position of the message and user roles). To eliminate any irrelevant and redundant information were used Information Gain scores.

To distinguish which questions were resolved, emotional expressions were explored as well as the position of the messages. Annotated data from the dataset threads were analyzed and difficult expressions were measured taking into account the position of the message. This analysis showed that frustration are usually present in top messages (first replies of the initial post), but this value tended to increase in the unresolved ones. Tension and low certainty could be found mostly in the bottom messages (last replies of the initial post), but they were more usual in the unresolved ones. High certainty could be found more in the bottom than low certainty but even lower in the resolved messages. Also the sinks were naturally used in the top position and source in the bottom.

It was used a predictive model to verify if the length of threads were somehow related with emotional and information roles, and it was concluded that frustration was positively correlated with the length of the threads and when they had more participants. Also, high certainty threads tended to be shorter, being negatively correlated with the thread length.

Through this study it was predicted that students with low performance usually asked questions more frequently and the ones who answered with high certainty were related with students with better performances. Tension was also positively correlated with higher grades. It showed that the increase of frustration was also related with lower grades.

To prevent the dropouts and support the participation of students, it was estimated the behavior and opinions of these students toward online courses. Wen et al. [54] in their study focused on the affect expressed by the students in MOOCs discussion forums and how that affect interfere in the dropout rate of the courses through the students’ opinions in relation to the courses. The author sought to understand if there was any correlation between the students’ engagement and course completion and, if so, offer information to support the instructors encouraging participation.

For their analysis they used data from 3 different courses from Coursera.org: social sciences, literature and programming. The first comprehended 1146 active users with 5107 total posts during 53 days (avg. 96 posts per day). The literature course had 771 active users with 6520 posts during 43 days (avg. 152 posts per day) and the latter was frequented by 3590 active users with 24963 posts during 49 days.
In the range of online courses topic, positive and negative sentiment words were extracted in students' opinions related with the topic, and survival analysis25 were used to determine how students' sentiment predict their continuation in the course. Survival analysis measured the dropout of students by studying the sentiments expressed by each student in each week and assess if these sentiments were somehow correlated with their dropout.

To determine the keywords for each topic and identify clusters of words from related contexts it was used a distributional similarity technique called Brown clustering26 which based in the results obtained and with some human interaction (selecting some keywords) created keyword lists for each topic (Course, Lecture, Assignment or Peer-assessment).

The positive and negative sentiment words were ranked by the PMI between the word and the topic keyword. These positive and negative sentiment words were established previously and estimated through the topic sentiment ratio. This value was smoothed over time with smoothing techniques to offer a steadier signal. To understand the relation between affect expressions of students in their posts and the dropout rates, survival analysis was applied.

In this analysis was measured the positivity and negativity of the user’s posts each week, as well as the average positively and negativity of students’ exposure. The results of the survival analysis showed that these measures could not be consistent and they vary from each course. As example, the sentence “The Death Gate Cycle was such a haunting story!” in the Fantasy course showed a high negativity score of 0.23, but in a Fantasy course these kind of expressions are usual and can be referred to positive scores, it all depends the context. In relation to the Python course, as it is a more problem-solving course, large quantity of positive posts were posts expressing gratitude, whereas the negative posts were related to the posting of problems.

2.3.2 Emotion Detection in E-Learning

Binali et al. [1] explored opinion mining techniques to build a conceptual framework for students’ emotion detection in e-learning, and thus identify which students were struggling and in need of monitoring. The data used for this conceptual solution was retrieved from students’ weekly reviews about their participation and commitment in the course. These reviews were posted every week in each student online journal and used at the end of the semester to make their self-evaluation regarding participation and level of commitment.

According to this research, the states of confusion, frustration, boredom, flow/engagement and interest were those that were more associated with the learning process, hence need the intervention of an instructor (in this paper an AutoTutor) to motivate and enhance self-confidence in students before their dropout or complete disinterest.

Some of the e-learners reported confusion, anxiety, distress and/or frustration, which were often

25Survival analysis, (Kleinbaum [21]) is a statistical technique that focus on the analysis of events regarding their time duration.

26The Brown clustering is a distributional similarity technique which identifies finer grained clusters of words based on their contexts and groups them in classes.
associated with unclear course objectives and communication. This situation was assumed owing to the discrepancy in learning criterion between digital natives (people born in digital era) and digital immigrants (people adapted to digital era).

Some of the techniques or theories mentioned in this study, such as appraisal theory, play an important role in the development of sentiment analysis. In appraisal theory words are treated as attribute groups, and is commonly used to identify semantic orientation. This theory usually benefits with the employment of “bag-of-words”, which selects the frequent used words in a document to be weighted for classification. These words are classified as being ‘good’ or ‘bad’ and grouped accordingly.

Other important technique that was used for feature identification was statistical schema matching. This technique was used to find and group features of reviews. In order to label words and find those that were emotional, were used annotations along annotation rules.

The primary focus of their conceptual solution was to improve the detection of emotions in e-learning systems, with the help of opinion mining techniques. The conceptual solution proposed in this research assessed opinion mining in students’ information using General Text and Language Engineering Infrastructure (GATE) which is a tool that was developed to perform language processing and can make annotations on text and quantitative analysis. It contains a word splitter, a tokenizer, a gazetteer and a POS tagger.

It was conceived an implementation of a NLP system based on emotion detection theory and opinion mining research, focusing on lexical analysis and annotations. These techniques will work on data previously collected from students’ posts and the results will be available through graphs and emoticons.

To improve the learning experience of students, Kim and Calvo [20], took 3353 students’ responses from 909 textual open-ended questionnaires as Unit of Study Evaluation (USE) or Students Evaluations of Teaching (SET)[28], and automatically extracted the sentiment polarity of these responses to assess the usefulness of sentiment analysis in the study of textual responses. Another goal they aimed with their research was to compare and present two emotion prediction models and their strengths: the categorical and dimensional models. These emotion models are employed to represent emotions and explore methods to estimate the emotional states of a person.

While the categorical model correspond to the handmade selection of the best suited and representative emotional state from an existing set of emotions categories, the Ekman’s basic emotions (joy, anger, disgust, fear, sadness and surprise), the dimensional model corresponds to the estimation of rating scales of each dimension, such as the degree of valence (positive vs negative emotions), arousal (excited vs calm state) and dominance (feel in control state).

For categorical classification was employed the lexical repository WordNet-Affect along with the Vector Space Model (VSM) (Salton et al. [47]), which represent documents by vectors in a k-dimensional space, and their relevance was measured according their weights, calculated using tf.idf.

This technique made possible to represent all the contextual information of the documents with vectors which were used along with a cosine angle similarity measure to calculate the emotion expressed by

http://www.itl.usyd.edu.au/use/about.cfm
each sentence. After that Latent Semantic Analysis (LSA)\(^{28}\) and Negative Matrix Factorization (NMF)\(^{29}\) were used to reduce the dimensions of VSM.

For dimensional estimation were used a set of normative emotional ratings for collections of words called ANEW. ANEW provides the degree of valence, arousal and dominance for each word by means of the Self Assessment Manikin (SAM) (Bradley and Lang [2]) which is a technique for dimension (i.e. valence, arousal, dominance) measurement based in non-verbal pictures. Each emotion position is calculated with recourse to the use of WordNet-Affect, and if the centroid of an input sentence were close to an emotion the sentence were tagged to that emotion.

For evaluation, were implemented in Matlab five approaches: a categorical model, Majority Class Baseline (MCB)\(^{30}\), Keyword Spotting (KWS)\(^{31}\), LSA-based categorical classification (CLSA), NMF-based categorical classification (CNMF) and Dimension-based Estimation (DIM). Also, it was removed stop words and were used stemming. The results of these algorithms were assessed through precision, recall and F-measure.

In the end, at sentiment identification of positive sentiments, MCB and CNMF showed better results in recall and F-measure and DIM in precision, while in the negative sentiments DIM offered better results. In neutral sentiments KWS showed better results in recall and F-measure and CNMF in precision. Regarding sentiment recognition NMF-based categorical and dimensional models showed better results.

2.3.3 Sentiment Analysis for Online Forums Hotspot Detection

With the increase of information made available by users on the web, such as reviews and forums, many companies started to assess and make use of this knowledge to improve their business. Several techniques of data mining and natural language processing started to be developed in order to answer this search for knowledge.

In Devi and Bhaskaran [8] were employed sentiment analysis on text data of forums to discern online hotspot forums. In this work, were extracted opinion words, such as ‘great’ or ‘bad’ which indicate positive or negative opinions with the assistance of machine learning techniques for classification.

In this work, data from 37 forums and 1616 threads, gathered between January to October of 2011 (after cleaned and formatted) of the website forums.digitalpoint.com was studied.

First it was extracted from each forum of the dataset (after the elimination of irrelevant data) thread’s related features, e.g. average number of replies for each thread and number of threads. For each thread, its replies were parsed into keywords and evaluated by an algorithm called SentiStrengh (tool for text sentiment analysis that estimate the strength of positive and negative sentiment in small pieces of text) which assigned a sentiment value to each one. Together, the sum of all of these sentiment values gave the sentiment value of the respective threads.

