ABSTRACT

We consider the problem of reliable gossip/epidemic dissemination in a network of \(n \) processes using push and pull algorithms. We generalize the random phone call model so that processes can refuse to push a rumor or answer pull requests. With this relaxation, we show that it is possible to disseminate a rumor to all processes with high probability using \(\Theta(n \ln n) \) rounds of communication and only \(n + O(n/ \ln n) \) messages, both of which are optimal and achievable with push-pull and pull-only algorithms. Our algorithms are strikingly simple, address-oblivious and thus fully distributed. This contradicts a well-known result of Karp et al. [3] stating that any address-oblivious algorithm requires \(\Omega(n \ln \ln n) \) messages.

We also develop precise estimates of the number of rounds required in the push and pull phases of our algorithms to guarantee dissemination to all processes with a certain probability. For the push phase, we focus on a practical infect upon contagion approach that balances the load evenly across all processes. As an example, our push-pull algorithm requires 17 rounds to disseminate a rumor to all processes with probability \(1 - 10^{-100} \) in a network of one million processes with a communication overhead of only 0.4%.

1 INTRODUCTION

Since the proposal to update replicated databases [2], gossip algorithms have been used to address a wide variety of problems. The randomness inherent to the selection of the communication peers makes gossip algorithms particularly robust to all kinds of failures such as message loss and process failures, which tend to be the norm rather than the exception in large systems. Their appeal also stems from their simplicity and highly distributed nature.

Push algorithms. The simplest epidemic dissemination algorithms are push-based, where processes that know the rumor propagate it to other processes. Consider the following "infect forever" push algorithm. The algorithm starts with a single process knowing a rumor, and at every round, every informed process pushes the rumor to a process chosen uniformly and independently at random. There are other flavors of push algorithms such as an "infect upon contagion" approach [4] where a process propagates the rumor immediately after it is received regardless of previous receptions. Unfortunately, push algorithms must transmit \(\Theta(n \ln n) \) messages if every process is to learn a rumor with high probability\(^1\).

Pull algorithms. Instead of pushing a rumor, a different strategy is for an uninformed process to ask an interlocutor chosen at random to convey the rumor if it is already in its possession. Pulling algorithms are advantageous when rumors are frequently created because pull requests will more often than not reach processes with new rumors to share. However, pull requests in systems without activity result in useless traffic.

Push-pull algorithms and the random phone call model. The idea to push and pull rumors simultaneously was first considered by Demers et al. [2], and further studied by Karp et al. [3] who considered the following random phone call model. At each round, each process randomly chooses an interlocutor and calls it. If, say, Alice calls Bob, once the communication is established, Alice pushes the rumor to Bob if she has it, and pulls the rumor from Bob if he has it. Establishing communication (the phone call itself) is free, and only messages that include the rumor are counted. Using the random phone call model, Karp et al. [3] presented a push-pull algorithm that transmits a rumor to every process with high probability using \(O(\ln n) \) rounds of communication and \(O(n \ln \ln n) \) messages.

1.1 Our contributions

Generalized random phone call model. In the original random phone call model, rumors are transmitted in both directions whenever both players on the line have the rumor. We remove this restriction and generalize the model: at each communication round, each process calls between 0 and \(f_{in} \) processes uniformly at random to request a rumor, calls between 0 and \(f_{out} \) processes uniformly at random to push a rumor, and has the option not to answer pull requests. We assume, like for the original model, that establishing the communication is free, and we only count the number of messages that contain the rumor. We also assume that there is a counter attached to the rumor keeping track of the number of dissemination rounds since its creation, that processes can reply to pull requests in the same round, that the rounds are synchronous, and that processes have a complete view of the system.

Breaking the lower bounds from [3]. In their seminal work, the authors define the model such that processes do not have to share the rumor once the communication is established. They state

\(^1\)With high probability (w.h.p) means with probability at least \(1 - O(n^{-c}) \) for a constant \(c > 0 \).
that any algorithm in the random phone call model running in
$O(\ln n)$ rounds with communication peers chosen uniformly at ran-
dom requires $\omega(n)$ messages, and that any address-oblivious algo-
rithm needs $\Omega(n \ln \ln n)$ messages to disseminate a rumor. Address-
obliviousness means that the decisions taken locally by each process
are oblivious to the address of the other processes. However, in the
proofs of their lower bounds it is implicitly assumed that processes
always pull and push the rumor once the connection is established,
which, it turns out, is not optimal and allows us to break both lower
bounds.

