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ABSTRACT

This paper has two different goals. The primary aim is to illus-
trate the advantages of weighted finite state transducers for spo-
ken language processing, namely in terms of their capacity to ef-
ficiently integrate different types of knowledge sources. We have
chosen three areas to emphasize several aspects of the application
of transducers: large vocabulary continuous speech recognition,
automatic alignment and grapheme-to-phone conversion. The sec-
ondary goal is to simultaneously present the state of the artin these
areas for European Portuguese.

1. INTRODUCTION

The goal of this paper is two-fold. The primary aim is to illustrate
the advantages of weighted finite state transducers (WFSTs) for
spoken language processing, namely in terms of their capacity to
efficiently integrate different types of knowledge sources.

By attempting to illustrate these advantages for several areas
of spoken language processing (recognition, alignment, and syn-
thesis), we hope to be able to simultaneously present some ofthe
state of the art in these areas for our language in our lab. This
secondary goal is also important in the context of the current pre-
sentation aimed at the spoken language processing community in
Spain.

There are many possible applications ofWFSTs for spoken
language processing. The three that we have chosen as topicsfor
this paper attempt to emphasize different aspects of transducers.

� In terms of LVCSR, our focus will be on how to do the
composition of knowledge sources dynamically, with lim-
ited memory requirements, and being able to preserve the
original sources.

� In terms of alignment, our emphasis will be on the flexible
way in which additional knowledge sources such as alter-
native pronunciation rules may be integrated.

� In terms of speech synthesis, we shall restrict our pre-
sentation to grapheme-to-sound conversion, a task where
we hope to illustrate the benefits of combining both
knowledge-based and data-driven approaches via transduc-
ers.

2. LARGE VOCABULARY CONTINUOUS SPEECH
RECOGNITION

The integration of knowledge sources in large vocabulary contin-
uous speech recognition using weighted finite state transducers is

spreading in the speech recognition community. Among the main
advantages of the approach relative to traditional systemsare: the
elegant and uniform formalism that allows very flexible waysof
integrating multiple knowledge sources, and the superior search
performance obtained when the search network is optimized using
automata determinization and minimization.

The main disadvantages are related to the search space op-
timization, both in terms of memory requirements and dynamic
adaptation. In fact, theWFST determinization algorithm, based
on subset construction, and normally used during optimization, re-
quires large amounts of memory relative to the size of the result-
ing WFST. Moreover, although the optimized search network is
not much larger than the language model (typically only 2 to 2.5
times larger), it can still be very large and requires large amounts
of memory in runtime.

The fact that the optimization of the search network is per-
formed offline means that the original knowledge sources arenot
available at runtime. Thus, it may be troublesome to preserve the
optimality of the network, when dynamically adjusting the knowl-
edge sources. For example, when adapting the language model
probabilities or when adding new words or pronunciations tothe
vocabulary.

The most common solution proposed for the memory require-
ment problems consist of reducing the size of the system to the re-
sources available during development or run time, and rely on an
additional pass to re-score with a larger language model. This ap-
proach is very effective, but it only avoids the problem, it does not
solve it. Along the same lines, but relying on a single pass, is the
approach of Dolfing and Hetherington [1], where the full language
model (�� ) is factorized into a small model (��) and a difference
model (�� 	�) such that�� 
 �� � �� 	� ; the small language
model is incorporated with the other knowledge sources, thelexi-
con� and the acoustic model
 , in a network (� 
 
 � � � ��)
that is optimized offline. The full language model information is
integrated in runtime by composing the network with the differ-
ence language model (� � �� 	�) “on-the-fly”.

This section describes how we address these problems in our
system. In particular, we shall focus on our lexicon and language
model “on-the-fly” composition algorithm which, together with
a memory efficient representation forWFSTs and other language
model optimizations [2], allowed us to extend theWFST approach
to larger systems, such as the ones used for broadcast news recog-
nition.



2.1. Lexicon and Language Model Composition

The determinization of the composition of the lexicon� with the
language model� is probably the most resource intensive subtask
when optimizing the search network. The reason lies on the large
size of the language model, and on the fact that, when applying
the subset-construction determinization algorithm, every state of
the resultingWFST (��� �� � � �) corresponds to aset of states of
the non-deterministic� � � transducer.