\(^{28}\)LSA is a method to extract and represent the contextual meaning of words in a large corpus of text through statistical computations. Landauer et al. [24].

\(^{29}\)According jen Lin [16], NMF is an algorithm for semantic analysis (among other multivariate analysis) that given a non-negative matrix, finds non-negative factors that are reduced-dimensional matrices, which when multiplied can reconstruct the original matrix. This technique is suited for handling text data that require non-negative contraints using the columns of one of the reduced-dimensional matrices to classify the sentences.

\(^{30}\)MCB, a classifier that assigns all data points to the most frequent represented class in the training set

\(^{31}\)KWS is an approach that counts the presence of affect words (extracted from WordNet-Affect)
A k-means clustering algorithm32 was then applied, being each forum represented as a datapoint in the vector space. During the feature extraction the forums along with their emotional polarity, represented in a vector, were given as input to the algorithm to determine the hotspot and non-hotspot forums.

For forum classification, was used SVM, that received as input a forum representation vector, and was applied at each time window, using the resulting k-means clusters of the prior time window, iteratively classifying each forum as hotspot or non-hotspot. Results showed consistency with the k-means results. This consistency was measured through the metrics: accuracy, sensitivity, specificity and positive and negative predictive value.

The results were then compared with other classification algorithms assessing their accuracy through the same time windows used in the SVM classification process. These results showed that SVM had slight better results in more time windows than the other algorithms, as shown in Table 3.7.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Time window} & \textbf{Accuracy (\%)} \\
\hline
& \textbf{Using Naïve Bayes} & \textbf{Using Decision Tree} & \textbf{Using SVM} \\
\hline
2 & 64 & 80 & 84 \\
3 & 60 & 54.1 & 60 \\
4 & 61.54 & 60 & 61.54 \\
5 & 96.54 & 99 & 99 \\
6 & 60 & 62.22 & 60 \\
7 & 84.38 & 80.99 & 81.25 \\
8 & 68.57 & 64 & 65.71 \\
9 & 90 & 93.1 & 94.59 \\
10 & 48.65 & 58.2 & 60 \\
\hline
\end{tabular}
\caption{[8]. Results of the classification algorithms[8]}
\end{table}

32K-means (Kanungo et al. [18]) is a partition algorithm, which means it organizes objects of a database into k partitions (clusters). These clusters are then used to optimize the clustering criteria, like similarity, to seize better results accordingly with our goals. It is a centroid-based technique where clusters are represented by a central vector.
Chapter 3

Distinguishing Students’ from Instructors’ Posts in Education Forums

As previously mentioned, this thesis targets the classification of forums’ posts in order to identify – either students or instructors – based on the expressions they use. Thus, the main objective of this study was to develop a model for classification, which together with all relevant information present in an online course, such as the posts, comments and its authors type, would allow instructors to evaluate and assess students and their questions more quickly and easily, offering at the same time useful knowledge to other systems about the best features to use when trying to determine the type of the posts’ authors using the vocabulary they employ in their posts.

The first task aim at classifying, using a set of features, which posts are more predictable to be part of the category of instructors (Instructor), and those who were more predictable to belong to the category of students (Student). This classification process is tested using a set of different approaches, such as the removal of stopwords and the use of stems in the dataset, and assessed which of these methods offered better classification results.

In the following section we will describe the pre-processing phase (Section 3.1). Afterward, we present the architecture of the proposed system (Section 3.2) followed by their implementation (Section 3.3). Next, the settings for evaluation of our task will be described (Section 3.4) and the results of the different experiences noted in Section 3.5. Finally, these results are discussed in Section 3.6.

3.1 The Corpus of Education Forums

We adopted the dataset specified in Section 1.2 as the primary source of information containing all the posts used in the implementation and development of our tasks. First, we conducted a series of preprocessing tasks to format these data onto a set of posts proper to use.
This data was divided according with the different courses, some of them lectured in other languages than English, and in the format of JavaScript Object Notation (JSON) (Figure 3.1). The non-English courses were removed considering that they do not provide any benefit for the development of the proposed tasks due to the content of the lexicon resources, which only had English vocabulary.

![Figure 3.1](image)

Figure 3.1: An excerpt of the data contained in our dataset (format JSON).

Although these courses have been removed, given the diversity of students of different nationalities present in MOOCs, and their possibility on creating study groups between them, where they could interact using their native language, several posts were still found written in other languages. These posts were kept as result of the high cost of manually remove them.

Next, all of the data was converted into text files (one for each of the different courses) through a JSON parser class that was employed and modified to extract and format in text form the posts and its authors from the different courses of the dataset. Several types of authors have been found namely: Student, Instructor, Coursera staff, CourseraStaff, Community TA, CommunityTA, Coursera Instructor and CourseraInstructor. As result of applying the JSON parser class, a text file was created containing all the required information in the format - Author: Post/Comment - at each line, like as showed in the Figure 3.2. These files were encoded in UTF-8 and the Byte Order Mark (BOM) mode turned off to ignore some unnecessary characters. Useless information for this work was eliminated, such as tags containing the author name, the date of the post, etc.

![Figure 3.2](image)

Figure 3.2: Format of our data after extracting the author and respective post.

Once properly formatted, as some of the posts did not have information regarding the author (Figure 3.3) and contained some characters or information that did not offer any benefit to the development of the tasks, such as mathematical functions, pieces of code or the printed outputs of the answers posted by the students. To clean up and standardize the data as much as possible we implemented a function that, through regular expressions, allows to eliminate this undesirable information (Figure 3.4).

Also, expressions were added to remove tags containing images, tabulations or other listing rules, URL's, e-mails, among others, as they do not offer any support to the tasks, (Figure 3.5 and Figure 3.6). In addition to these, other expressions were combined for emoticons detection, starting by gathering a list containing some of the most usual emoticons used in forums. This list was conceived by resorting the website and “lexicon” EmotiWorld.com (Section 2.1.2) and the entry “List of Emoticons” from Wikipedia.

![Figure 3.3](image)

![Figure 3.4](image)

![Figure 3.5](image)

![Figure 3.6](image)

![Figure 3.7](image)
After the analysis of the dataset and discover of mathematical functions and chunks of code present in the data, we noticed that some expressions were frequently delimited by the characters “$$”, which offered a pattern and allowed to replace these expressions by the term “(function)”, maintaining any contextual information regarding a question or a doubt that a student could have, while simplifying and cleaning irrelevant information (Figure 3.7 e 3.8).

Due to the large quantity of author types present in the dataset, and being most of them redundant,
an expression was added to normalize all types to only two: Student and Instructor. Other expressions were also considered, namely the use of multiple and followed punctuation, like “????????????” or “;;;;;”, which were replaced with just one punctuation mark (“?” or “;”).

With the structured posts, the focus turned to the elimination of line breaks in the written posts, which were aggregated into unique lines, to have a well-defined format to be analyzed of one sentence or post by line. This format was also necessary to ensure that the posts could be used in the classifier during the classification process (Figure 3.9 e 3.10). To answer this question we implemented a function that would aggregate the posts that did not contain an author label at the beginning of the line to the previous post that had it.

Instructor: Prior coursework in stochastic calculus is not a requirement for this course. And ce calculus, the three lectures in should provide you with all the tools you need.

If you need a refresher in time-series statistics / econometrics, then recommend you read the t think these notes are a great way to learn the useful tools in time-series econometrics, without

If you still feel overwhelmed with the continuous-time material, try doing but skipping over an

Instructor: good textbook for learning stochastic calculus, especially for finance applications,
through its terms. After the pre-processed phase, the data was classified using a classifier along with a set of features.

In order to reach the best outcome possible and optimize the capture of expressions that would indicate if a post belong to an instructor or a student, the dataset was subjected to other different approaches, such as the removal of stopwords and the use of stems, to assess which of these experiences could offer better results on identifying authored expressions.

The introduction of a stemmer was employed in the original dataset to allow the capture of more terms and expressions reducing all terms to its root form and thus expand the number of equal terms and expressions that before were written in different verbal forms.

Figure 3.12: The posts generated by the partition of 2 posts (Figure 1.9/10).

Instructor: Prior coursework in stochastic calculus is not a requirement for this course.
Instructor: And certainly being able to derive Ito’s Lemma is not required!
Instructor: However, you will need to learn how to use Ito's Lemma.
Instructor: So long as you have some background in univariate calculus, the three lectures in
Instructor: If you need a refresher in time-series statistics / econometrics, then recommend
Instructor: If you still feel overwhelmed with the continuous-time material, try doing but si
Instructor: Many (if not most) of the concepts in asset pricing do not require continuous ti
Instructor: In fact, the first two editions of John’s book are mostly in discrete time.
Instructor: However, John is making an effort to convert everything to continuous time becau
Instructor: It's also important for understanding a lot of current work in asset pricing and
Instructor: good textbook for learning stochastic calculus, especially for finance applicat
Instructor: But as mentioned before, you should be able to do this course without knowing an

Figure 3.13: A set of posts before the application of the stemmer.

Student: think using Numpy is overkill.
Student: think use of colour in the classroom is really important to make the class ...
Student: It is all very new to me and hope to strengthen/develop;
Student: have just received an bachelor degree from a developing country,
Student: Why is my final effect score is 6/11 after submitted the homework
Student: This prevented me from submitting exactly that error.

