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Abstract – Voice conversion (VC) techniques, which modify 

a speaker’s voice to sound like another’s, present a threat to 

automatic speaker verification (SV) systems. In this paper, 

we evaluate the vulnerability of a state-of-the-art SV system 

against a converted speech spoofing attack. To overcome the 

spoofing attack, we implement state-of-the-art converted 

speech detectors based on short- and long-term features. We 

propose a new converted speech detector using a compact 

feature representation and a discriminative modeling 

approach. We experiment pairing converted speech 

detectors based on short- and long-term features to improve 

converted speech detection.  The results indicate that the 

proposed converted speech detector pair outperforms state-

of-the-art ones, achieving a detection accuracy of 97.9% for 

natural utterances and 98.0% for converted utterances. We 

include the anti-spoofing mechanism in our SV system as a 

post-processing module for accepted trials and reevaluate its 

performance, comparing it with the performance of an ideal 

system. Our results show that the SV system’s performance 

returns to acceptable values, with less than 1.6% equal 

error rate (EER) change. 

I. INTRODUCTION 

Speaker verification (SV) is the binary task of 
accepting or rejecting a claimed identity, based on a user’s 
utterance [1]. This task falls under the broader category of 
biometrics and, as such, has many applications in access 
control systems, telephone banking, voice mail or calling 
cards [1][2]. The security of SV systems can be threatened 
by other speech processing techniques, particularly voice 
conversion (VC)[3], whose task is to modify the one 
speaker’s voice characteristics, the source speaker, into 
sounding as if they were of another speaker, the target 
speaker, without changing the linguistic contents of the 
converted utterance. A converted utterance of the source 
speaker into the target speaker could then be used to try to 
attack or fool a security system.   

The vulnerability of SV systems against spoofing 
attacks has been widely recognized [4][5]. In order to 
protect a SV system against a spoofing attack of synthetic 
nature (either converted speech or synthetic speech) and 
make it more robust, one may implement a synthetic 
speech detection module that discriminates between 
natural and synthetic speech. The development of 
synthetic speech detectors is a relatively recent research 
topic [6][7][8][9][10].  

The goal of this study is to investigate the performance 
of SV systems against converted speech attacks. We start 
by evaluating the vulnerability of a state-of-the-art i-
vector SV system against a GMM-based and a unit 

selection (US) -based converted speech corpus with 
telephone quality. Secondly we implement two state-of-
the-art converted speech detectors as in [7][8] where the 
detectors are based on short- and long-term features, 
extracted from both the magnitude or the modified group 
delay function phase spectrum (MGDFPS). The features 
are used to train GMM-based detectors. Then we fuse the 
scores of the two systems using logistic regression 
optimization. Thirdly we propose a new converted speech 
detector trained with a compact representation of the 
features extracted previously and using a discriminative 
learning model, as we consider it more suitable for a 
binary discrimination task which is the case of converted 
speech detection. For this we adopted a support vector 
machine (SVM). The scores of the two converted speech 
detectors are fused as in the previous case. Finally we 
incorporate the best converted speech detectors in our SV 
system, as an anti-spoofing mechanism and reevaluate its 
performance, comparing it with the performance of the 
system without protection and to the performance of an 
ideal anti-spoofing mechanism. 

This paper is organized as follows: section II describes 
the speaker verification system, based on total variability 
modeling, that was used to conduct this study; section III 
briefly describes the two voice conversion methods used 
to create our spoofing corpora; the state-of-the-art and the 
proposed converted speech detectors are presented in 
section IV; our experiments are described on section V 
and, lastly some conclusions are drawn on section VI. 

II. SPEAKER VERIFICATION SYSTEM 

In this study we consider a state-of-the-art SV system 
based on i-vectors, as proposed in [11].    

A. I-vectors 

I-vectos are based on total variability modeling, a 
technique that rapidly emerged as a powerful approach for 
SV and has become a current de facto standard. In this 
approach, closely related to the joint factor analysis (JFA), 
the speaker and channel variability of a high dimensional 
GMM supervector are jointly modeled as a single low-
rank total-variability space. The low-dimensional total-
variability factors are extracted from a speech segment to 
form a vector, called i-vector, which represents the speech 
segment in a compact and efficient way.  