In [3] we presented a memory-efficient specialized algorithm
for the composition of the lexicon with the language model. Our
algorithm is based on Mohri’s theorem [4] that states that the com-
position of sequential transducers is also sequential. This impor-
tant result means that if we determinize both the lexicon andthe
language model, then we only need to compose them to obtain the
deterministic composition. In practice, we cannot just apply the
usual composition algorithm [5], because of� labels on the output
tape of the lexicon, which will generate so many non-coaccessible1

paths in the result, as to make the method unpractical.
Our algorithm is just a specialized composition algorithm,and

works as follows: in a preprocessing step, the set of reachable non-
� output labels is associated with each�-output edge of the lexi-
con. That set is used during composition to avoid the generation
of non-coaccessible paths by only following�-output edges on the
lexicon that will lead to a non-� label compatible with labels in the
language model state.

This basic algorithm was also extended to allow output-label
and weight pushing. In [6] we showed how to extend the algorithm
to approximate “on-the-fly” minimization.

When used with a caching scheme, the overhead of performing
both the�� 
 � � � specialized composition and the
 � ��
composition in runtime, is as low as 6% of the search effort2.

2.2. Application to Broadcast News Recognition

All the recognition experiments described in this section were
based on the broadcast news corpus collected in the scope of the
ALERT European project[7].

The acoustic models are based on the combination of the out-
put of various neural networks [8]. We extracted 3 differentsets of
features from the speech signal: 12PLPcoefficients + log energy
+ deltas; 12 log-rasta coefficients + log energy + deltas; and28
modulation spectrogram features.

We used 3 separate multilayer perceptrons (MLP), one for
each set of features. The input of eachMLP was a window of 7
vectors centered on the vector being analyzed. TheMLPs had a 3-
layer architecture with 1000-4000 units in the hidden layer, and the
output consisted of 40 softmax units corresponding to 38 context
independent phones plus silence and inspiration noise. Theoutput
of the 3MLPs was combined using the average of the logarithm of
the probability estimated for each phone.

The acoustic model topology consisted of a sequence of states
with no self-loop to enforce the minimal duration of the model, and
one final state with a self-loop. The acoustic models were encoded
in a single acoustic modelWFST.

We used an European Portuguese lexicon with 57k words and
4-gram backoff language models, trained from more than 384 mil-

1A non-coaccessible path is a “dead-end” paths that does not reach a
final state.

2The time spent evaluating the distributions (neural network or Gaus-
sian mixtures) is not included in this percentage.

Align MLP Data Decoder F0 All xRT
5 1000 22h Stack 18.3 33.6 30.0
“ “ “ WFST beam 5.5 18.7 32.0 6.4
6 “ 46h “ 18.7 31.6 4.1
7 “ “ “ 18.8 31.6 4.8
“ 2000 “ “min det L 18.0 30.7 4.3
“ 4000 “ “ 16.9 29.1 3.7

Table 1. Results with BN recognition in successive alignment
passes.

lion words from newspaper texts and interpolated with models ob-
tained from broadcast news transcriptions.

Table 1 shows the results obtained with a development test
set of 6h, in successive alignment passes [9] (first column) as we
changed several parameters in the system: number of units inthe
hidden layer (second column), number of hours of training data
(third column), and type of decoder (fourth column). The word
error rates are shown both for F0 and all conditions (fifth andsixth
columns) together with the corresponding speed (rightmostcol-
umn).

The most impressive result is the change in real-time perfor-
mance observed when we changed from our previous stack de-
coder to theWFST based implementation, obtained without degra-
dation in terms of WER.

3. ALIGNMENT

An automatic alignment module can be used for different pur-
poses. In our past research, we have use such modules as a stepin
the bootstrap process of training better models for ASR and also as
a step to segment better units for concatenative speech synthesis.

This section starts with the description of how we modified
our WFST-based decoder to be used as an aligner. Two types of
alignment were considered: word-based and phone-based align-
ment. The first is specially important for the alignment of spoken
books [10], the first application which we will briefly describe.
The second is specially important for aligning spontaneousspeech
in dialogs. This application is also interesting because oftwo is-
sues: the large amount of cross-talk and pronunciation variation
[11].

