1 Motivation

- It is generally expected that intelligent devices will respond to voice. The voice will often not be processed locally, but relegated to a remote server, as data owners may not have the resources to process their own data. This poses serious privacy risks to the user.
- A person’s voice is a legally-accepted biometric, and carries information about their identity, gender, nationality, health, emotional state and a variety of other factors.
- The remote voice service could potentially make undesired inferences about any of these factors, which may be unrelated to the actual service provided.
- This poster discusses “privacy preserving” computational approaches for voice processing that prevent such undesired inferences through cleverly-designed cryptographic and hashing schemes.

2 Can Cryptography Help?

- Secure Multiparty Computation
 - Homomorphic Encryption
- Computation recast as a sequence of primitives
- Garbled Circuits
- Secure Multiarty Computation
 - Garbled Circuits

3 Privacy-Preserving Speech Processing

- Work on sequence of feature vectors computed from speech
- Speech processing tasks:
 - Speaker Verification: *Are you really* Alice? Yes/No
 - Speaker Identification: *Which one of* Alice, Bob, Carol, Dave, ... *are you?*
 - Speech Recognition: *You said* “Hello, world”
 - Keyword Spotting: *You said* “blah blah blah ... *drugs* ... blah blah blah”

- Hashing techniques
 - Locality-Sensitive Hashing
- Examples:
 - Telephone company unwilling to expose audio to intelligence agency
 * May provide encrypted data to the agency
 - Agency cannot expose what it is trying to find (a voice, a key phrase) to the telephone company
 * May provide it in encrypted form to the telephone company

- Compromise between obtained results and computational efficiency

Acknowledgments

This work was partially supported by FCT project SUSPECT.