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Abstract—Remote speaker verification services typically rely
on the system having access to the users recordings, or features
derived from them, and/or a model for the users voice. This
conventional approach raises several privacy concerns. In this
work, we address this privacy problem in the context of a
speaker verification system using a factor analysis based front-
end extractor, the so-called i-vectors. Preserving privacy in our
context means that neither the system observes voice samples or
speech models from the user, nor the user observes the universal
model owned by the system. This is achieved by transforming
speaker i-vectors to bit strings in a way that allows for the
computation of approximate distances, instead of exact ones.
The key to the transformation uses a hashing scheme known
as secure binary embeddings. Then, an SVM classifier with a
modified kernel operates on the hashes. Experiments showed
that the secure system yielded similar results as its non-private
counterpart. The approach may be extended to other types of
biometric authentication.

I. INTRODUCTION

The exponential increase of storage capability over the
Internet has lead to the dissemination of a variety of online ser-
vices, such as e-banking, mobile commerce, social networks,
image and video organizers, online games, etc. The common
aspect among all of them is that users must first register with
them and receive a unique user ID and a written password
with which they can authenticate themselves to the system.
In many situations, an attractive alternative is to authenticate
users by their voice instead, since it is a more natural way of
communication.

Nevertheless, voice-based authentication systems, also
called speaker verification systems, have significant privacy
concerns. Current systems require access to recordings of
a user’s voice (or at least parameterized versions of it). A
malicious system, or a hacker who has compromised the
system, could edit the recordings to impersonate the user. Even
if the user only transmits features extracted from his voice,
such that a recording cannot be synthesized from them, other
risks remain. An individual’s voice also carries information
about their gender, nationality, etc., all of which would also be
available for the services to use as they please, e.g. they could
sell this information. Ideally, the service should not have access
to such information, although it seems nearly paradoxical to
require that a system not have access to many of the key voice
characteristics that themselves help establish the user’s identity.

In order to protect the user, the system must store both
his voice and the parameters representing it in an obfuscated

manner, such that neither the system nor a hacker can extract
undesired information from them or use them to impersonate
the user. This aspect of speaker authentication has been largely
ignored until recently, and literature on the topic remains min-
imal. In [1] homomorphic encryption methods were employed
to ensure that the system only sees encrypted data from the
user, and only stores encrypted models that it cannot decrypt by
itself. To successfully perform speaker authentication, it must
engage in secure multiparty computation (SMC) [2] protocols
requiring repeated encryption and decryption, with significant
computational participation by the user. In [3] an alternate
scheme based on locality-sensitive hashing (LSH) [4] was
proposed, that converts voice recordings to a password-like
string. Authentication is performed based on perfect matches
of the password-like strings derived from the voice to stored
templates. Both procedures have their drawbacks: on one hand
cryptographic methods pose an unacceptably high computa-
tional load, while on the other hand the LSH-based method
compromises system accuracy to achieve speed, although it
is very secure. A more recent approach was presented in [5],
where a new technique called secure binary embeddings (SBE)
[6] was successfully used for obtaining not only an almost
negligible degradation in classification results (when compared
to a baseline using supervectors) but also a computational
overhead similar to the one required by LSH.

In this paper we further explore the combination of speaker
recognition with SBE for privacy-preserving speaker authenti-
cation. In particular, we aim to analyze if the previous approach
in [5] scales properly across different speaker verification
techniques. Thus, we propose a new privacy-preserving scheme
using a factor analysis based front-end extractor, the so-called
i-vectors, which is the current de facto standard for speaker
verification.

The remaining of this paper is structured as follows. In
Section II we briefly present the speaker verification techniques
considered in this paper. Section III describes secure binary
embeddings and their properties. In Section IV we present
experiments on the speaker verification task. Then we discuss
data privacy issues in Section V and finally we present some
conclusions.

II. SPEAKER VERIFICATION

In conventional text-independent speaker verification sys-
tems, a user wishing to authenticate himself provides the
system voice samples during an enrollment phase. The system
then employs these samples to build a “model” for the user.



Later, in the verification phase, new incoming speech signals
are compared to this model to verify the user.