Optimal algorithms with $O(\ln n)$ rounds and $O(n)$ messages.
If we discount the cost of establishing the communication (the
phone call), it is natural to let processes choose whether or not to
call, and whether or not to reply when called. This generalization
makes a huge difference: we present a pull-only algorithm and a
push-pull algorithm that disseminate a rumor to all processes with
high probability in $O(\ln n)$ rounds of communication using only
$O(n)$ messages. The idea is simple: we do not push old rumors
because doing so results in a large communication overhead.

Our pull-only algorithm obviously never pushes rumors: unin-
formed processes attempt to pull the rumor from f_{out} processes per
round until they receive it, and informed processes always reply to
pull requests. Our infect-forever-push-pull algorithm first pushes
the rumor during r_{push} rounds, stopping when at least $\frac{n}{\ln n}$ pro-
cesses are informed with high probability. During this push phase,
informed processes push the rumor to f_{out} processes at every round
in an infect forever fashion. Uninformed processes send pull re-
quests during the push phase, but informed processes do not reply
to them. After r_{push} rounds, informed processes stop pushing the
rumor and a pull-only phase is executed for r_{pull} rounds until all
processes have received the rumor with high probability. Informed
processes always reply to pull requests during this pull phase.

Both our pull and push-pull algorithms are optimal for the ge-
neralized phone call model. Their message complexity is optimal,
their bit complexity is optimal, and we prove that their round com-
plexity is also optimal by showing that pushing and pulling at the
same time using potentially complex rules is not necessary: any
algorithm in the generalized random phone call model requires
$\Omega(\log_{\max(f_{out},f_{out}+1)} n)$ rounds of communication to disseminate
a rumor with high probability.

Toward practical implementations. We derive precise ana-
lytic and numerical bounds on the number of rounds required for
the push and pull phases of our algorithms. For the push phase,
we focus on the infect upon contagion model for which, in round r, processes transmit all the rumors received in round $r-1$ even
when they are not received for the first time. This model is of par-
specific interest to us because it spreads the load uniformly across
all processes as opposed to infect forever algorithms, while hav-
ing the same asymptotic behavior. It is thus well-suited for prac-
tical implementations, especially if the payload (rumor) is large.
Our infect-upon-contagion-push-pull algorithm shares the optimal
properties of the infect-forever-push-pull algorithm. Furthermore,
by adjusting the number of messages transmitted during the last
round of the push phase, we can decrease the number of messages
to $n + O(\frac{n}{\ln n})$ even when $f_{out} \in O(\ln n)$.

2 ANALYSIS OF THE INFECT UPON CONTAIGN PUSH MODEL

We model the infect upon contagion push model as an occupancy
problem where messages are abstracted as balls, and processes play
the role of bins. Let X_r be the number of bins that receive at least
one ball during round r. We show that $\mathbb{E}[X_{r+1}] = \mathbb{E}[\rho(X_r)] \leq
\psi(r+1)$, where $\psi(r+1) \leq \psi(r) = n (1 - (1 - \frac{1}{\ln n}) f_{out})$, and
$\phi(x) \leq n \left(1 - (1 - \frac{1}{n}) x\right)$. We lower bound the function $\psi(r)$ by
a logistic equation. It is easy to see that $\psi(r)$ converges to a limit
γ because it is monotonic increasing and bounded above by n.
A solution for γ is given by Corless et al. [1] with the principal
branch of the Lambert-W function: $\gamma = n f_{out} \ln W(-f_{out} e^{-f_{out}})$.

Lemma 2.1. Let $X(r) = \frac{\gamma_{\psi}^r}{\gamma_{\psi}+1}$. If $f_{out} \geq 2$, then $\psi(r) \geq X(r)$
for every $r \in \mathbb{N}$.