The cross-talk problem is specially severe in overlapping
turns, but even in non-overlapping conditions, the amount of cross-
talk observed was enough to yield very bad alignment results.
We thus tried to decrease the observed cross-talk between the
two channels, by using source separation techniques, as a pre-
processing stage, before doing the alignment.

The pronunciation variation problem is much more important
in the spontaneous speech data than in the read speech data of
the spoken book alignment application. This motivated us toin-
vestigate the possibility of adding a new knowledge source to our
search space - alternative pronunciation rules.

3.1. Decoder modifications for alignment purposes

Our aligner is based onWFSTs in the sense that its search space is
defined by a distribution-to-word (or distribution-to-phone) trans-
ducer that is built outside the decoder. For the alignment task, that
search space is usually build as
 � � � � , where
 is the phone



topology, � is the lexicon and� is the sequence of words that
constitutes the orthographic transcription of the utterance. As no
restrictions are placed on the construction of the search space, it
can easily integrate other sources of knowledge, and can be opti-
mized and replaced by an optimal equivalent one.

In order to cope with possible de-synchronizations between
the input and output labels of theWFST, the decoder was extended
to deal with special input labels that are internally treated as ep-
silon labels (similar to skip arcs in Hidden Markov Models),but
are used to mark time transitions or boundaries. Whenever such
end-of-segment labels are crossed, the time is recorded in the cur-
rent hypothesis. The user may choose to place those labels atthe
end of each phoneWFST or at the end of each wordWFST, de-
pending on choosing either phone-level alignment or word-level
alignment, respectively.

3.2. Alternative pronunciation rules

In doing the alignment, instead of building a lexicon with multiple
pronunciations per word, we may choose to use phonological rules
together with a lexicon of canonical forms, in order to account for
alternative pronunciations.

These rules are specified using a finite-state grammar whose
syntax is similar to the Backus-Naur-form (BNF) augmented with
regular expressions. We added the operator� , simple transduc-
tion, to the usual set of operators, such that (� � �

) means that
the terminal symbol� is transformed into the terminal symbol�
. The language allows the definition of non-terminal symbols

(e.g. $vowel). All rules are optional, and are compiled intoWF-
STs. We do not apply the rules one by one on a cascade of com-
positions, but, because they are optional rules, we rather build
their union in order to avoid the exaggerated growth of the re-
sulting transducer, which can be exponential with the length of
the composition cascade. The rule transducer� is thus build as
� 
 �� �� ���� � �� where�� is the transducer corresponding to
a particular rule specification expression. The rules are applied as

 � � 	 � � � 	� � � 	 � � � � � , where� 	� is the inverse of the
rule transducer. The rule transducer� is used three times in order
to reduce the dependency on the order of the rules. An exampleof
a sandhi rule specification is:

$V = $Vowel | $NasalVow | $Glide | $NasalGli;
DEF_RULE S_z, ($V (S -> z) WORD_BREAK $V)

3.3. Application to spoken book alignment

The main goal of spoken book alignment is to improve the access
to digitally stored spoken books, used primarily by the visually
impaired community, by providing tools for easily detecting and
indexing units (words, sentences, topics). Simultaneously, we also
aimed to broaden the usage of multimedia spoken books (for in-
stance in didactic applications, etc.), by providing multimedia in-
terfaces for access and retrieval.

A small pilot corpus (O Senhor Ventura, by Miguel Torga) was
chosen as a test bed for spoken book alignment. The high-quality
DAT recordings were manually edited to remove reading errors
and extraneous noises, amounting to a total of 2h15m (around
138k words, corresponding to 5k different forms). Althoughvery
intelligible, as expected from a professional speaker, thespeaking
rate was relatively high - 174 words per minute.

A major advantage of our approach is that it allowed us to
align the full audio version of the book in a single step. Thisis

specially important if we take into account that the memory limi-
tations of our previous alignment tool imposed a maximum of 3-
minute audio segments. We thus avoid the tedious task of manually
breaking-up the audio into smaller segments with their associated
text. The word segmentation of the book took 197.5 seconds ina
600MHz Pentium III computer (0.024 xRT), and required 200MB
of RAM.