In terms of speech parameterization, speaker verification
systems are typically built upon mel-frequency cepstral co-
efficient (MFCC) vectors. Like in other speech applications,
feature vectors are usually augmented with their derivatives. As
a first step, a large collection of recordings of non-target speak-
ers is used to train a universal background model (UBM). The
UBM is a Gaussian mixture model (GMM) representing the
distribution of speech from all potential imposters. Next, the
Gaussian means of the UBM are adjusted through maximum a
posteriori (MAP) adaptation [7] to the user’s enrollment data to
learn a GMM for that user. In addition to reducing enrollment
data requirements, MAP adaptation also guarantees a one-to-
one correspondence between the Gaussians in the UBM and
those in the user’s model. Given a new recording purported to
be from a target user, the log likelihood assigned to it by the
GMM for the target user is compared to that obtained from
the UBM to determine if the user should be accepted or not
[7].

An alternate equally-successful approach to likelihood ratio
tests obtains a separate GMM for each of multiple enrollment
recordings by the user, through MAP adaptation of the UBM
to the recording. The parameters (usually the means) of the
resulting GMMs are mapped to a high-dimensional vectors
called “supervector” [8], one for each recording. Supervectors
are similarly obtained for recordings by putative imposters. A
support vector machine (SVM) is then trained to distinguish
between the two sets [9]. To verify that a given test recording
was indeed spoken by the user, the supervector derived from
the recording is classified by the SVM.

More recently, additional variations to this GMM-UBM
scheme have resulted in the proliferation of new successful
vector-based methods, such as the joint factor analysis (JFA)
[10] or total variability (TV) [11] based compensation meth-
ods. TV modeling has rapidly emerged as one of the most
powerful approaches for speaker verification and has become
the current de facto standard. In this approach, closely related
to the JFA, the speaker and the channel variabilities of the
high-dimensional GMM supervectors are jointly modeled as a
single low-rank total-variability space. The low-dimensionality
total variability factors extracted from a given speech segment
form a vector, named i-vector, which represents the speech
segment in a very compact and efficient way. Since the i-
vector comprises both speaker and channel variabilities, in
the i-vector framework for speaker verification some sort of
channel compensation or channel modeling technique usually
follows the i-vector extraction process. Regarding channel
compensation, linear discriminant analysis (LDA) or within-
class covariance normalization (WCCN) are typically applied
to compensate for channel nuisance in the i-vector space [12].
Then, the verification score can be obtained either based on
a simple cosine similarity between the target user i-vector
and the the test utterance i-vector, or by evaluating the test
utterance i-vector with a previously trained SVM. In the
latter, cosine kernel is usually preferred. Recently, new channel
modeling techniques for i-vectors, such as probabilistic linear
discriminant analysis (PLDA) [13], have been reported to
overcome classical cosine-distance scoring of i-vectors with
channel compensation.

Fig. 1.

1-bit quantization functions.

In our approach we consider the i-vector technique together
with SVMs (trained on target and impostor i-vectors) for
speaker modeling and scoring. We exploit the total-variability
modeling as a sort of factor analysis based front-end extrac-
tor able to provide compact speaker representations of fixed
length. Moreover, we do not consider any of the previously
mentioned channel compensation methods, since this issue is
out of the scope of the present study. Nevertheless, it would
be straightforward incorporating (at least) LDA and WCCN
compensation without significant alterations of the proposed
scheme.

III. SECURE BINARY EMBEDDINGS

A secure binary embedding (SBE) [6] is a scheme for
converting vectors to bit sequences using band-quantized ran-
dom projections. These bit sequences, which we will refer to
as hashes, possess an interesting property: if the Euclidean
distance between two vectors is lower than a certain threshold,
then the Hamming distance between their hashes is directly
proportional to the Euclidean distance between the vectors; if
it is higher, then the hashes provide no information regarding
the true distance between the two vectors. This scheme is
based on the concept of universal quantization (UQ) [14],
which redefines scalar quantization by forcing the quantization
function to have non-contiguous quantization regions.

Given an L-dimensional vector x € R%, the UQ process
converts it to an M -bit binary sequence, where the m®" bit is
given by
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where (-,-) represents a dot product, a,, € R is a random
projection vector comprising L ii.d samples drawn from
N(p = 0,02), A is a precision parameter, w,, is a random
dither drawn from a uniform distribution over [0, A] and Q(-)
is a quantization function given by Q(z) = |z mod 2]. We
can represent the complete quantization into M bits compactly
in vector form:

q(x) =Q (A ' (Ax+w)), )

where q(x) is an M-bit binary vector which we will refer to
as the hash of x, A € RM*L jg a matrix composed of the
row vectors a,,, A is a diagonal matrix with entries A and
w € RM is a vector containing the dither values w,,.