We observed that the logistic equation $X(r)$ closely approximates
$\psi(r)$ and the estimation $\mathbb{E}[X_r]$ of $\mathbb{E}[X_r]$ obtained with numerical
simulations, but it is not a true lower bound for $\mathbb{E}[X_r]$ because
$\mathbb{E}[X_r] \leq \psi(r)$. However, $\psi(r)$ and $\mathbb{E}[X_r]$ are always almost superposed and we conjecture that $\psi(r) - \mathbb{E}[X_r] \leq 1$
when $n \geq 3$ and $f_{out} \geq 2$. This is more than sufficient to use $X(r)$ to
accurately bound the number of rounds of the push phase of
our algorithms when implemented in large-scale systems. This is
a significant improvement over the bounds of [4], which are only
discussed asymptotically for $f_{out} \in O\left(\frac{\ln(\ln n)}{\ln n}\right)$. For instance, for
$n = 10^4$ and $p_c = 10^{-15}$, the bounds from [4] require $f_{out} = 23$ and
$r = 50$ (i.e., ≈ 10 million balls), whereas our bounds require $r = 41
with f_{out} = 2$, or $r = 10$ with $f_{out} = \left\lfloor \ln n \right\rfloor = 14$ (i.e., ≈ 500000
balls).

3 PULL ALGORITHMS

Besides the seminal work of Demers et al. [2] and Karp et al. [3],
there are few results on pull-only algorithms. Our first conclusion
is that pulling and pushing have the same asymptotic round com-
plexity, which is implicit in [3]. On expectation, pulling is always
at least as good as pushing, although the higher variance of pull
at the early stage of the dissemination makes pulling less efficient
when the rumor is new. However, the behavior reverses and then
more: pulling is much more efficient than pushing when the rumor
is old. The second albeit trivial conclusion is that $O(n)$ messages
are sufficient to disseminate a rumor with high probability when
the fan-in is constant.

Let u_r be the number of uninformed processes after round r.
We show that if we start the pull phase with $u_0 = n - \frac{n}{\ln n}$ uninformed
processes, then $\mathbb{E}[u_r] \geq n \left(1 - \frac{1}{\ln n}\right) f_{out}^r$, and $\mathbb{E}[u_r] \geq n^r$ if $r \leq
\log_{f_{out}+1}(e+1) + \log_{f_{out}+1} \ln n - \log_{f_{out}+1} \ln \left(\frac{n}{\ln n}\right)$. The distribution of u_r is very closely centered around the mean, thus we can derive
precise estimates of the number of pull rounds for practitioners.
This is useful for the pull phase of our push-pull algorithms.

Lemma 3.1. Let u_r be the number of informed processes at round r
for $r \leq f_{out} \leq f_{in} \leq n - 1$, and let $n \geq 4$.

\[
\mathbb{E}_{\text{pull}}[u_{r+1}|u_r] \leq \mathbb{E}_{\text{push}}[u_{r+1}|u_r]
\]

(1)
where $\mathbb{E}_{\text{pull}}[|u_r| | u_r]$ and $\mathbb{E}_{\text{push}}[|u_r| | u_r]$ are the expected values of the number of uninformed processes at round $r + 1$ given u_r, uninformed processes at round r for the pull and push version, respectively.

Lemma 3.2. The number of pull rounds required to inform all processes with high probability starting from $\frac{n}{\ln n}$ informed processes is in $\Theta(\log f_{\text{out}} + 1)$.

Theorem 3.3. Our pull-only algorithm disseminates a rumor to all processes with high probability in $\Theta(\log f_{\text{out}})$ rounds of communication, which is optimal for the generalized random phone call model.

Theorem 3.4. If $f_{\text{in}} \in O(1)$, then the total number of messages (replies to pull requests) required by the pull algorithm is in $\Theta(n)$.

4 PUSH-PULL ALGORITHMS

We now discuss our push-pull algorithms. We push when the rumor is young, then pull when the rumor is old. Processes do not reply to pull requests if the rumor is new, nor do they push the rumor if it is old.