In our experiments, we computed the i-vectors based 
on MFCC features extracted in 20ms frames, updated 
every10ms. Each feature vector had 12 MFCC, log-energy 
and the corresponding velocities and accelerations, 
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totaling 39 dimensions. The total variability matrix was 
estimated according to [11] using a universal background 
model (UBM) composed by 1024 Gaussians that was 
trained using the 1conv4w-1conv4w training data subsets 
of NIST SRE 2004 and 2005 corpora. The dimension of 
the total variability sub-space was set to 400. No channel 
compensation or probabilistic linear discriminant analysis 
(PLDA) were applied, making this a simple SV system. 

The verification score is obtained by simple cosine 
similarity between the target speaker i-vector and the test 
segment i-vector. 

III. VOICE CONVERSION METHODS 

In order to simulate the spoofing attacks to our SV 
system we considered two different voice conversion 
methods: GMM-based voice conversion, and US-based 
voice conversion. 

A. GMM-based conversion 

One of the most popular methods for voice conversion 
was originally proposed by [12] and is based on the joint 
density Gaussian mixture model. 

This model requires N-dimensional time aligned 
acoustic features,   [             ] , from the source 
speaker and   [             ] , from the target 
speaker, determined, for instance, by Dynamic Time 
Warping (DTW). 

In the GMM algorithm, the joint probability function 
of the acoustic features is defined as: 
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The mapping function [13] used to convert features 
from the source speaker to target speaker is given by: 
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B. Unit Selection-based conversion 

Unlike GMM-based voice conversion, US-based voice 
conversion does not require parallel data between 
speakers; instead, it uses the target speaker’s voice to 
directly synthesize new speech [14].  

The goal of US is to, given a sequence of source 
speech features,   

   find the best fitting sequence of target 
speech features,   

 , that minimizes the target cost (an 
estimate of the difference between the database unit    
and the target    which it is supposed to represent), and 
the concatenation cost (an estimate of the quality of a join 

between the consecutive units      and   ) [15]. The 
target vector sequence is given by:  
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where   is a parameter to adjust the tradeoff between 
fitting the accuracy of source and target sequences and the 
spectral continuity criteria. 

IV. CONVERTED SPEECH DETECTION MODULES 

A good approach to build a converted speech detector 
is to train a model that characterizes the converted speech 
signal. The features used to train such a model should 
contain relevant information on the characteristics of 
converted speech vs. natural speech. 

The most common methods for voice conversion use 
features derived from short-term magnitude spectrum to 
train and estimate the conversion. Hence, during the 
conversion process, information that is not from frame 
level and relative to the magnitude spectrum is left out. 
Particular examples of discarded information include 
information about the phase spectrum, and information 
about the evolution of the speech signal over time. As a 
consequence of this information loss, systematical 
artifacts are produced in the converted speech.  

A. Information extraction 

In [7][8] it is suggested that good features used to 
characterize converted speech may be extracted from the 
MGDFPS or from the temporal modulation of either the 
magnitude or the MGDFPS. The goal of using such 
features is to easily detect the artifacts on converted 
speech created by the information lost during the analysis-
synthesis process of voice conversion.  

1) Phase information  
In order to extract features derived directly from the 

phase spectrum of a speech signal, it is necessary to 
compute the unwrapped phase [15]. An alternative that is 
computationally simpler is using the group delay function 
phase spectrum (GDFPS) [16], which has the additional 
advantage of reducing the effects of noise. 

The GDFPS is a measure of non-linearity of the phase 
spectrum [17] and is defined as the negative derivative of 
the phase spectrum with respect to the frequency: 

 ( )  
  ( )  ( )    ( )  ( )

  ( )  
  

Where   ( )  and   ( )  are the short time Fourier 
transform (STFT) of  ( )  and   ( ) ,   ( ) ,   ( ) , 
  ( ) and    ( ) are the real and imaginary part of  ( ) 
and  ( ), respectively. 

Given a speech signal, the computation of group delay 
cepstral coefficients (GDCC) for each speech segment, 
 ( ) , of 20ms, updated every 10ms was achieved as 
follows: 

1. Computing the STFT  ( )  and  ( )  of  ( ) 
and   ( ), respectively. 

2. Computing the GDFPS as in Equation (4). 
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3. Applying a 24 filter Mel-frequency filterbank to 
the MGDFPS to obtain filter-bank coefficients. 