The universal 1-bit quantizer of Equation 1 maps the real
line onto 1/0 in a banded manner, where each band is A wide.
Figure 1 compares conventional scalar 1-bit quantization (left
had side panel) with the equivalent universal 1-bit quantization
(right hand side panel).

The binary hash generated by the universal quantizer of
Equation 2 has the following properties [6]: the probability
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Fig. 2. SBE behavior as a function of A for two values of M.

that the i*" bits ¢;(x) and ¢;(x’) of the hashes of two vectors
x and x/, respectively, are identical depends only on the
Euclidean distance d = ||x — x’|| between the two vectors and
not on their actual values. As a consequence, the following
relationship can be shown [6]: given any two vectors x and x’
with a Euclidean distance d, with probability at most e~2¢"M
the normalized (per-bit) Hamming distance dy(q(x),q(x’))
between the hashes of x and x’ is bounded by:
2 2

2 () < ag(aeo.atd) < - e () 4
2 2 2 72
where ¢ is a control factor. The importance of this bound is
that the Hamming distance dp (q(x), q(x’)) is correlated to the
Euclidean distance ||[x — x’|| between the two vectors if and
only if the Euclidean distance between the two vectors is below
a predetermined threshold (depends on A). Specifically, for
small d, the expected Hamming distance E[dy(q(x), q(x’))]
can be shown to be bounded from above by v27~10A~1d,
which is linear in d. However, if the distance between x and x’
is greater than this threshold, dp(q(x),q(x’)) is bounded by
0.5 — 472 exp (—0.57%202A~2d?), which rapidly converges
to 0.5 and effectively gives us no information whatsoever about
the true distance between x and x'.

In order to better illustrate how this scheme works, we
randomly generated samples in a high-dimensional space
(L = 1024) and plotted the normalized Hamming distance
between their hashes against the Euclidean distance between
the respective samples. This is presented in Figure 2. The
number of bits in the hash is also shown in the figures. We note
that in all cases, once the normalized distance exceeds A, the
Hamming distance between the hashes of two vectors ceases to
provide any information about the true distance between the
vectors. We will find this property useful in developing our
privacy-preserving speaker verification system. We also note
that changing the value of the precision parameter A allows
us to adjust the distance threshold until which the Hamming
distance is informative. Moreover, increasing the number of
bits M leads to a reduction of the variance of the Hamming
distance.

A converse property of the embeddings is that for all
x’ except the ones that lie within a small radius of any x,
dr(q(x),q(x’)) provides little information about how close
x’ and x are. It can, in fact, be shown that the embedding
provides information theoretic security beyond this radius, if
the embedding parameters A and w remain unknown to the
potential eavesdropper. Any algorithm attempting to recover a
signal x from its embedding q(x) or to infer anything about
the relationship between two signals sufficiently far apart using
only their embeddings will fail to do so. Furthermore, even in

the case where A and w are known, it seems computationally
intractable to derive x from q(x), unless one can guess a
starting point very close to x. In effect, it is infeasible to invert
the SBE without strong a priori assumptions about x.

IV. SPEAKER VERIFICATION USING SBE

The application of the SBE to speaker verification systems
is quite straightforward: if the classifier could be made to
operate on SBE hashes of supervectors/i-vectors rather than on
the supervectors/i-vectors themselves, speaker verification may
be performed without exposing the user’s data. In this work,
we consider non-private reference speaker verification systems
that use SVMs for speaker modeling. Then, in order to achieve
a privacy-preserving scheme, SVM kernels must be modi-
fied to work with Hamming distances between SBE hashes:
k(x,x') = e~7du(a().a)) Note that for a given A and
w, the modified kernel closely approximates the conventional
RBF for small d(x,x’), but shows significant differences for
larger d(x,x’). While it does not satisfy Mercer’s conditions
and cannot be considered a true kernel, in practice it is effective
as we shall see in the experiments below. For comparison sake,
these experiments include previous work on using supervectors
together with SBE hashes for performing privacy-preserving
speaker verification, fully described in [5], as well as our
current approach using i-vectors together with SBE hashes for
addressing the same task.