Figure 3.14: The set of posts after the application of the stemmer.

student: think us numpi is overkil.
student: ... think us of colour in the classroom is realli import to make the class ...
student: it is all veri new to me and hope to strengthen/develop;
student: have just receiv an bachelor degre from a develop countri,
student: why is my final effect score is 6/11 after submit the homework
student: thi prevent me from submit exactli that error.

All posts have their category recognized by the classifier which then, according with a set of features applied on the posts, determine to which class the post belong according to its terms and the resulting measures from this classification.

The major problem of this approach is that it only focus on the vocabulary used by the authors which sometimes can cause some confusion. For example:

One can easily identify the authors of the posts written in Table 3.1 just by reading the posts due to
Instructor: We will discuss the polynomial example in module 3, upcoming next week.

Student: Thanks a million for all the team members and staff who have contributed to this course.

The vocabulary used. For example, in the first post the terms “We will discuss” and “upcoming next week” suggest that the author has some kind of control over what will be done and when. As the opposite, in the second post, the term “Thanks” is usually found in students post, for example when a doubt or question they had is answered.

<table>
<thead>
<tr>
<th>Table 3.2: Example of posts that can cause confusion.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student: am very happy, this course has changed my daily teacher routines. felt in love with flipped classroom model.</td>
</tr>
<tr>
<td>Instructor: I’ve learnt stuff.</td>
</tr>
</tbody>
</table>

Unlike the first two posts, these ones presented in Table 3.2 can cause some confusion when trying to classify them without knowing their author. In the first post, the terms “my daily teacher routines” suggest that the author of the post is a teacher although it does not belong to the set of instructors that teach this course which can cause this post to be wrongly classified. The last example also bring difficulties because in the scenario of an education tool it is less expected from an instructor to write something as “I’ve learn something”, being these expressions more common between students.

3.3 Implementation

After cleaning the data, an excerpt of the dataset was randomly selected as training set containing 10,000 posts, 5,000 from each author type.

A SVM Machine Learning classifier with a linear kernel type was chosen. The choice of this clas-
sifier was made after the study of some papers (Section 2.2.3) related with this area of specialization, concluding that this type of classifier was majority considered and used in those works.

These type of classifier was implemented in the TalKit (Dias [9]), which we used and modified in order to satisfy our requirements. In the TalKit classifier, in order to determine the class or category of a post between two possible classes – Instructor or Student, a modification was performed consisting in the conversion of the format of how the corpus would be represented, transforming it to the format – “category : post”.

For evaluation purposes, the TalKit classifier allows to evaluate our dataset using a k-fold cross-validation technique, and in addition to the accuracy measure that it had already implemented and was able to calculate, we added the possibility to estimate the precision, recall and F-measure scores for a more complete evaluation setup in our project. These measures are usually used in Information Retrieval and Text Classification as referred by Rijsbergen [44]. Furthermore, a status of how the post were being classified was added, showing if a post was correctly being classified or not (Figure 3.19).

Figure 3.16: An excerpt of the evaluation process of the TalKit SVM Machine Learning classifier.

With the classifier and evaluation code appropriately modified, some classification features that were already implemented were used, consisting in different ngrams combinations and sizes, in order to verify which offered better results. The following set of features was used: Unigrams, Bigrams, Trigrams (Figure 3.20); and all combinations of those, including: Unigrams+Bigrams, Unigrams+Trigrams, Bigrams+Trigrams and finally Unigrams+Bigrams+Trigrams.

Figure 3.17: Example of ngrams: green - unigrams, blue - bigrams, red - trigrams.
For the evaluation of the models, both 10-fold cross-validation and the added measures precision, recall, accuracy and F-measure were used. These measures were calculated using as expected category the Instructors and Students posts independently. These experiments were repeated posteriorly for different training sets: one without stopwords (words that are normally used as connectors and are generally the most common words in a language) and other only using the stems of the posts.

To remove stopwords, a function containing all the words present in the list of stopwords of the TalkKit project was used. Regarding the stemmer, the already mentioned Porter Algorithm Stemmer was used.

3.4 Evaluation Setup

For the evaluation of this task, the already mentioned dataset (in Section 3.1) containing posts from several courses of Coursera was used. These data was divided in a training set containing 10,000 posts, being 5,000 from students and the remaining 5,000 from instructors. These sets were used in all the experiments with the respective modifications (remotion of stopwords, and using stems only) and evaluated in this section.

The training data was subjected to a k-fold cross-validation technique for model validation purposes, partitioning the data into 10 folds.

3 different approaches were made to assess which one would offer better results. For the first experiment, the data was taken from the pre-processing phase and offered it directly to the classifier. The second experiment consisted in removing the stopwords from the dataset, using the list of stopwords of the TalkKit project. The last approach consisted in only using the stems from all words reducing them to its base or root form, in this last experiment the Porter Stemming Algorithm was used as stemmer.
As evaluation measures, it was employed the accuracy measure, along with the measures precision, recall, and F-measure.

Accuracy is the percentage of correct classified examples to the number of examples.

\[
\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN} \quad (3.1)
\]

TP stands for true positive and is the number of correct items predicted as positive. TN (true negative) is the number of correct items predicted as negative. FP (false positive) are the items erratically predicted as positive and FN (false negative) is the number of items erratically predicted as negative.

Precision consist in the percentage of selected items that are correct. It is the fraction of relevant retrieved examples.

\[
\text{Precision} = \frac{TP}{TP + FP} \quad (3.2)
\]

Recall is the percentage of correct items that are selected. It is the fraction of retrieved relevant examples.

\[
\text{Recall} = \frac{TP}{TP + FN} \quad (3.3)
\]

The F1-score is a specification of the F-measure, which considers precision and recall as having the same weight. It combines both precision and recall measures, and is defined as a weighted harmonic mean of both precision and recall.

\[
F1 = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \quad (3.4)
\]

In all this classifications and for the evaluations, the feature used consisted in ngrams of different sizes - Unigrams, Bigrams and Trigrams - and combinations between them, more precisely - Unigrams-Bigrams-Trigrams, Unigrams-Bigrams, Unigrams-Trigrams and Bigrams-Trigrams.

3.5 Experiences

The dataset and both experiments of removing stopwords and employing a stemmer to the original dataset were evaluated and ran with the classifier to estimate which features would be best employed.
to have the better accuracy and F-measure values. As for the F-measure, the values of precision and recall were calculated, using both categories Instructor and Student as the expecting value (Table 3.3, Table 3.4).

Table 3.3: Results of the classification on dataset considering Instructor as expected category.

<table>
<thead>
<tr>
<th>Ngrams</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unigrams</td>
<td>79.88</td>
<td>78.51</td>
<td>79.16</td>
</tr>
<tr>
<td>Bigrams</td>
<td>75.29</td>
<td>69.11</td>
<td>72.04</td>
</tr>
<tr>
<td>Trigrams</td>
<td>73.64</td>
<td>57.53</td>
<td>64.55</td>
</tr>
<tr>
<td>Unigrams + Bigrams</td>
<td>80.56</td>
<td>77.69</td>
<td>79.09</td>
</tr>
<tr>
<td>Unigrams + Trigrams</td>
<td>80.18</td>
<td>77.57</td>
<td>78.84</td>
</tr>
<tr>
<td>Bigrams + Trigrams</td>
<td>71.25</td>
<td>74.92</td>
<td>73.28</td>
</tr>
<tr>
<td>Unigrams + Bigrams + Trigrams</td>
<td>80.16</td>
<td>77.66</td>
<td>78.88</td>
</tr>
</tbody>
</table>

When running the classifier in the original dataset with the 10-fold cross-validation technique was reached an accuracy of 75.94%, the features that showed better F-Measure value was the feature unigrams with the highest score with 79.16% when the category Instructor is set to be expected in the calculations.

Table 3.4: Results of the classification on dataset considering Student as expected category.

<table>
<thead>
<tr>
<th>Ngrams</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unigrams</td>
<td>79.54</td>
<td>80.39</td>
<td>79.94</td>
</tr>
<tr>
<td>Bigrams</td>
<td>72.02</td>
<td>75.48</td>
<td>73.65</td>
</tr>
<tr>
<td>Trigrams</td>
<td>65.46</td>
<td>79.36</td>
<td>71.73</td>
</tr>
<tr>
<td>Unigrams + Bigrams</td>
<td>78</td>
<td>78.7</td>
<td>79.2</td>
</tr>
<tr>
<td>Unigrams + Trigrams</td>
<td>78.51</td>
<td>81.06</td>
<td>79.75</td>
</tr>
<tr>
<td>Bigrams + Trigrams</td>
<td>74.5</td>
<td>71.83</td>
<td>73.12</td>
</tr>
<tr>
<td>Unigrams + Bigrams + Trigrams</td>
<td>77.89</td>
<td>80.22</td>
<td>79.03</td>
</tr>
</tbody>
</table>

When setting the expected category to Student, the feature who showed a higher value in F-Measure was the unigrams with a score of 79.94%, and the accuracy of this classification was 76.04%.

Table 3.5: Results of the classification on dataset without stopwords considering Instructor as expected category.