Although this particular application required only word-level
alignment, from the point of view of research, indexed spoken
books provide an invaluable resource for data-driven prosodic
modeling and unit selection in the context of text-to-speech syn-
thesis, thus motivating us to apply phone-level alignment to this
corpus as well.

3.4. Application to the alignment of spontaneous speech in di-
alogs

Coral is a map task dialog corpus, involving spontaneous conver-
sations between pairs of speakers about map directions. In the 16
different pairs of maps, the names of the landmarks were chosen
to allow the study of some connected speech phenomena, such as
for instance, sequences of plosives formed across word boundaries
(e.g.clube de tiro).

The recordings involved 32 speakers (students from the Lisbon
area), and took place in a small sound proof room at INESC. The
two speakers were separated by a distance of about one meter with
a small screen wall in between them, whose goal was to avoid
direct visual contact between the participants, but did notprovide
acoustic isolation. The speakers wore close-talking microphones
and the recordings were made in stereo directly to DAT and later
down-sampled to 16 kHz per channel.

All dialogs were orthographically transcribed following the
same transliteration conventions using SGML format of other map
task corpora3. Because of the large amount of cross-talk observed,
we adopted an adaptive noise canceling scheme [12], as a pre-
processing stage.

The experimental results described in this section were ob-
tained with the acoustic models trained for a broadcast newsrecog-
nition task which were briefly described above. These models
cannot yet adequately model for instance laughs and certainfilled
pauses which are so frequent in the Coral dialog corpus.

Since we only have one pilot dialog manually annotated with
time stamps for word boundaries, and not for phone boundaries,
our results refer only to word level tests. We started by measur-
ing the average absolute error between the reference time stamps
and the automatic ones for each word start, without using either
channel separation or alternative pronunciation rules. The lexicon,
which we shall denote by Lex0, includes only canonical forms.
Multiple pronunciations are exclusively used for heterophonic ho-
mographs (amounting to 21).

For the left channel, the average error was 0.380s. For the right
channel, the average error was 2.346s (first line of table 2).The
larger errors obtained with the latter speaker can perhaps be due
to much smaller turns, many of them grunts largely overlapping
with the other speaker’s turns. Without using channel separation,
we observe that the end of the turn is not properly detected, which
causes words from one of the speakers to be frequently aligned
during the other speaker’s turn. The problem is aggravated when
overlap occurs. When channel separation is used, the average er-
ror decreases as shown in the second line of the same table. The

3http://www.hcrc.ed.ac.uk/dialogue/maptask.html



alignment obtained with the separated signals is fairly good. An
analysis of the largest errors shows they may be due to the fact that
we did not try to align laughs, which causes severe misalignments
in the neighboring words. The performance in overlapping turns is
on the same level as the one in non overlapping turns.

Next we investigated the relevance of providing alternative
pronunciations for function words and forms of the verbestar,
which were so frequently marked with micro-annotations in our
corpus. The values obtained with this new lexicon (Lex1, includ-
ing multiple pronunciations for 40 forms) are shown in the third
and fourth lines of table 2, without and with channel separation
respectively. Given these results, further tests with alternative pro-
nunciation rules were done only with Lex1 and channel separation.

The main phonological aspects that alternative pronunciation
rules are intended to cover are: (1) intra-word vowel devoicing;
(2) voicing assimilation; and (3) vowel and consonant deletion and
coalescence. Both (2) and (3) may occur within and across word
boundaries. Some common contractions are also accounted for,
with both partial or full syllable truncation and vowel coalescence.
Vowel reduction, including quality change, devoicing and deletion,
is specially important for European Portuguese, being one of the
features that distinguishes it from Brazilian Portuguese and that
makes it more difficult to learn for a foreign speaker. As a re-
sult of vowel deletion, rather complex consonant clusters can be
formed across word boundaries. Even simple cases, such as the
coalescence of the two plosives ingrade de ferro, raise interesting
problems of whether they may be adequately modeled by a single
acoustic model for /d/.

The results obtained with 56 rules are shown in the last line of
the table. Phone alignment error would be a much more adequate
measure, but unfortunately, we do not yet have reference labels.
We observed that the misalignments due to the absence of mod-
els of laughs, although affecting only the neighboring words, can
be as large as 5s, and almost destroy any potential improvements
brought by the use of the rules. For the left channel, for instance,
only 1.7% of the word boundary errors are above 1s and most of
these errors are due to such segments. The next step will clearly
be marking them and creating adequate acoustic models. In order
to do this for the whole corpus, automatic alignment followed by
posterior manual correction is crucial. Whereas the alignment ob-
tained with the original signals without channel separation is too
bad to serve as a starting point, the one obtained with channel sep-
aration seems good enough.