The implementation of a privacy-preserving speaker veri-
fication system is as follows: the user communicates with the
server through a smartphone or computation-capable device.
In the enrollment phase, the supervectors/i-vectors for both the
enrollment recordings and imposter recordings are computed
by the user. Imposter recordings may be obtained from any
public resource. The user computes SBE hashes from the
supervectors/i-vectors and transmits them to the server. He
retains the parameters A and w employed by the SBE as his
private keys. The system trains an SVM with the obtained SBE
hashes. During verification, the user computes the SBE hash
for the supervector/i-vector obtained from the test recording
and transmits it to the system, which classifies it.

The system never observes the actual speech from the user.
Its model for the user can only be used with the SBE hashes
computed using the private hash key from that specific user,
and is not usable without the user’s participation. Moreover,
an attacker wishing to pose as a specific user must not only
manage to steal the embedding parameters from the user’s
client device, but also gain access to voice recordings from
the same user, as either of these alone are insufficient to
gain unauthorized access to the server. Therefore, our privacy
requirements are satisfied.

A. Experimental Setup

The corpus considered for all experiments is the YOHO
Speaker Verification corpus [15], consisting of short utterances
by 138 speakers. Each utterance contains a set of three two-
digit numbers. The corpus is divided into two sets: enrollment
and verification. The enrollment set (used for training) contains
96 utterances from each speaker, totaling 14.54 hours of audio.
The verification set (used for testing) contains 40 utterances
from each speaker, totaling 6.24 hours of audio. We did



TABLE 1. SPEAKER VERIFICATION EER (%AGE), SUPERVECTORS. TABLE III. SPEAKER VERIFICATION EER (%AGE), I-VECTORS.

[ #Gauss | 4 8 16 32 64 128 256 512 1024 | [ #Gauss | 4 8 16 32 64 128 256 512 1024 |
[EER | 355 152 060 025 022 021 - - - | [EER | 412165 074 035 048 015 011 009 0.7 |
TABLE II.  SPEAKER VERIFICATION EER (%AGE), SBE HASHES OF TABLE IV.  SPEAKER VERIFICATION EER (%AGE), SBE HASHES OF
SUPERVECTORS, 32 GAUSSIANS. I-VECTORS, 256 GAUSSIANS.
leakage | ~5% ~25% ~ 50% leakage | ~5% ~25% ~ 50%
bpc= 227 1.40 1.25 bpc=4 | 2121 5.62 354
bpc=8 1.32 0.89 0.80 bpe=8 5.55 1.98 1.05
bpe=16 | 0.76 0.60 0.51 bpe=16 | 127 0.64 0.47

TABLE V.  AVERAGE NORMALIZED SPEAKER LEAKAGE ENTROPY.
not explicitly record imposters. Instead, for each of the 138 supervectors+SBE __i-vectors+SBE
speakers in the corpus, the remaining 137 were used as bpc=4 0.884 0.962
. . bpe=8 0.862 0.941
imposters. Both the supervectors and the i-vectors were based bpe=16 0.851 0.931

on MFCC features extracted in frames of 25ms, at the rate
of 100 frames per second. For each frame we extracted 12
MFCC coefficients and the log-energy, augmenting them with
the temporal differences and double-differences to result in a
total of 39 features. A UBM was trained from the enrollment
data for all the speakers and it was adapted to each recording
on the verification set to obtain a single supervector/i-vector.

The choice of the YOHO corpus for a proof of concept of
the i-vector based approach was mainly justified by the need
to compare our results with the ones obtained in [5]. This was
the reason for not consider more challenging corpora such as
the NIST Speaker Recognition Evaluation corpus [16] and the
MIT Mobile Device Speaker Verification corpus [17].