Lemma 4.1. $\Theta(\frac{n}{\ln n})$ messages transmitted uniformly at random are necessary and sufficient to inform at least $\frac{n}{\ln n}$ processes with high probability. More precisely, if $m \geq \frac{n}{\ln n} + \frac{p}{\ln n}$ messages are transmitted uniformly at random, then the probability of informing less than $\frac{n}{\ln n}$ processes is at most

$$2e^{-\frac{(1 - \frac{m}{n})^{\frac{n}{\ln n}}}{\frac{m}{\ln n}}}. \tag{2}$$

Theorem 4.2. If $f_{\text{in}} \in O(1)$ and $f_{\text{out}} \in O(\ln n)$, our push-pull algorithm can disseminate a rumor to all processes with high probability using $\Theta(n)$ messages. The algorithm requires $\log f_{\text{out}} + 1 + \Theta(\ln \ln n)$ rounds using an infect forever push phase, and $\log f_{\text{in}} + 1 + \Theta(\ln \ln n)$ rounds with the infect upon contagion push strategy when $f_{\text{out}} \geq 2$. If $f_{\text{out}} \in O(1)$ and $f_{\text{in}} = 1$, both algorithms require $n + \Theta\left(\frac{n}{\ln n}\right)$ messages.

Theorem 4.3. Let $f = \max(f_{\text{in}}, f_{\text{out}})$. Any protocol in the generalized random phone call model requires $\Omega(\log f_{\text{out}}) + 1$ rounds of communication to disseminate a rumor to all processes with high probability.

We now illustrate the performance of our infect-upon-contagion-push-pull algorithm. First, using the tools of Section 2 and Lemma 4.1, we calculate the number of push rounds required to inform at least $\frac{n}{\ln n}$ processes with a chosen probability of imperfect dissemination. The threshold is very sharp for networks with a few hundred processes or more: there is a r' such that the probability of informing $\frac{n}{\ln n}$ processes goes from ≈ 0 in round $r' - 1$ to ≈ 1 in round r'. In practice this phase transition is the sweet spot to switch from the push phase to the pull phase. We then calculate the number of rounds of the pull phase using the tools of Section 3.

The communication overhead is in $O\left(f_{\text{out}} \cdot \frac{n}{\ln n}\right)$, and the transition phase is such that with a logarithmic fan-out, we sometimes go from slightly less than $\frac{n}{\ln n}$ informed processes in round $r_{\text{push}} - 1$ to almost n informed processes in round r_{push}. In these situations, we can decrease the number of overhead messages by transmitting each message in round r_{push} with a scaling probability p_{scale} such that the number of informed processes after round r_{push} is above but close to $\frac{n}{\ln n}$ with high probability. This ensures that the communication overhead is in $O\left(\frac{n}{\ln n}\right)$ even with a logarithmic fan-out. We can easily calculate p_{scale} with Eq. (2) and the machinery of Section 2.

Figure 1 shows the communication overhead for varying system sizes, f_{out} and f_{in} for a probability of error of $p_e = 10^{-15}$. The $f_{\text{out}} = \lceil \ln n \rceil$ $f_{\text{in}} = 1$ configuration is of particular interest in practice because it provides sublogarithmic latency with a negligible communication and process overhead. More precisely, for systems with between ten thousand and one million processes, the algorithm requires between 13 and 15 rounds, a fan-out of size 9 to 13, and when scaling the last push round the communication overhead varies between 1.2% for ten thousand processes and 0.3% for one million processes. The 10^{-15} probability of imperfect dissemination is on par with the failure probability of modern hardware. If this is still insufficient, we can decrease the probability of imperfect dissemination to 10^{-100} by reducing the scaling of the last push round, which slightly increases the communication overhead (to 2.6% for ten thousand processes and 0.4% for one million processes), and pulling for two to three additional rounds.

![Figure 1: Communication overhead of the infect-upon-contagion-push-pull algorithm for $p_e = 10^{-15}$ and different $f_{\text{in}}, f_{\text{out}}$ and network size n. Each data point is the average over 10 simulations. The simulations labeled (scaled) scale the last push round.](image-url)

REFERENCES