<table>
<thead>
<tr>
<th>Ngrams</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unigrams</td>
<td>79.49</td>
<td>78.28</td>
<td>78.87</td>
</tr>
<tr>
<td>Bigrams</td>
<td>75.03</td>
<td>66.99</td>
<td>70.76</td>
</tr>
<tr>
<td>Trigrams</td>
<td>81.66</td>
<td>35.2</td>
<td>49.18</td>
</tr>
<tr>
<td>Unigrams + Bigrams</td>
<td>81</td>
<td>78.12</td>
<td>79.51</td>
</tr>
<tr>
<td>Unigrams + Trigrams</td>
<td>80.63</td>
<td>77.46</td>
<td>78.99</td>
</tr>
<tr>
<td>Bigrams + Trigrams</td>
<td>75.13</td>
<td>67.17</td>
<td>70.79</td>
</tr>
<tr>
<td>Unigrams + Bigrams + Trigrams</td>
<td>80.66</td>
<td>77.09</td>
<td>78.82</td>
</tr>
</tbody>
</table>

In the experience where the classifier received as corpora the original dataset without their stopwords, and when the category Instructor is evaluated (Table 3.5), the feature that provided the highest F-measures results with a value of 79.51% was the combination of features unigrams and bigrams. When the evaluation category was Student (Table 3.6), the highest score of F-Measure belong to the feature where it was combined unigrams and bigrams with a value of 80.1%. Regarding the accuracies of these classifications, when the evaluation category was set to Instructor, it scored 75.15%, and a
Table 3.6: Results of the classification on dataset without stopwords considering Student as expected category.

<table>
<thead>
<tr>
<th>Ngrams</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unigrams</td>
<td>78.78</td>
<td>80.16</td>
<td>79.44</td>
</tr>
<tr>
<td>Bigrams</td>
<td>70.43</td>
<td>78.39</td>
<td>74.17</td>
</tr>
<tr>
<td>Trigrams</td>
<td>59.01</td>
<td>91.8</td>
<td>71.83</td>
</tr>
<tr>
<td>Unigrams + Bigrams</td>
<td>78.63</td>
<td>81.65</td>
<td>80.1</td>
</tr>
<tr>
<td>Unigrams + Trigrams</td>
<td>78.34</td>
<td>81.06</td>
<td>79.65</td>
</tr>
<tr>
<td>Bigrams + Trigrams</td>
<td>69.84</td>
<td>78.01</td>
<td>73.68</td>
</tr>
<tr>
<td>Unigrams + Bigrams + Trigrams</td>
<td>78.17</td>
<td>81.02</td>
<td>79.54</td>
</tr>
</tbody>
</table>

value of 75.2% when its category was Student.

Table 3.7: Results of the classification on dataset only using stems, with Instructor as expected category.

<table>
<thead>
<tr>
<th>Ngrams</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unigrams</td>
<td>81.11</td>
<td>80.46</td>
<td>80.76</td>
</tr>
<tr>
<td>Bigrams</td>
<td>74.91</td>
<td>72.25</td>
<td>73.5</td>
</tr>
<tr>
<td>Trigrams</td>
<td>73.71</td>
<td>60.23</td>
<td>66.27</td>
</tr>
<tr>
<td>Unigrams + Bigrams</td>
<td>79.81</td>
<td>78.35</td>
<td>79.05</td>
</tr>
<tr>
<td>Unigrams + Trigrams</td>
<td>80.53</td>
<td>77.95</td>
<td>79.2</td>
</tr>
<tr>
<td>Bigrams + Trigrams</td>
<td>73.18</td>
<td>75.5</td>
<td>74.3</td>
</tr>
<tr>
<td>Unigrams + Bigrams + Trigrams</td>
<td>80.36</td>
<td>78.5</td>
<td>79.26</td>
</tr>
</tbody>
</table>

Table 3.8: Results of the classification on dataset only using stems with Student as expected category.

<table>
<thead>
<tr>
<th>Ngrams</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unigrams</td>
<td>80.24</td>
<td>80.55</td>
<td>80.38</td>
</tr>
<tr>
<td>Bigrams</td>
<td>73.13</td>
<td>76.57</td>
<td>74.56</td>
</tr>
<tr>
<td>Trigrams</td>
<td>66.33</td>
<td>78.55</td>
<td>71.88</td>
</tr>
<tr>
<td>Unigrams + Bigrams</td>
<td>78.65</td>
<td>81.04</td>
<td>79.82</td>
</tr>
<tr>
<td>Unigrams + Trigrams</td>
<td>79.05</td>
<td>81.06</td>
<td>80.1</td>
</tr>
<tr>
<td>Bigrams + Trigrams</td>
<td>74.58</td>
<td>71.77</td>
<td>73.13</td>
</tr>
<tr>
<td>Unigrams + Bigrams + Trigrams</td>
<td>78.65</td>
<td>80.65</td>
<td>79.62</td>
</tr>
</tbody>
</table>

Regarding the approach where we applied a stemmer to all terms of the posts, and when evaluating the category Instructor (Table 3.7), it scored an accuracy of 76.63%. The resulting values of the use of the classifier demonstrate that when applied the unigrams feature it provided a better f-measure result with a value of 80.76%. For the same dataset but a classification where the evaluated category was Student (Table 3.8), the accuracy of the classification was 76.55%, and the feature that showed higher score were also the unigrams with an f-measure value of 80.38%.

3.6 Discussion

With this evaluation, we concluded that the F-measure score when evaluating the models increase considerably when using the unigrams or combinations where it is employed with other feature, which one can conclude that exist in the data set some single terms and vocabulary very specific used by instructors that could identify the author of the posts when employed.
For example (Figure 3.21), after a study of a training and test set generated, the unigrams “strictly” and “Excellent” were terms classified as being instructors’ terms due to their employability in the training set were usually associated to instructors posts. When these terms appeared in students’ posts on the test set, the classifier automatically classified these posts as being from instructors, which caused an incorrect classification. The same happened when the term “loops” were found in instructors posts which the classifier categorized as being a student term. Regarding the classification of trigrams, some expressions such as, “you are saying” or “of the language” were found in the training set and classified as being students expressions, and the posts starting with “The video was”, or containing the expression “the same issues” were classified as instructor expressions.

![Figure 3.21: Examples of posts classified as incorrect and their faulty expressions.](image)

Also, the use of stems slightly improve this score as well as the accuracy retrieved by the classifier, which can be explained by the diversity of verbal forms and grammar of the English vocabulary when used in the communication between individuals. For example, the terms “prefer” and “odd” are mostly found in students’ posts but the terms “preference” or “oddly” are more frequently found in instructors posts. The same goes for the term “particular” and “particularly”, where the term “particular” is usually found in students’ posts and the term “particularly” in instructors’ posts.
Chapter 4

Polarity assessment in students posts

For the second task, we implemented a function that, giving a post or a set of posts, allows an instructor to determine the sentiment expressed by students in their posts, based on the polarities of the terms written. For this task, the polarity of each post present in the lexicon SenticNet (Section 2.1.6) were employed, and through the combination of these values, posts were ranked, considering those who have higher levels of negativity, the ones which need to be addressed in the first place.

As dataset for the development of this classifier we used the same dataset used in the previous task (Chapter 3) with its format established in the Section 3.1.

In the following sections we present the architecture of the proposed task (Section 3.1) followed by their implementation (Section 3.2). Afterward, we present how our classifier can be extended in order to use different lexicons and languages (Section 3.3), and the creation of a reference for evaluation purposes (Section 3.4) will also be discussed. Furthermore, the settings for evaluating our task will be described (Section 3.5) and the results of the different experiences will be presented in Section 3.6. Finally, these results are briefly discussed in Section 3.7.

4.1 Architecture

The objective with the development of this task is to offer instructors the possibility of determining in an easier way, the polarity and valence of the students’ posts in order to determine which need to be aided and which show satisfaction in their posts.

In order to detect the sentiment expressed in students’ posts, the lexicon SenticNet was exploited. Also, we made experiments where we tried to merge the concepts found in emosenticnet with the SenticNet and extend our lexicon to comprehend a larger set of vocabulary and expressions, however these concepts do not include the polarity valence of its terms and thus it proved to be unprofitable to our task.

Using the SenticNet lexicon, information containing the terms and expressions was extracted along with the respective polarities, and crossed with the same terms and expressions found in the posts. These posts were subjected to a set of experiments to assess if it would be possible to capture more terms and expressions due to some verbal conjugations or some expressions where its stopwords were
The introduction of a stemmer in the original dataset as an experiment was considered due to the fact that a large number of terms and expressions raised by students were not always in the same verb form and therefore wasn't always contemplated by the lexicon even though they have the same sentimental value. The application of a stemmer in both the lexicon and the posts allows to normalize all terms and expressions to be possible to take the greatest number of occurrences of these and thus obtain a more accurate classification.

The final polarity of each post were then calculated through the arithmetic mean of its terms' polarities (4.1), which was considered more suitable for this classification instead of summing all terms' polarities (4.2), as it takes into consideration the number of terms of the post present in the lexicon and thus granting that smaller posts with fewer terms could be evenly weighted.

\[
PostPolarity = \frac{\sum TheirSentimentTermsPolarity}{NumberOfSentimentTerms} \quad (4.1)
\]

\[
PostPolarity = \sum TheirSentimentTermsPolarity \quad (4.2)
\]

Finally, the posts are presented to the instructor with the possibility of showing only the posts whose polarity value is lower than zero, due to be considered as those with highest priority.