4. Applying the discrete cosine transform (DCT) to 
the filter-bank coefficients to obtain 12 GDCC. 

The resulting 12 GDCC are used as feature vectors for 
model training. For comparison sake, tests will also 
include de facto standard features (12 MFCC, without 
deltas or delta-deltas, extracted from the same speech 
frames). 

2) Temporal modulation information 
To capture the correlation between frames and the 

temporal characteristics of features trajectories both in the 
magnitude spectrum and in the GDFPS, we compute the 
magnitude modulation (MM) features and the phase 
modulation (PM) features, respectively [8]. 

The MM were derived as follows: 

1. Dividing the power spectrogram into 50 frame 
segments with a 30 frame overlap. 

2. Applying a 20 filter Mel-filterbank to the 
spectrogram to obtain the filter-bank coefficients, 
forming an       matrix. 

3. Applying mean variance normalization (MVN) to 
the trajectory of each filter-bank. 

4. Computing the 64-point FFT of the 20 normalized 
trajectories. 

5. Concatenating every modulation spectra to form a 
          coefficients modulation 
supervector. 

6. Applying principal component analysis (PCA) to 
the modulation supervector to reduce dimension-
nality and eliminate dimensions with high correla-
tion. We kept the 10 projected dimensions with 
the largest associated variance. 

The MM feature vectors are then 10-dimensional and 
are used as feature vectors for model training. 

To derive the PM features, we followed the same 
steps, but applying them to the group delay function phase 
spectrogram instead of the power spectrogram. 

B. Model training 

In this study, we modeled the feature distributions with 
a generative model, the GMM, which is the preferred 
model for state-of-the-art converted speech detectors. We 
propose a new compact representation of the features that 
we model this using a discriminative approach, the SVM. 

1) GMM model 
Two GMM models are trained, one with natural data 

and another with converted data. The converted or natural 
decision is done based on the log likelihood radio: 

 ( )      (          )      (            )  

where   is the feature vector sequence of the test 
utterance,          and            are the GMM models for 
converted and natural speech, respectively.  

For the GMM models of the short-term features we 
studied (MFCC and GDCC), we adopted 512 Gaussian 

components to model the distributions. For the long-term 
features (MM and PM) we adopted 32 Gaussian 
components. We chose a smaller number of components 
for the latter features because those are extracted over a 
longer speech segment. 

2) SVM 
The converted or natural discrimination task is a 

binary task; as such, we considered studying the 
performance of a discriminative approach to address it. 
Over the last decade, SVM-based methods have been out-
performing log likelihood ratio-based methods in SV 
problems [18], which further motivated us to try this 
approach. 

Given a training set of labeled, two-class examples, an 
SVM estimates a hyperplane that maximizes the 
separation of the two classes, after transforming it to a 
high dimensional space via Kernel function. SVMs are 
constructed as a weighted sum of a kernel function: 

 ( )  ∑     (    )    

 

   

 

where   is the input data,   is the number of support 
vectors,    and   are training parameters,    are the 
support vectors, obtained via an optimization process. 

In this study we chose a linear kernel and sequential 
minimal optimization (SMO) as the optimization 
algorithm. 

Traditionally, the output of an SVM for inputed test 
data is a predicted label, p.e. 0 or 1. This label is assigned 
depending on which side of the separating hyperplane do 
the test input features fall on. A more detailed output is the 
distance of test features to the hyperplane. We opted to 
use that distance as our SVM output in order to allow a 
finer score fusion for the two systems. 

a) Compact feature representation 

The previously described feature representation (used 
in the state-of-the-art converted speech detectors) resulted 
in a matrix of      coefficients for each speech file, 
where N is the number of frames in the file and C is the 
number of coefficients of the feature vectors. This meant 
that, for each minute of speech, with features extracted 
every 10 ms, we would have a 6       matrix. 

Alternatively to this consuming, full representation of 
information, we propose the use of a lighter feature 
representation. To use this feature representation, given a 
speech file, we do feature extraction as described and fit a 
normal curve to the distribution of each of the coefficients. 
We keep the fitted parameters, the average and standard 
deviation of each coefficient over the whole utterance and 
form a new feature vector, of dimension     , that 
compactly represents the speech file. Comparatively to the 
full representation we decrease the number of feature 
vectors approximately     times. 