Av. error [s] Ch. sep. Left-ch. Right-ch.
Lex0 / no rules 0.380 2.346
Lex0 / no rules � 0.097 0.151
Lex1 / no rules 0.343 2.334
Lex1 / no rules � 0.086 0.146
Lex1 / rules � 0.077 0.143

Table 2. Average word alignment error.

4. GRAPHEME-TO-PHONE CONVERSION

The last part of this paper is devoted to the description of a
grapheme-to-phone conversion module based onWFSTs for Eu-
ropean Portuguese. We investigated both the use of knowledge-
based and data-driven approaches.

The objective of a grapheme-to-phone module implemented
asWFSTs is justified by their flexibility in the efficient and elegant
integration of multiple sources of information, such as theinforma-
tion provided by other “text-analysis” modules. The flexibility of
WFSTs also allows the easy integration of knowledge-based with
data-driven methods.

Our first approach to grapheme-to-phone (GtoP) conversion
for European Portuguese was a rule-based system (DIXI), with
about 200 rules[13]. All the code was programed in C, directly
in the case of the stress assignment rules, and using the SCYLA
(”Speech Compiler for Your Language”) [14] rule compiler, devel-
oped by CSELT, for the remaining rules. The multi-level structure
of this compiler allowed each procedure to simultaneously access
the data resulting from all the previous procedures, so the rules
could simultaneously refer to several levels (such as the grapheme
level, phone level, sandhi level, etc.).

In this section, we first show how we compiled the rules of the
DIXI system toWFSTs. We then present data-driven approaches
to the problem, and finally we combine the knowledge-based with
the data-driven approaches [15].

In order to assess the performance of the different methods,we
used a pronunciation lexicon built on the PF (“Português Funda-
mental”) corpus. The lexicon contains around 26000 forms. 25%
of the corpus was randomly selected for evaluation. The remaining
portion of the corpus was used for training or debugging.

The size of the training material for the data-driven approaches
was increased with a subset of the BD-Público [16] text corpus.
This corpus includes a collection of texts from the on-line edition
of the Público newspaper. We used all the words occurring inthe
first 1,000,000 paragraphs of this corpus, and obtained their tran-
scription by rule using DIXI. The 205k words not in PF were added
to the training set.

4.1. Knowledge-Based System

Our first goal was to convert DIXI’s rules to a set ofWFSTs.
SCYLA rules are of the usual form� � � �� � where�, � ,
� and � can be regular expressions that refer to one or multiple
levels. The meaning of the rules is that when� is found in the
context with� on the left and� on the right,� will be applied,
replacing it or filling a different level of� .

In order to preserve the semantic of DIXI’s rules we opted to
use rewriting rules, but, to avoid unnecessary rule dependencies
due to the replacement of graphemes by phones, we used them in
the following way:

First, the grapheme sequence� � � � � � 			� �
 , is transduced into
� � � � � � � � 			� � �
 , where is anempty symbol, used as a place-
holder for phones. Each rule will replacewith the phone corre-
sponding to the previous grapheme, keeping it. The context of the
rules can now freely refer to the graphemes. The few DIXI rules
whose context referred to phones can also be straightforwardly im-
plemented. The very last rule removes all graphemes, leaving a
sequence of phones. The input and output language of the rule
transducers is thus a subset of�� ��� 
�� � � 
�����. The set of
graphemes and the set of phones do not overlap.

The rules are specified using the language described in 3.2.
This work motivated us to extend the language with commands
such as:

OB RULE � � � � � �� �



where� is the rule name and� � � � � � � are regular expres-
sions.OB RULE specifies a context dependentobligatory rule, and
is compiled using Mohri and Sproat’s algorithm[17].

The rules of the grapheme-to-phone system are organized in
various phases, each represented by transducers that can becom-
posed to build the full system. Figure 4.1 shows how the various
phases are composed. Each phase has the following function:

� the stress phase consists of 27 rules that mark the
stressed vowel of the word.