Figure 4.1: Architecture of the posts classification framework.
In addition to this classifier, and based in the same process, another functionality was created to be deployed in other projects, that instead of offering a set of posts, it allows the classification of a single sentence along with the lexicon that we want to consider and apply to classify it. This functionality was developed to offer other projects of Q&A a resource to evaluate submitted questions with their sentiment polarity.

4.2 Implementation

For the development of this task, the first step was to observe and study the SenticNet lexicon to determine what would be necessary and useful for the implementation of our task. The SenticNet is a lexicon created and employed for sentiment analysis task and contains, like every other lexicon of this type, concepts that transmit some kind of sentiment or emotion. However, unlike other lexicons, in SenticNet all concepts have associated a set of values referring the degree of pleasantness, attention, sensitivity, aptitude, polarity and also synsets (set of synonyms) with all their related terms also present in the lexicon, Figure 4.2.

![Figure 4.2: Excerpt of SenticNet lexicon before the processing and extraction of concept and polarity.](image)

Taking this into account, the next step was to format the SenticNet lexicon into a text file with its concepts along with their respective polarities. Figure 4.3.

![Figure 4.3: Excerpt of SenticNet lexicon after the extraction and formatting.](image)

With the lexicon file properly formatted, the code of our function started to be implemented. For this task, we used the Java programming language, since we felt more comfortable with.

The classifier begun to be developed by creating the structures for our data. The SenticNet concepts
were then saved in a hash map containing the concepts and its values, as well as the posts that were also saved in a hash map alongside with an id to identify them. The terms of each post that were present in the lexicon (Table 4.1), were saved in a list, one for each post, and then, grouped in another list.

After the posts and concepts properly added to the structures, the lists of terms began to be populated. It started reading each line of the posts file at a time and for each line, all the terminations “n’t” for the word “not” were replaced in order to capture and invert the polarity of the concepts that follows it. The category of each post – Student: or Instructor: was removed as well as the punctuation marks, “,”, “;” and “.”. Finally, the “?” and “!” symbols was also separated from the words by a whitespace character to be possible the inclusion of these words on our search. Also, all words were posteriorly formatted to lower case so they could be treated and classified equally.

In order to improve the accuracy in weighting some expressions not considered in the lexicon, a set of adverbs has been used. If the word immediately before the term is one of these adverbs, the polarity value of the term would be emphasized or depreciated depending on the adverb found. These adverbs were treated like the already mentioned word not, but instead of reversing the polarity of the term, its polarity was increased or diminished. Among these adverbs, the positive ones were quite, very, more and several while the negative adverbs were the words few and less. (Figure 4.4)

If you can help me improve this definition i’m more happy. 0.298
If you can help me improve this definition i’m more happy. 0.373
...turns out to be much less convenient for pricing other claims. 0.045
...turns out to be much less convenient for pricing other claims. 0.034
Farmers are not happy! 0.298
Farmers are not happy! -0.298

Figure 4.4: Example of expressions with their polarity altered by adverbs or negation.

With the sentences formatted, each word was crossed with all concepts of the lexicon taking into consideration previous and posterior words and thereby allow the capture of expressions (Figure 4.5). Also, the concepts present in the lexicon that followed the word “not” were also added to the list of words to treat some negative expressions, as well as the words that followed the adverbs that were added.

Student: How have you had time to get angry so quickly, if the supermarket only takes 10 minutes to open?

how have you had time to get angry so quickly if the supermarket only takes 10 minutes to open
and not
how have you had time to get angry so quickly if the supermarket only takes 10 minutes to open

Figure 4.5: Example of expression matching and capture.

After the matching, to prevent the classifier to consider both the term and expression that contains the same term, for example, that both of the terms “angry” and “get angry” were considered and added to the post, was used a function to remove the words that were a substring of another, and thus the
concept “angry” was not added to the list.

Table 4.1: Example of the structured lists containing the posts and the terms present in both lexicon and post

| POST: | Student: turns out, it's pretty common in the forums, think you're at the top of the forum this week... just say'n (feel happy) |
| TERMS: | [think, common, feel happy, pretty, top, just] |

Upon all the populated structures, for each set of terms of a post, their polarities were summed in order to calculate the polarity of the post. This measure was then replaced after considering it unfair when the posts were more extensive, due to the possibility of these posts had lowest score and therefore highest priority not considering correctly the strength of the concepts. To avoid this problem, the resulting value was fractioned with the number of terms to achieve an arithmetic mean.

For the terms that started with the word *not* its value was multiplied with -1 to invert its value. For example, if the expression *not happy* was present in the post, and such the polarity of the term *happy* is 0.298 its final result would be -0.298. The same treatment has been made for the adverbs mentioned above. The terms that contained one of the positive adverbs (*quite, very, more* and *several*) were multiplied by 1.25, while the negative adverbs (*few* and *less*) by 0.75.

Finally, the resulting value was rounded to three decimal places to clarify the visualization, and saved alongside with the terms of the post.

To complete the task, we implemented a notification method, which added to a list all the posts that contained as last term (corresponding to the value of the polarity already calculated) a value lower than zero, i.e. the posts that contained a negative polarity. The final results were displayed in the format shown in Figure 4.6.

For an easily and proper archiving of the classes and to create an executable application a jar was created, and the parameters needed for their proper run are:

```
java -jar PostsPolarity.jar PostsFile.txt Lexicon.txt
```

![Figure 4.6: Example of the final presentation of the results.](image)

Finally, an evaluation class to estimate the scores of precision, recall, accuracy and f-measure of our classifier when ranking the posts using a specific lexicon was built. This evaluation class was posteriorly used to determine which experience offered the best results in terms of the posts polarity and also was used to measure the performance of our classifier against other sentiment detection algorithms.

To execute the evaluation procedure a jar was created, which is ran by the command:

```
java -jar Evaluation.jar <FileToBeEvaluated.txt> <pos/neg>
```

The file must be in the format where in the first column correspond to the expected results and in the second column the results of the classifier. In this evaluation only the polarity of the posts or sentences are considered – symbols “+” or “-”. The category to be evaluated is indicated as the last parameter, <pos> if we want to evaluate regarding a positive classification, and <neg> otherwise.
4.3 Extending with other lexicons and languages

In order for our classifier to work with other sets of posts and languages, we had the attention of giving files as parameters to our classifier. These files contain all of the exterior information, such as the lexicons and the posts file, to be received as input so our classifier could be used and extended to work with a widely set of corpora. Therefore, if it receive as input files a set of posts written in a different language than English and a lexicon with concepts of the same language than these posts, this classifier will work on that language.

Other feature for extending the classifier is the ease in changing the formula for calculating the polarity of the posts, and the introduction/removal of adverbs or rules to be considered, where we just have to modify the methods where this calculation and insertion is done.

Also, we created the possibility of, instead of receiving a file containing all posts to be classified, it could receive as input a string corresponding to the sentence we want to classify. This functionality was developed to be deployed in other systems, such as Q&A systems, in order to detect the sentiment strength of the questions asked. Similarly to the previous function, a jar file was created, which is ran through:

```java
java -jar SentencePolarity.jar "the sentence to be classified in string format" Lexicon.txt
```

4.4 Building a reference

To create a reference to classify this project, a set of data containing 100 students’ posts was annotated, which was randomly selected from the completed dataset. These posts were then classified by 2 annotators, which categorized them by being positive, neutral or negative (Table 4.2).

After rating these posts, a concordance between both annotators was reached using an inter-annotating agreement and determining as measure the Cohen’s kappa values Cohen [5].

The sentence polarity dataset v1.0 of Pang and Lee [38] was also used as reference to test our classifier. In this dataset, 5,331 sentences are classified as being positive or negative.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive posts (A2)</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>Neutral posts (A2)</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Negative posts (A2)</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.2: (Ax)- Annotator x. Inter-annotator agreement using Cohen’s kappa values.

Considering:

\[\kappa = \frac{p_o - p_e}{1 - p_e} \] \hspace{1cm} (4.3)

\[\kappa = 0.56 \] \hspace{1cm} (4.4)

From the calculations, we concluded that an agreement of 56.1% was reached when annotating the data. This value can be explained by the high level of disagreement in neutral posts due to their

42
ambiguity.

Other reference we used, to evaluate our classifier rating texts out of the MOOCs scope, was the SpeDial results on a set of movie texts. The SpeDial is a Spoken Dialogue System that have the ability to perform affective modeling of spoken dialogue.

It is a dataset containing 3826 rated texts that we used as reference, and compared with the results achieved by our classifier.

4.5 Evaluation Setup

To evaluate the classifier for polarity assessment in students’ posts, the employed dataset consisted in an excerpt of the same dataset used for the first task and mentioned in section 2.1.1. This excerpt contains 100 posts, all of them posted by students and selected randomly. These posts were posteriorly labeled as negative, positive or neutral posts accordingly to their vocabulary by two annotators and an inter-annotator agreement reached using Cohen’s kappa values as previously explained.