This representation conversion can be made after 
feature extraction or during the feature extraction process. 

The greatest advantage of such representation is that it 
reduces the training time of the model from several hours 
to a few seconds. 
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C. Score Fusion 

The features extracted from short-time features carry 
complementary information to the long term-features [7]. 
As such, it may be useful to fuse the scores of the two 
converted speech detectors in order to make the overall 
performance of the anti-spoofing mechanism more robust. 

To perform the score fusion, we have used the fusion 
algorithms implemented in the BOSARIS toolkit for 
matlab [19], which performs logistic regression to fuse 
multiple sub-systems of binary classification. 

V. EXPERIMENTAL SETUP AND RESULTS 

A. Corpora 

In this study we use 4 main speech corpora, either 
taken directly from the NIST SRE2006 or derived from it: 
1) 782 files of the training data in the core task, 1conv4w-
1conv4w, of NIST SRE2006; 2) 3647 randomly chosen 
files of the test data in of the same subset of NIST 
SRE2006; 3) a set of 2904 files of GMM-based converted 
speech; 4) a set 2902 files of US-based converted speech. 

The converted corpora used utterances from the NIST 
SRE2006 3conv4w and 8conv4w training sections as 
source data and the conversion matched randomly chosen 
same gender speakers from the 1conv4w-1conv4w of the 
NIST SRE2006. 

Table I summarizes the usage of the available corpora 
for training and testing the several systems. We note that 
there is no file overlap on the training and testing sets.  

TABLE I. CORPORA USED FOR MODEL TRAINING AND 

TESTING 

SRE2006 

1conv4w-

1conv4w 

train

SRE2006 

1conv4w-

1conv4w 

test

GMM-

based 

converted 

speech

US-based 

converted 

speech

train 782

test 3647 2447 2449

train 300 300 300

test 2459 2447 2449

SV system

converted 

detectors  

B. Spoofing data against speaker verification system 

As performance measure for the SV system we 
consider the EER.  

The system was tested against 1458 natural genuine 
trials and 2700 natural impostor trials. To simulate 
spoofing attacks, we added to the test trials 2164 GMM-
based converted impostor trials and 2196 US-based 
converted impostor trials. The EER is presented in Table 
II. The system detection error tradeoff (DET) curve is 
presented in Fig. 1. 

Table II shows that the EER increased when the 
system was under a spoofing attack, a result in line with 
other previous studies. We note that our system is slightly 
more vulnerable to attacks with US-based converted data 
than with GMM-based converted data.  

The increase of the EER is a result of the increased 
number of false acceptances (FA) of the system, a 
consequence of all the misclassifications of the converted 
impostor trials. The number of misses remained constant.  

 

Fig. 1 DET curve of the SV system performance when against natural 
data; natural data and converted GMM impostors; natural data and US 

impostors   

TABLE II. EER % OF SV SYSTEM PERFORMANCE AGAINST 

NATURAL DATA; NATURAL DATA AND GMM-BASED 

IMPOSTORS; NATURAL DATA AND US-BASED IMPOSTORS 

Baseline (no conversion) 9.4

GMM-based conversion 18.9

US-based conversion 20.0

Voice conversion method
SV system 

performance (EER %)

 

C. Spoofing data against converted speech detectors 

Firstly we evaluated the performance of the converted 
speech detectors separately, using as performance measure 
the system accuracy (Acc) percentage. 

Every converted speech detector was trained and 
tested with the same train and test sets, for better 
comparability of the performance. The test set consisted of 
2459 natural speech files, 2447 GMM-based converted 
speech files and 2449 US-based converted speech files. 
We measured the Acc% of the natural and converted files.  

Table III summarizes the performance of the converted 
speech detector for each combination of model, short-term 
feature and training data. The results for the long-term 
features are presented in Table IV. 

From Tables III and IV we can make the following 
observations: mixing converted train data (GMM-based 
and US-based) does not always improve the performance 
of the detector. Regarding the converted detectors trained 
with short-term features, we observed that the ones using 
GDCC over-performed the ones using MFCCs, a result in 
line with previous studies, that confirms the efficiency of 
discriminating natural and converted speech through 
searching for the artifacts created in the phase spectrum 
during the analysis-synthesis stage of the conversion. 