� introduce-phones is the simple rule that inserts the
empty phone placeholder after each grapheme. ($Letter
(NULL � EMPTY)) � ).

� prefix-lexicon consists of pronunciation rules for
compound words, namely with roots of Greek or Latin ori-
gin such as “tele” or “aero”. It includes 92 rules.

� gr2ph is the bulk of the system, and consists of 340
rules, that convert the 45 graphemes (including graphically
stressed versions of vowels) to phones.

� sandhi implements word co-articulation rules across
word boundaries. (This rule set was not tested here, given
the fact that the test set consists of isolated words.)

� remove-graphemes removes the graphemes in order to
produce a sequence of phones.
($Letter � NULL � ).

stress o
introduce-phones o
prefix-lexicon o

gr2ph o
sandhi o

remove-graphemes

Fig. 1. Phases of the knowledge based system.

The following example illustrates the specification of 2
gr2ph rules for deriving the pronunciation of grapheme� : ei-
ther as /Z/ (e.g.agenda, gisela) when followed either by� or �, or
as /g/ otherwise (SAMPA symbols used).

OB_RULE 0200, g EMPTY -> g _Z \
/ NULL ___ ($AllE | $AllI)

OB_RULE 0201, g EMPTY -> g _g \
/ NULL ___ NULL

The compilation of the rules results in a very large number of
WFSTs (almost 500) that need to be composed in order to build
a single grapheme-to-phone transducer. We did not build a single
WFST but selectively composed theWFSTs and obtained a small
set of 10WFSTs that are composed with the graphemeWFST in
runtime to obtain the phoneWFST .

The most problematic phase wasgr2ph. We started by com-
posing each of the other phases in a singleWFST . gr2ph was
first converted to aWFST for each grapheme. Some graphemes,
such as�, lead to large transducers, while others, lead to very
small ones. Due to the way we specified the rules, the order of
composition of theseWFSTs was irrelevant. Thus we had much
flexibility in grouping them and managed to obtain 8 transducers

with an average size of 410k. Finally,introduce-phones and
remove-graphemeswere composed with otherWFSTs and we
obtained the final set of 10WFSTs.

In runtime, we can either compose the graphemeWFST in
sequence with eachWFST , removing dead-end paths at each step,
or we can perform a lazy simultaneous composition of allWFSTs.
This last method is slightly faster than the DIXI system.

We evaluated theWFST-based rule approach, and compared
its performance with the one of our previous rule-based DIXIsys-
tem. As can be seen in table 3, theWFST achieved almost the
error rate of the DIXI system it is emulating, both at a word level
and at a segmental level. The two rightmost columns show the er-
ror rates obtained without taking stress mark errors into account.
The difference between the performance of the current and previ-
ous approaches is due to theexception lexicon included in DIXI
that we did not yet implement. We plan to integrate this lexicon
and balance its size with the rule system, in order to simplify it by
replacing rules that apply to just a few words with lexicon entries.

System % Error % Error w/o stress
word segm. word segm.

WFST 3.56 0.54 3.13 0.47
DIXI 3.25 0.50 2.99 0.45

Table 3. Comparison of the current and previous rule-based ap-
proaches.

4.2. Data-Driven Approach

The first step in preparing the training corpus for the data-driven
techniques consisted of aligning each grapheme with the corre-
sponding phone. We performed the alignment by minimizing the
string-edit distance between corresponding grapheme and phone
strings, obtaining a sequence of pairs (grapheme, phone), where
the grapheme or the phone can both be�. Our first data-driven
approach consisted of modeling that sequence using an n-gram
model, as proposed by [18].

This model is based on the probability of a grapheme matching
a particular phone given the history up to the previous� � � pairs
(� ��� � �� � � ��� �	
	 � � � �	
	 �� 			�� �	 � �� �	 ���).

The language model is first converted to a finite-state acceptor
(WFSA) over pairs of symbols, and then to a finite-state transducer
�, by transforming each pair of symbols into an input and an output
label. � is ambiguous because epsilons are used to model back-
off transitions during the conversion from n-gram toWFSA, and
hence, even is there is an explicit n-gram in the model, theWFSA
will still allow alternative paths that use the backoff.