Different experiments were made, with the inclusion of a stopword removal and a stemmer. The removal of stopwords disabled the majority of the expressions of the lexicon due to some of these were composed by two or more words interconnected with the presence of stopwords such as “a little”, “a lot of study” or “work to earn money”.

The evaluation measures applied in the first task of this thesis (Section 3.4) were again used and so, the accuracy, precision, recall and f-measure calculated to estimate the performance of our classifier when running with different experiments, lexicons and when compared with other valence classifiers.

As mentioned in the previous sections, the lexicon employed in this project for the classification of the posts was the SenticNet lexicon (Section 2.1.6), which was also the lexicon used when evaluating the mentioned experiences from where the stopwords were removed and a stemmer employed. Our classifier was also used and evaluated using a different lexicon, the AFINN lexicon (Section 2.1.8), and the SentiWordNet lexicon (Section 2.1.5) was studied to infer how it could be used and applied.

In order to determine the best classifier in measuring the polarity strengths of posts, the performance of this classifier was compared with the sentiment analysis tool SentiStrength (Section 2.1.9) to assess which one would offer better results.

Our classifier was also used in a set of texts already evaluated by the Spedial project, allowing to determine how accurate they were when using in texts outside of the MOOCs domain.

We tried to contact the authors of other classifiers, namely the authors of the classifiers NRC-Canada (Section 2.2.3) and JSC Framework (Section 2.2.4) but while in the NRC the classifier was not yet ready for distribution, the JSC classifier was made available but we could not adapt it to work under our requirements.
4.6 Experiences

A series of experiments were made, where we removed the stopwords and employed a stemmer in the original dataset. Also, the classifier was evaluated using a different lexicon, the AFINN, where the same approaches were made (Table 4.3, Table 4.4).

Table 4.3: Results of the classification on different experiences when expecting a positive result.

<table>
<thead>
<tr>
<th>Lexicon</th>
<th>Precision</th>
<th>Recall</th>
<th>Accuracy</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>SenticNet</td>
<td>63.49</td>
<td>76.92</td>
<td>59</td>
<td>69.57</td>
</tr>
<tr>
<td>SenticNet w/o Stopwords</td>
<td>64.06</td>
<td>78.85</td>
<td>60</td>
<td>70.69</td>
</tr>
<tr>
<td>SenticNet w/Stems</td>
<td>63.51</td>
<td>90.38</td>
<td>62</td>
<td>74.6</td>
</tr>
<tr>
<td>AFINN</td>
<td>72.72</td>
<td>46.15</td>
<td>51</td>
<td>56.47</td>
</tr>
<tr>
<td>AFINN w/o Stopwords</td>
<td>72.72</td>
<td>46.15</td>
<td>51</td>
<td>56.47</td>
</tr>
<tr>
<td>AFINN w/Stems</td>
<td>74.42</td>
<td>61.54</td>
<td>57</td>
<td>67.37</td>
</tr>
</tbody>
</table>

The results of this evaluation showed that our classifier was more accurate when employing the lexicon SenticNet with stems with an accuracy score of 62%, and when the expected result was the positive one it also showed the best score in calculating the f-measure with a value of 74.6%. Regarding the estimation of the f-measure when the negative result was expected, the lexicon AFINN without stopwords and with stems had the same highest result of 45.45%.

After running and evaluating our classifier with different experiments and using different lexicons, other sentiment detection algorithm called SentiStrength was also ran and evaluated to assess the performance of our classifier when comparable to others. (Table 4.5, Table 4.6) The SentiStrength operates by receiving as input a file with several sentences (1 for each line) or just a single one, and like our classifier, retrieve the polarity strength of those sentences.

Table 4.4: Results of the classification on different experiences when expecting a negative result.

<table>
<thead>
<tr>
<th>Ngrams</th>
<th>Precision</th>
<th>Recall</th>
<th>Accuracy</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>SenticNet</td>
<td>40.91</td>
<td>34.62</td>
<td>59</td>
<td>37.5</td>
</tr>
<tr>
<td>SenticNet w/o Stopwords</td>
<td>42.86</td>
<td>34.62</td>
<td>60</td>
<td>38.3</td>
</tr>
<tr>
<td>SenticNet w/Stems</td>
<td>44.44</td>
<td>30.77</td>
<td>62</td>
<td>36.36</td>
</tr>
<tr>
<td>AFINN</td>
<td>52.63</td>
<td>38.46</td>
<td>51</td>
<td>44.44</td>
</tr>
<tr>
<td>AFINN w/o Stopwords</td>
<td>55.56</td>
<td>38.46</td>
<td>51</td>
<td>45.45</td>
</tr>
<tr>
<td>AFINN w/Stems</td>
<td>55.56</td>
<td>38.46</td>
<td>57</td>
<td>45.45</td>
</tr>
</tbody>
</table>

According to the SentiStrength algorithm, the experiment that offered the best results when comparing their evaluation with the data annotated was the approach where we removed the stopwords from the original dataset reaching an accuracy of 46% and an f-measure of 53.01% when expecting a positive result and 40% when evaluating for a negative result.
Table 4.6: Results of the SentiStrength algorithm on different experiences when expecting a negative result.

<table>
<thead>
<tr>
<th>Ngrams</th>
<th>Precision</th>
<th>Recall</th>
<th>Accuracy</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>SentiStrength</td>
<td>45</td>
<td>34.62</td>
<td>45</td>
<td>39.13</td>
</tr>
<tr>
<td>SentiStrength w/o Stopwords</td>
<td>47.37</td>
<td>34.62</td>
<td>46</td>
<td>40</td>
</tr>
<tr>
<td>SentiStrength w/Stems</td>
<td>42.11</td>
<td>30.77</td>
<td>42</td>
<td>35.56</td>
</tr>
</tbody>
</table>

After evaluating our classifier and comparing it with other sentiment detection algorithm, our classifier was subjected to other dataset out of the domain of MOOCs to assess their performance. For this last experiment, we recurred to a set of texts used and already evaluated and scored by the Spedial project and compared their results with the results achieved with our classification. (Table 4.7)

Table 4.7: Results of our classifier when compared with the Spedial project scores.

<table>
<thead>
<tr>
<th>Expected Result</th>
<th>Precision</th>
<th>Recall</th>
<th>Accuracy</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>46.16</td>
<td>65.1</td>
<td>45.27</td>
<td>54.02</td>
</tr>
<tr>
<td>Negative</td>
<td>82.42</td>
<td>29.93</td>
<td>45.27</td>
<td>43.92</td>
</tr>
</tbody>
</table>

This experiment showed that our classifier had an accuracy of 45.27% when estimating the sentiment strength of the texts used in Spedial, and that their performance was higher when evaluating the positive results showing a score of 54.02%

Regarding the results of our classifier when evaluating the sentences from the Pang&Lee dataset (Table 4.8), we concluded that our classifier perform better when classifying positive texts, showing an accuracy of 84.51% and f-measure score of 91.61%, than when classifying negative texts, which scored an accuracy of 26.82% and f-measure of 42.3%.

Table 4.8: Results of our classifier when compared with the Pang&Lee sentences dataset scores.

<table>
<thead>
<tr>
<th>Expected Result</th>
<th>Precision</th>
<th>Recall</th>
<th>Accuracy</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>100.0</td>
<td>84.52</td>
<td>84.51</td>
<td>91.61</td>
</tr>
<tr>
<td>Negative</td>
<td>100.0</td>
<td>26.82</td>
<td>26.82</td>
<td>42.3</td>
</tr>
</tbody>
</table>

4.7 Discussion

After the evaluation of our classifier using different lexicons, we concluded that the experiments where we used stems from the posts and lexicons was the one which offered best accuracy results. We estimate that it was due to the data sparseness, and the fact that a term is written in different verbal forms and not only in its root form, and thus it highly increase the presence of the terms when their suffixes are removed (Figure 4.7).

Figure 4.7: Example of posts that were incorrectly classified due to the absence of stems.

Also, our classification showed best results when evaluating positive posts, which can be explained
in the negative posts, by the use of irony, sarcasm or other difficult expressions by the students when addressing questions they do not understand or are not comfortable with, or due to their reluctance in expressing themselves using negative sentiment words. In the Figure 4.8, the expressions "by God!", have a very high positivity in the lexicon, but in the context of this post it transmit a sentiment of intolerance by the author.

Polarity: 0.249 -> Post: At the **height** of the cleaning products see a couple arguing, by God!

Figure 4.8: Example of posts that were incorrectly classified due to the presence of expressions of difficult assessment.

Other explanation for the low results in the evaluation of negative posts can be the fact that our classifier does not consider POS tagging (Figure 4.9).

Polarity: -0.007 -> Post: Thanks Arun. was confused by the **definition** equation and not including all four players in each set.

Polarity: 0.043 -> Post: started trying to incorporate more educational or professional development books into my **recreational** reading, and too found it wasn’t nearly as relaxing.

Figure 4.9: Example of posts that were incorrectly classified due to the absence of POS tagging.

The test does not contain only posts with direct problems and doubts from the students but also situations where they explain something they do not agree and why, or mention negative facts to prove their point (Figure 4.10), and thus are annotated has positive although some of its terms have negative sentiments, stronger than the positive ones.