It is unclear which of the long-term features performs 
better, given the similar accuracy for equivalent testing 
conditions. The systems averaged 68.7% for the PM 
modeled by a GMM, 68.7% for the MM modeled by 
GMM, 79.6% for the PM modeled by SVM and 80.1% for 
MM modeled by SVM, which confirms that the 
modulation features contain important information on the 
naturalness of the speech signal. 
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Comparing the performance of the two models, we 
observed that, with the exception of the model trained 
with MFCC as features, the proposed SVM out-performed 
the GMM models in the majority of the test scenarios. In 
particular, we highlight the SVM scores obtained by the 
detector trained with mixed converted data, using GDCC 
as features, which averaged 97.9% accuracy. 

We proceeded to fuse the scores of our speech 
detectors that modeled short and long-term information. 
For this, we considered only relevant features, leaving out 
the MFCC as a consequence of poor performance. The 
fusions we considered were the following: 1) GDCC and 
MM for every condition; 2) GDCC and PM for every 
condition. The results relative to the score fusion are 
presented in Table V. 

TABLE III. PERFORMANCE (ACC %)OF THE CONVERTED 

SPEECH DETECTORS USING SHORT-TERM FEATURES WITH 

VARIABLE TRAIN, TEST AND MODELING CONDITIONS 

Natural 

trials 

(Acc%)

Conv. 

trials 

(Acc%)

Natural 

trials 

(Acc%)

Conv. 

trials 

(Acc%)

GMM 87.0 89.5 75.2 54.9

US 87.0 20.6 71.6 45.4

GMM 85.4 95.3 68.0 74.9

US 85.4 89.3 82.8 88.2

GMM 84.6 93.4 65.9 78.2

US 84.6 79.8 70.6 79.0

GMM 91.0 89.4 97.5 94.4

US 91.0 52.1 97.9 80.0

GMM 96.1 86.8 98.2 84.6

US 96.1 74.0 82.1 93.9

GMM 91.5 92.3 97.7 98.0

US 91.5 77.1 97.6 98.5

GDCC

GMM

US

mix

Short-      

-term 

feature

Train 

data

Test 

data

GMM model SVM

MFCC

GMM

US

mix

 

TABLE IV.  PERFORMANCE (ACC %)OF THE CONVERTED 

SPEECH DETECTORS USING LONG-TERM FEATURES WITH 

VARIABLE TRAIN, TEST AND MODELING CONDITIONS 

Natural 

trials 

(Acc%)

Conv. 

trials 

(Acc%)

Natural 

trials 

(Acc%)

Conv. 

trials 

(Acc%)

GMM 73.1 78.8 75.1 83.4

US 73.1 50.9 75.1 82.4

GMM 73.1 78.8 82.9 61.5

US 73.1 50.9 82.9 90.7

GMM 62.8 72.4 75.7 78.8

US 62.8 74.5 75.7 91.1

GMM 72.0 80.1 73.5 83.8

US 72.0 50.7 73.5 84.1

GMM 72.0 80.1 84.0 64.3

US 72.0 50.7 84.0 90.6

GMM 62.2 75.1 76.7 78.6

US 62.2 74.7 76.7 91.3

Test 

data

GMM model SVM

PM

GMM

US

mix

MM 

GMM

US

mix

Long-     

-term 

feature

Train 

data

 

From Table V we observe that score fusion improved 
the accuracy percentage in most of the test conditions, 
yielding an average of 91.1% for the PM and GDCC 
fusion modeled by GMM, 91.0% for the MM and GDCC 
fusion modeled by GMM, 94.7% for the PM and GDCC 
fusion modeled by the proposed SVM, and 94.8% for the 
MM and GDCC fusion modeled by the proposed SVM.  

 The combination of feature pair, training data and 
model with the highest accuracy was the MM and GDCC, 
trained with mixed data and modeled by the SVM, scoring 
98.0%. This was therefore the combination chosen to 
incorporate our converted detectors in the SV system. 