B. Experiments using feature supervectors

In [5] the authors presented a supervector-based approach
for performing privacy preserving speaker verification using
SBE hashes. The results they obtained are replicated in Tables
I and II, and they will serve as a baseline for our approach.
The secure binary embeddings have two parameters that can
be customized: the quantization step size A and the number
of bits M. The value of M by itself is not a useful number,
as different values of L (dimensionality of the supervector/i-
vector) require different values of M. Therefore, the results
are reported in terms of bits per coefficient (bpc), computed
as M /L. Speaker leakage in this context refers to the fraction
of recordings from any speakers whose SBE hashes have a
normalized Hamming distance below the threshold at which
Hamming distance dyz is proportional to the Euclidean distance
d with respect to any recording from another speaker. This
threshold was empirically set at 0.475. The amount of leakage
is exclusively controlled by A, and its implications will be
further discussed in Section V.

C. Experiments using i-vectors

The first step for obtaining the i-vectors was to compute
a total variability factor matrix T on the enrollment set, using
the technique described in [18]. The dimension of the total
variability sub-space was fixed to 400. Then, 10 EM iterations
were applied consisting of an initial ML estimation followed
by minimum divergence update. The covariance matrix was not
updated in any of the EM iterations. The estimated T matrix
was used for extraction of the total variability factors of the
processing speech segments as described in [18]. Finally, SVM
speaker models trained with the i-vectors were obtained using
the LIBSVM toolkit [19]. The results obtained for the speaker

verification task using i-vectors and its privacy-preserving
counterpart using SBE hashes are presented in Tables III and
Iv.

Regarding the non-private approach, we observe that using
either supervectors or i-vectors for performing speaker verifi-
cation on the YOHO corpus produces similar results. The only
relevant difference is that only when 64 Gaussians or more are
considered, it is better to consider i-vectors instead of super-
vectors. As for the SBE hashes, in order to compare our results
with the ones presented in [S], we ran experiments for the same
values of bpc and speaker leakage. We performed experiments
considering 256 Gaussians instead of 32 Gaussians because,
for the i-vectors, it is only when this amount of Gaussians
is reached that no significant improvements are obtained in
terms of EER on our baseline experiment. We can see that
changing either the value of bpc or the amount of leakage
has much more impact on the classification results when i-
vectors are considered instead of supervectors. A possible
reason for this might be that the size of the i-vectors does
not depend on the number of Gaussians, unlike what happens
with the supervectors. This means that each individual feature
of the i-vectors contains much more discriminative information
than each feature of the supervectors for larger amounts of
Gaussians, which leads to the noise introduced by mapping the
i-vectors into SBE hashes having much more visible effects.
Overall, as expected, both the supervector and the i-vectors
approaches obtained good results in the speaker verification
task.

V. DATA PRIVACY AND SBE

SBE provides a basic but strong form of security: a vector
x cannot be recovered, even in part, from its hash q(x), if the
projection matrix A and dither vector w are unknown. The
primary benefit of using SBE is that it now becomes possible
for the system to perform classification using the hashes q(x),
without being able to recover the actual data x from them.
Nevertheless, alternative factors that may provide information
about the speaker must be considered. One of them is speaker
leakage, already explained in Section IV-B. Another one is
the normalized entropy of the distribution over imposters of
the leaked vectors for each of the speakers in the verification
set. The results obtained in terms of normalized entropy are
presented in Table V.

Ideally, we would like to obtain high values for the nor-



malized entropy, as 1 represents completely random behavior
and 0 indicates neighborhood to a single speaker. According
to the obtained results, for the interesting values of bpc and
for 50% speaker leakage, the identifiable bias of any speaker
towards any other speaker is very low. In particular, when the
i-vectors are considered, almost no information regarding any
possible speaker clustering is revealed. Therefore, even if the
system has registration data from a user, in either case it must
retrieve a very large number of putative recordings from a
target user to make any inferences about other users in its
database. However, this does not provide a strong guarantee
of privacy against the motivated adversary.

VI. CONCLUSION

In this work we presented a comparison between two
techniques for privacy-preserving speaker verification using
SBE hashes: previous work using feature supervectors and
our approach considering i-vectors. We verified that the two
approaches performed in a similar fashion both on the base-
line experiments and when the SBE hashes were considered.
Although for the i-vector approach a more computationally
demanding parameter configuration is required for obtaining
the desired results, they provide a stronger security regarding
the clustering of different users given the information leaked
through the Hamming distances between the hashes. Although
our technique was presented in the scope of a voice-based
speaker verification system, it can be easily extended to other
types of biometric authentication.
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