Polarity: 0.248 -> Post: You let 7 times more money daily snuff, maybe if you stopped smoking arrive later this month

Polarity: 0.238 -> Post: Life today is not going to **bring** good news on our coffee in our newspaper our favorite Tchannel, only has to **watch** the news in recent months ...

Figure 4.10: Example of posts that were incorrectly classified due to the presence of expressions where students do not explicit their sentiment.

Other reason for this results, was the fact that still exist some posts written in different languages than English, and that in some of these posts the use of foreign words or other terms, such as commands or code that are generally written in English could cause the classifier to detect them (Figure 4.11).

Polarity: 0.105 -> Post: ¿Dónde tendría que utilizar **destroy**?

Polarity: -0.035 -> Post: ¿Se crea de nuevo solo?

Polarity: 0.105 -> Post: (...) lo mejor es más fácil la primera opción, ejecutar **destroy**.

Figure 4.11: Example of posts that were annotated as neutral but contain foreign words.

These results showed consistency with the values obtained when classifying our dataset using the SentiStrength. In this case, the positive results evaluation also showed better scores than when evaluating the negative results, but unlike our classifier the SentiStrength algorithm showed higher scores when employed without stopwords.
The same situation happened when comparing the results of our classification with the values obtained by the Spedial project and the Pang&Lee sentences dataset when evaluating their texts.
Chapter 5

Most common expressions used in MOOCs

The kfNgrams is a free-software for linguistic research that through a text file given as input determines the most frequent n-grams.

In Table 5.1 we present the expressions regarding the kfNgrams results, which allowed us to assess which expressions were used with higher frequency by both students and instructors, being identified by their author type. For this study, we used the complete pre-processed dataset containing all posts from all courses, and divided it in two parts, one containing only the posts from students and other only with instructors’ posts.

For this study, we used 5-grams to find the most common expressions due to the presence of stopwords in these sentences, which although does not directly provide any utility, when used as connectors can interfere with the construction of different expressions, and their absence could interfere with the intention of some expressions, on the other hand the use of less n-grams could not be enough to capture relevant expressions.

Table 5.1: The most common expressions belonging to instructors and students when searching with 5-grams.

<table>
<thead>
<tr>
<th>Instructors</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>“you should be able”</td>
<td>“at the end of the”</td>
</tr>
<tr>
<td>“at the end of the”</td>
<td>“hello(hi) everyone my name is”</td>
</tr>
<tr>
<td>“take a look at the”</td>
<td>“it seems to me that”</td>
</tr>
<tr>
<td>“you will be able to”</td>
<td>“thank you very (so) much for”</td>
</tr>
<tr>
<td>“at the top of the”</td>
<td>“there are a lot of”</td>
</tr>
<tr>
<td>“let us know if you”</td>
<td>“nice to meet you all”</td>
</tr>
<tr>
<td>“thank you for your feedback”</td>
<td></td>
</tr>
</tbody>
</table>

1 http://kwicfinder.com/kfNgram/kfNgramHelp.html
The analysis of the results allowed to conclude that most of the expressions used by instructors are those which they give indications about something that was asked (“at the end of the”, “at the top of the”, “take a look at the”), showing their ability to answer students’ questions and doubts. Also, expressions of encouragement (“you should be able to”) and promotion of participation (“let us know if you”) were found, suggesting their active presence in the forums and their will to address any students doubts, as well as sentences expressing gratitude about something that was suggested or criticized in order to improve it (“thank you for your feedback”).

Regarding the students posts, we found that the most common used expressions consisted in posts where students present themselves or state their inexperience taking online courses, at least in Coursera, (“hello(hi) everyone my name is”, “nice to meet you all”, “this is my first course(coursera”), in expressions where they are grateful for the assistance provided (“thank you very(so) much for”), and expressions where they give their personal opinion about an occurrence (“It seems to me that”). Other expressions were often found, suggesting their aptitude for helping other students, giving them indications as those given by the instructors (“at the end of the”, “there are a lot of”).

Other highly used expressions were found, but due to their presence in only a short sequence of posts, showing that these expressions were largely used in just one specific course, such as “brought out the best in” which are presented in a course of leadership or the sentence “use this thread to ask help and clarification about Question X, for your convenience here’s the text of the question:” which is a pre-made sentence made by the instructors of the course “useful genetics”.

These expressions, led us to study and discover the vocabulary used in the courses to determine the most common and specific terms for each available course in our dataset. Unlike the features used in the previous table where we made our search using 5-grams to find expressions, for this experience we will only use unigrams due to the fact that we only want the most common and specific terms and we will also exclude stopwords and words that we find transversal to all courses. An excerpt of these results are shown in Table 5.2, the complete results are presented in Appendix A.
Table 5.2: The most common expressions belonging to instructors and students when searching with 5-grams.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Frequent terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset Pricing</td>
<td>“price” “risk” “asset”</td>
</tr>
<tr>
<td></td>
<td>“market” “value”</td>
</tr>
<tr>
<td>Climate Literacy</td>
<td>“climate” “change” “people”</td>
</tr>
<tr>
<td></td>
<td>“energy” “carbon”</td>
</tr>
<tr>
<td>Designing Cities</td>
<td>“city(ies)” “urban” “design”</td>
</tr>
<tr>
<td></td>
<td>“planning” “maps”</td>
</tr>
<tr>
<td>Game Theory</td>
<td>“player” “strategy” “game”</td>
</tr>
<tr>
<td></td>
<td>“payoff” “equilibrium”</td>
</tr>
<tr>
<td>History of Rock</td>
<td>“music” “rock” “Beatles”</td>
</tr>
<tr>
<td></td>
<td>“song(s)” “love”</td>
</tr>
</tbody>
</table>
Chapter 6

Conclusions and Future Work

MOOCs are a recent and currently in expansion learning tool that allow individuals to enroll in online courses and receive proper education about several and different study domains. Due to its growth, the forums of these courses usually have thousands of posts making it difficult for instructors to assess students and evaluate them consistently.

To answer the large quantity of posts these courses usually have, this thesis proposed a model of classification and a sentiment polarity classifier in order to give instructors in future works useful information regarding the posts. A study was also made, to determine the most frequent and common expressions in students’ and instructors’ posts, and in specific areas of learning.

The model of classification aimed at the automatic identification of the authors of the posts of the forums courses. For this task, we used the classifier developed in TalkIt alongside a set of features to classify each post of our dataset. For this classification process the features used were the ngrams, namely unigrams, bigrams, trigrams and combinations between them. Also, these features were extracted from different experiments that were made to the dataset, one where the stopwords of each post were removed, and other where a stemmer was employed so it would only contain stem words. After this task was evaluated, we concluded that to obtain the best results at identifying the authors of the posts, the features that should be used are unigrams or combinations of them with other type of ngrams. Also, the reduction of all words to stems from the dataset slightly improved the classifier results, due to the normalization of all words to stems, increasing their occurrence in expressions, but at the same time with the cost of losing information that could be important.

A sentiment detection classifier was also implemented that alongside with available lexicons, allows to estimate the sentiment strength of the posts written by students in our dataset and how its results would be influenced by the removal of stopwords and the use of stems. In this classifier, we determine the polarity and valence of the students posts according to their sentiment terms present in the lexicon.

Also, this classifier was evaluated using different lexicons, and sets of data out of the context of MOOCs (Spedial and the Pang&Lee dataset) and its results compared with other sentiment detection algorithm, the SentiStrength.

With this task, we concluded that our classifier showed better results when evaluating positive posts,
and with the use of stems, which can be explained by the increase of equal terms and expressions after employing a stemmer, for example "particular" and "particularly" are transformed to the same term, "particular", which although it offer better results in classification can also mean that some information is lost, and that the negative sentiments written by the students are usually expressed through expressions difficult to capture in automatic classification, such as irony or sarcasm or other difficult of capture expressions.

6.1 Future Work

To improve the results of our methodologies, future work can be conducted in order to improve our classifier estimating the valence and polarity of the posts. One of these tasks could be the adoption of POS tagging to allow the introductions of other type of lexicons, namely the SentiWordNet (Section 2.1.8) which differentiates the polarity strengths of the terms according its POS.

Other future work that can be done is an extensive process of annotation, that would allow to capture difficult expressions to answer in an automatic form, such as sarcasm, irony, or even frustration and boredom. These expressions are frequently used when expressing negative emotions and a method to identify them would greatly improve this task.

Also, punctuation marks can be useful when classifying students’ posts. The use of exclamation mark can be used to increment the strength of a sentence as the interrogation mark used to discover questions from students.

Regarding the method used to calculate the sentiment polarity of a post, other measures such as the consideration of the dominant emotions of the posts should be taken into account.