Due to this ambiguity, in order to use theWFST to convert
a grapheme sequenceWFST � to phones, we need to compute����� ��
 �� � �� � ���.

We trained various n-gram backoff language models using his-
tory lengths� � � ranging from 2 to 7. Table 4 shows the size of
the various models, and table 5 shows the error rate on the test set
(second and third columns).

4.3. Combining Data-Driven and Knowledge-Based Ap-
proaches

One of the greatest advantages of theWFST representation is the
flexible way in which different methods may be combined. In this



� n-grams states edges bytes
8 1,392,426 820,778 1,983,113 42M
7 981,565 592,184 1,459,738 30M
6 657,107 361,944 980,123 20M
5 401,855 159,425 549,398 11M
4 173,307 37,869 208,668 4M
3 42,451 3,618 46,018 0.8M

Table 4. Pair n-gramWFSTs.
n % Error % Error w/o stress

word graph. word graph.
8 9.04 1.37 6.11 0.90
7 9.02 1.37 6.12 0.90
6 9.16 1.37 6.13 0.90
5 9.86 1.46 6.38 0.93
4 15.34 2.25 9.23 1.32
3 31.62 4.62 18.42 2.67

Table 5. Performance of the n-gram approach.

section we show some examples of the combination of data-driven
with knowledge-based methods.

In [18], as an example of the integration of knowledge-based
with data-driven methods, some improvements were obtainedby
composing the n-gramWFST with a WFST that restricts the pri-
mary stress to exactly one per word. This type of restrictionhad
also been implemented in a neural network based approach that we
developed [19] as a post-processing filter.

We opted for a different approach: as we have the stress mark-
ing WFST stress, we decided to perform the grapheme-phone
alignment of the training data not with the original words, but with
the output of thestress WFST . The alignments thus obtained
were used to build n-gramWFSTs, as described in section 4.2.
To convert a sequence of graphemes� to phones, we now use����� ��
 �� � �� � stress � � ��. Table 6 shows the results ob-
tained with this variation with several n-gram models. We observe
a reduction of the word error rate to less than half. The result is
even more impressive when we remember that around 90% of the
training set was converted by rule with a system that has around
3% errors. The size of the n-gramWFSTs was similar.

n % Error % Error w/o stress
word graph. word graph.

8 4.01 0.61 3.65 0.54
7 3.94 0.59 3.58 0.53
6 4.02 0.61 3.66 0.55
5 4.04 0.61 3.68 0.55
4 4.48 0.67 4.13 0.60
3 6.40 0.96 6.15 0.91

Table 6. Performance of the combined approach.

5. CONCLUDING REMARKS

This paper attempted to illustrate the potential ofWFSTs for spo-
ken language processing. This potential is leading us to apply
transducers to yet more areas such as unit selection and textnor-
malization in concatenative speech synthesis, and also speech-to-
speech translation.

At the same time as pursuing these ambitious goals, we have

not forgotten many open issues in the three topics we have inves-
tigated so far.

In terms ofLVCSR, we are currently working on extending our
system to include larger lexica and language models, and also on
how to incorporate more sophisticated knowledge sources.

In terms of alignment, the whole investigation of alternative
pronunciation rules is still dependent on the existence of manually
labeled spontaneous speech data, so that we can test the effective-
ness of different types of rule. This manual labeling process is now
currently being done using as a starting point the automatedlabels
achieved so far. In spite of this open issue, the robustness of the
WFST-based aligner was fully demonstrated first by its application
to spoken books and later by its application to channel-separated
dialogs.

In terms of GtoP, the number of open issues is also too large.
We plan to improve our rule-based approach by obtaining a better
balance between number of rules and lexicon size, as explained
earlier. We also plan to convert ourCART-based approach to the
WFST framework. This will give us much flexibility in combin-
ing the various methods, for example, aWFST resulting from the
conversion of the tree of a particular grapheme could replace the
respective grapheme rules in theWFST rule-based system.

The inversion property of transducers opens the possibility of
using GtoP techniques in tasks such as reconstructing out ofvocab-
ulary words [20] in large vocabulary speech recognition systems.
This is an area which we also plan to explore in the near future.
One last goal in this long list is the development of GtoP modules
for other varieties of Portuguese.
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