TABLE V. PERFORMANCE (ACC %)OF THE FUSED 

CONVERTED SPEECH DETECTORS USING SHORT- AND 

LONG-TERM FEATURES WITH VARIABLE TRAIN, TEST AND 

MODELING CONDITIONS 

Natural 

trials 

(Acc%)

Conv. 

trials 

(Acc%)

Natural 

trials 

(Acc%)

Conv. 

trials 

(Acc%)

GMM 94.5 96.6 98.3 97.5

US 78.0 79.8 92.4 91.8

GMM 93.2 98.5 84.3 83.4

US 84.0 94.5 98.0 98.6

GMM 96.3 95.7 98.1 97.2

US 87.1 94.9 98.1 98.0

GMM 94.6 96.6 98.4 97.5

US 77.3 79.2 92.1 91.6

GMM 93.2 98.1 85.3 83.4

US 84.4 94.9 98.7 98.6

GMM 96.6 96.0 98.2 97.8

US 87.1 94.4 98.0 98.2

Test 

data

GMM model SVM

PM + 

GDCC

GMM

US

mix

MM + 

GDCC

GMM

US

mix

Feature 

pair

Train 

data

 

D. Spoofing data against speeaker verification system 

with anti-spoofing mechanisms 

To reduce the effects of spoofing attacks in the 
performance of our SV system, particularly in the FA, we 
incorporated our best converted speech detector as an anti-
spoofing mechanism as shown in Fig. 2 

In the proposed SV system with anti-spoofing 
mechanisms, the test utterance is verified as in standard 
SV systems. The speaker is considered an impostor if the 
SV system rejects the utterance. If the SV system accepts 
it as belonging to the target speaker, the verification is not 
considered final, undergoing a second stage of testing in 
which the utterance is fed to the anti-spoofing mechanism. 
If it is considered natural, the system accepts it as a target 
speaker utterance; otherwise it is rejected as a converted 
impostor utterance 

The performance of the SV system with the anti-
spoofing mechanism was reevaluated using the same 
metric (EER). This performance was also compared to 
that of a perfect anti-spoofing mechanism, which was 
simulated by assigning the correct output to each impostor 
trial. The performances of the SV system with real and 
ideal anti-spoofing mechanisms are shown in Table VI 
and the corresponding DET curves in Fig. 3. 

 
Fig. 2 SV system with anti-spoofing mechanism based on the fusion of 

two converted speech detectors 

TABLE VI. EER % OF SV SYSTEM PERFORMANCE WITH 

REAL AND IDEAL ANTI-SPOOFING MECHANISM AGAINST 

NATURAL DATA; NATURAL DATA AND GMM-BASED 

IMPOSTORS; NATURAL DATA AND US BASED-IMPOSTORS   

 

Baseline (no conversion) 10.3 9.4

GMM-based conversion 9.1 7.5

US-based conversion 8.9 7.4

Voice conversion 

method

SV w/ ideal 

detectors (EER %)

SV w/ real 

detectors (EER %)
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Fig. 3 DET curves of SV system performance with real and ideal anti-

spoofing mechanism tested against natural data; natural data and 
converted GMM impostors; natural data and US impostors 

We observe that the EER of the SV system with anti-
spoofing mechanism drops as much as 11.1% compared to 
the EER presented on Table II. When comparing the SV 
system with real mechanism vs. ideal mechanism for 
converted speech detection, we observe that the 2.2% of 
GMM-based converted utterances corresponding to false 
positives accounted for an increase of the ideal EER of 
1.6%; the 1.8% of false positives for the US-based 
conversion accounted for a 1.4% increase of the ideal 
EER. Finally, the 2.1% of false negatives of natural 
utterances corresponded to an increase of 0.9% of the 
ideal EER. 

VI. CONLUSION 

In this study, we evaluated the vulnerability of a state-
of-the-art SV system against spoofing attacks by GMM-
based and US-based converted speech. The experiment 
showed that the FA of the system deteriorated beyond 
what is acceptable for real life applications.  

To manage the FA, we implemented state-of-the-art 
converted speech detectors based on features derived from 
the magnitude and GDFPS and compared their 
performances. Additionally we proposed a new more 
compact representation of the features and adopted a 
discriminative approach to model them. The proposed 
feature representation and modeling approach have 
outperformed the existing converted speech detectors.  

We proceeded to fuse the scores of the best converted 
speech detectors and achieved better accuracy rates than 
with any standalone detector. That result strengthens the 
hypothesis that the short- and long-term features carried 
complementary information useful for converted speech 
detection. Finally we tested our SV system with anti-
spoofing mechanism consisting of a fusion of two 
converted speech detectors using compact feature 
representation. We verified that the performance of the 
system was only marginally affected by the spoofing data. 
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