Appendix A

Courses’ most frequent terms

<table>
<thead>
<tr>
<th>Courses</th>
<th>Frequent terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset Pricing</td>
<td>"price" "risk" "asset" "market" "value"</td>
</tr>
<tr>
<td>Automata</td>
<td>"state" "language" "regular" "string" "final"</td>
</tr>
<tr>
<td>Big Data</td>
<td>"data" "model" "number" "RapidMiner" "column"</td>
</tr>
<tr>
<td>Bio Informatics</td>
<td>"score" "code" "string" "algorithm" "list"</td>
</tr>
<tr>
<td>Blended Learning</td>
<td>"learning" "blended" "student" "teacher"</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Courses</th>
<th>Frequent terms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"school"</td>
</tr>
<tr>
<td>Blue Brain</td>
<td>"brain"</td>
</tr>
<tr>
<td></td>
<td>"neurons"</td>
</tr>
<tr>
<td></td>
<td>"people"</td>
</tr>
<tr>
<td></td>
<td>"free"</td>
</tr>
<tr>
<td></td>
<td>"cell"</td>
</tr>
<tr>
<td>Climate Literacy</td>
<td>"climate"</td>
</tr>
<tr>
<td></td>
<td>"change"</td>
</tr>
<tr>
<td></td>
<td>"people"</td>
</tr>
<tr>
<td></td>
<td>"energy"</td>
</tr>
<tr>
<td></td>
<td>"carbon"</td>
</tr>
<tr>
<td>Compilers</td>
<td>"error"</td>
</tr>
<tr>
<td></td>
<td>"code"</td>
</tr>
<tr>
<td></td>
<td>"string"</td>
</tr>
<tr>
<td></td>
<td>"lexer"</td>
</tr>
<tr>
<td></td>
<td>"parser"</td>
</tr>
<tr>
<td>Computational Methods</td>
<td>"time"</td>
</tr>
<tr>
<td></td>
<td>"frequency"</td>
</tr>
<tr>
<td></td>
<td>"domain"</td>
</tr>
<tr>
<td></td>
<td>"signal"</td>
</tr>
<tr>
<td></td>
<td>"MatLab"</td>
</tr>
<tr>
<td>Cryptography</td>
<td>"key"</td>
</tr>
<tr>
<td></td>
<td>"time"</td>
</tr>
<tr>
<td></td>
<td>"message"</td>
</tr>
<tr>
<td></td>
<td>"programming"</td>
</tr>
<tr>
<td></td>
<td>"code"</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>"data"</td>
</tr>
<tr>
<td></td>
<td>"analysis"</td>
</tr>
<tr>
<td></td>
<td>"variables"</td>
</tr>
<tr>
<td></td>
<td>"model"</td>
</tr>
<tr>
<td></td>
<td>"test"</td>
</tr>
<tr>
<td>Data Science</td>
<td>"data"</td>
</tr>
<tr>
<td></td>
<td>"file"</td>
</tr>
<tr>
<td></td>
<td>"code"</td>
</tr>
<tr>
<td></td>
<td>"tweet"</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Courses</th>
<th>Frequent terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>"design" "gap" "link" "project" "prototype"</td>
</tr>
<tr>
<td>Designing Cities</td>
<td>"city(ies)" "urban" "design" "planning" "maps"</td>
</tr>
<tr>
<td>Digital Media</td>
<td>"code" "processing" "android" "void" "sketch"</td>
</tr>
<tr>
<td>Digital Signal Processing</td>
<td>"signal" "frequency" "basis" "example" "vectors"</td>
</tr>
<tr>
<td>E-learning and Digital Cultures</td>
<td>"technology" "people" "learning" "education" "human"</td>
</tr>
<tr>
<td>Einstein</td>
<td>"time" "light" "speed" "moving" "frame"</td>
</tr>
<tr>
<td>Finance</td>
<td>"rate" "year" "value" "nominal"</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Courses</th>
<th>Frequent terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Networks: Friends, Money and Bytes</td>
<td>"time"</td>
</tr>
<tr>
<td></td>
<td>"materials"</td>
</tr>
<tr>
<td></td>
<td>"receiver"</td>
</tr>
<tr>
<td></td>
<td>"transmitter"</td>
</tr>
<tr>
<td></td>
<td>"videos"</td>
</tr>
<tr>
<td>Game Theory</td>
<td>"player"</td>
</tr>
<tr>
<td></td>
<td>"strategy"</td>
</tr>
<tr>
<td></td>
<td>"game"</td>
</tr>
<tr>
<td></td>
<td>"payoff"</td>
</tr>
<tr>
<td></td>
<td>"equilibrium"</td>
</tr>
<tr>
<td>Gamification</td>
<td>"gamification"</td>
</tr>
<tr>
<td></td>
<td>"games"</td>
</tr>
<tr>
<td></td>
<td>"people"</td>
</tr>
<tr>
<td></td>
<td>"play"</td>
</tr>
<tr>
<td></td>
<td>"fun"</td>
</tr>
<tr>
<td>Genome Science</td>
<td>"sequence"</td>
</tr>
<tr>
<td></td>
<td>"genome"</td>
</tr>
<tr>
<td></td>
<td>"research"</td>
</tr>
<tr>
<td></td>
<td>"biology"</td>
</tr>
<tr>
<td></td>
<td>"data"</td>
</tr>
<tr>
<td>Global Warming</td>
<td>"climate"</td>
</tr>
<tr>
<td></td>
<td>"change"</td>
</tr>
<tr>
<td></td>
<td>"temperature"</td>
</tr>
<tr>
<td></td>
<td>"time"</td>
</tr>
<tr>
<td></td>
<td>"energy"</td>
</tr>
<tr>
<td>Human Computer Interaction</td>
<td>"people"</td>
</tr>
<tr>
<td></td>
<td>"design"</td>
</tr>
<tr>
<td></td>
<td>"peer"</td>
</tr>
<tr>
<td></td>
<td>"prototype"</td>
</tr>
<tr>
<td></td>
<td>"feedback"</td>
</tr>
<tr>
<td>History of Rock</td>
<td>"music"</td>
</tr>
<tr>
<td></td>
<td>"rock"</td>
</tr>
<tr>
<td></td>
<td>"Beatles"</td>
</tr>
<tr>
<td></td>
<td>"song(s)"</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Courses</th>
<th>Frequent terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humankind</td>
<td>"people" "human" "world" "years" "species"</td>
</tr>
<tr>
<td>Intro to EU Law</td>
<td>"law" "european" "people" "country(ies)" "union"</td>
</tr>
<tr>
<td>Intro to Psychology</td>
<td>"people" "psychology" "learning" "life" "brain"</td>
</tr>
<tr>
<td>Intro to Statistics</td>
<td>"data" "mean" "statistics" "value" "number"</td>
</tr>
<tr>
<td>Emotional Intelligence - Inspiring Leadership</td>
<td>"people" "leader" "work" "feel" "life"</td>
</tr>
<tr>
<td>Linear Programming</td>
<td>"problem" "function" "dictionary" "programming" "variable"</td>
</tr>
<tr>
<td>Mathematical Methods</td>
<td>"function" "finance" "math" "time"</td>
</tr>
<tr>
<td>Courses</td>
<td>Frequent terms</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Mental Health</td>
<td>"mental" "people" "health" "illness" "care"</td>
</tr>
<tr>
<td>Machine Learning</td>
<td>"function" "theta" "code" "error" "matrix"</td>
</tr>
<tr>
<td>NanoTech</td>
<td>"energy" "nanotechnology" "light" "field" "nano"</td>
</tr>
<tr>
<td>Neural Nets</td>
<td>"function" "data" "hidden" "weights" "training"</td>
</tr>
<tr>
<td>Natural Language Processing</td>
<td>"pi" "word" "sentence" "probability" "model"</td>
</tr>
<tr>
<td>Online Games</td>
<td>"game(s)" "up" "play" "character" "story"</td>
</tr>
<tr>
<td>Organizational Analysis</td>
<td>"organization" "people" "work" "change"</td>
</tr>
<tr>
<td>Courses</td>
<td>Frequent terms</td>
</tr>
<tr>
<td>---</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Probabilistic Graphical Models</td>
<td>"function" "model" "code" "test" "factors"</td>
</tr>
<tr>
<td>Peking University - BioInformatics</td>
<td>"normal" "bioinformatics" "slides" "sequence" "start"</td>
</tr>
<tr>
<td>Functional Programming</td>
<td>"function" "code" "scala" "list" "test"</td>
</tr>
<tr>
<td>Programming</td>
<td>"function" "code" "return" "file" "Python"</td>
</tr>
<tr>
<td>Programming 2</td>
<td>"code" "function" "method" "maze" "rat"</td>
</tr>
<tr>
<td>Relationships</td>
<td>"love" "read" "relationship" "life" "story"</td>
</tr>
<tr>
<td>Scientific Writing</td>
<td>"writing" "paper" "english" "improve"</td>
</tr>
</tbody>
</table>
Table A.1: The 5 most used specific terms found in each course using unigrams as search feature ordered by their occurrence frequency.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Frequent terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup</td>
<td>“work” “instance” “command” “idea” “node”</td>
</tr>
<tr>
<td>Statistics</td>
<td>“data” “mean” “error” “variable” “example”</td>
</tr>
<tr>
<td>Useful Genetics</td>
<td>“gene” “mutation” “cells” “allele(s)” “Redfield”</td>
</tr>
<tr>
<td>Videogames Learning</td>
<td>“game(s)” “play” “level” “words” “player”</td>
</tr>
<tr>
<td>Virology</td>
<td>“virus(es)” “cell” “viral” “host” “genome”</td>
</tr>
</tbody>
</table>