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Abstract— Currently, the more efficient implementations for 

cryptographic engines are dedicated structures and only allow 
processing a single algorithm. On the other hand the existing 
multi-algorithm processors impose significantly higher costs, 
resulting in low efficiency structures. One possible solution is to 
use reconfigurable systems. However reconfigurable technologies 
impose additional costs, both in efficiency, as well as in the 
reconfiguration process itself. The solution herein proposed 
considers the support for multi-algorithm by looking into the 
common operations and merging there computation into 
common components. The obtained results suggest that by 
proper component reuse and adequate scheduling, efficiency and 
cost metrics identical to those of dedicated structures can be 
achieved, while supporting the computation of multiple 
algorithms. As future perspective, the implementation of security 
codes against Differential Fault Analysis, in such multi-algorithm 
architectures, is studied. 
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security codes, circuits & systems, hardware design, Differential 
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I. INTRODUCTION 
In the near future almost each aspect of our everyday live 

will be pervaded by a number of devices connected to form 
the so called Internet of Things (IoT). These devices will 
include some sort of computational power, sensing 
capabilities, and of course, network connectivity. 
Additionally, considering the potential sensitivity of the data 
involved and the eventual use in critical applications, it is 
possible to envision that cryptographic functionalists will be 
included too. However, each device, will be designed to 
address a specific function, which is characterized by its 
specific requirements and applications constraints. This will 
also affect the type of cryptographic primitives which will be 
included into devices, and the way in which they will be 
implemented. Devices which have to fulfill extremely strict 
requirements in terms of power and energy will support only 
lightweight algorithms, such as PRESENT [1] or KATAN [2]. 
Others, which have more relaxed constraints, will support 
more complex ones such as AES [3]. Nevertheless, they have 
to guarantee and support connectivity, as they will all be 
connected together. The communication among devices, 
implementing different algorithms, would require the presence 

of a node acting as hub. Devices would then communicate 
with a hub, supporting a number of different algorithms and 
schemes, which will support different protocols and allow the 
interoperability. 

Although, different cryptographic algorithms have a 
common or similar structure. Often there is a non linear step 
implemented using Look-Up-Tables (LUTs), a diffusion layer, 
and a key addition carried out, using XOR gates. As a result, it 
would be in principle possible to integrate several algorithms 
into a single architecture, achieving a minimum cost in terms 
of area, while maintaining an acceptable level of performance. 
A simple and cost effective way to implement this 
functionality exploits the potential of reconfigurable hardware. 
FPGAs have been used so far mainly as prototyping devices 
and address market segments, characterized by low volume. 
But it is possible to envision that their usage will be increased 
more, and that they will be integrated in future processors. 

Towards this, the paper explores a scenario where multiple 
cryptographic functions co-exist on the hub. In this context, 
this work proposes a design that supports a range of different 
block ciphers, realized on top of a common base architecture. 
It is shown that by a detailed analysis of targeted algorithms, it 
is possible to efficiently reuse computational blocks, to 
implement compact multi-algorithm encryption engines. To 
achieve this, the operations of each algorithm have to be 
properly scheduled, and some of the components have to be 
designed to perform different operations, such as the common 
S-Box operation (in this case T-Box). 

If the available computational resources of the supporting 
technologies are properly explored, it is possible to derive 
cryptographic engine, supporting multiple algorithms, with 
high throughput and relatively low area footprints. In this 
particular case, considering the Xilinx VIRTEX 5 technology, 
a dual AES/CLEFIA cryptographic engine achieving 
throughputs between 1 Gbps and 850 Mbps, at a cost of 123 
Slices and 3 BRAMs, is achieved in this work. 

The last part of this paper, deals with future design 
perspectives; the implementation of security codes against 
Differential Fault Analysis (DFA), in multiple algorithms 
architectures, is considered. Codes that can detect weak 
attacks, as well as codes for strong ones are introduced. 



II. DESIGN OF RECONFIGURABLE SYSTEMS 
 Reconfigurable systems are emerging as key technologies, 
towards dedicated ones, while still being highly adaptable and 
with high efficiency computation structures. This technology 
also allows to be dynamically adapted to the particular 
computing requirements, thus reducing the overall cost of the 
system. The last feature is very useful in systems that need to 
be remotely configured/adapted, or that operate on 
heterogeneous environments, such as the IoT. Reconfigurable 
systems use highly flexible computing fabric, usually the Field 
Programmable Gate Arrays (FPGAs). The partial dynamic 
reconfiguration functionality of modern FPGAs enables the 
device to repeatedly change its configuration while operating. 
In [4], it is shown that the usage FPGAs in the nodes of 
heterogeneous clusters, can result in significant speedup and 
energy reductions, in comparison to the traditional clusters. 

The main components of these reconfigurable systems are a 
set of programmable logic blocks, typically implemented as 
small programmable Look-Up-Tables (LUTs) and 
interconnection matrixes, composing configurable network of 
logic operations. The adaptation of the network is performed 
by a configuration bitstream  defining the content of each 
Look-Up-Tables (LUTs), and thus their logical operation, and 
their interconnection. This configuration bitstream is topically 
stored on an external memory and loaded into the 
reconfiguration device, when it is needed to be reconfigured. 

However, this flexibility comes at a cost, particularly in 
terms of reconfiguration time, energy, and security. The 
reconfiguration time is imposed by the need to update the 
internal state of each Look-Up-Table (LUT) and 
interconnection matrix. This also comes at an energy cost, 
since this update is also energy consumed. Security wise, the 
resulting threats are mainly due to the fact that most FPGAs are 
volatile and the configuration data needs to be stored on, 
potentially unsecured, external memory and sent into the 
device. If the configuration data are not authenticated before 
being loaded, the device itself may be compromised. These 
threats are particularly relevant when the system is deployed in 
a hostile or public environment [5]. To mitigate this problem 
FPGAs provide bitstream encryption and authentication 
mechanisms. Modern reconfigurable devices include on-chip 
AES decryption engine, use Cyclic Redundancy Check to 
validate the integrity of the configuration and perform 
bitstream authentication using strong hash functions. 

However, several attacks can still be performed, such as 
system downgrade attacks [6] and corruption of reserved 
regions [7]. Several solutions have been proposed to further 
minimize these threats [7-9]. However, all these present added 
costs in terms of area and energy. 

III. MULTI-ENCRYPTION SYSTEM 
Given the cost and possible threats that reconfiguration 

implies, an alternative solution can be the reuse of 
computational structures, in order to provide support for 
multiple algorithms. Towards this, multi-cryptographic co-
processors have been proposed [10-12]. These resembled 
general processors, making them suitable for general 
encryption systems, with lower encryption throughputs. 

However, given the general approach they are not able to 
provide adequate efficiency metrics and also impose 
significantly higher energy consumption when compared with 
dedicated structures. In order to provide adaptable encryption 
structures, but with high efficiency and low footprint, 
cryptography engines, dedicated multi-encryption structures 
capable of efficiently computing a restricted set of algorithms 
can be considered [13]. 

In order to provide a proof of concept that multi-
encryption structures capable of high throughputs with 
relatively low area footprints can be achieved two very 
different symmetrical block ciphers are herein examined, AES 
and CLEFIA. 

The well known AES algorithm [3] is a 128-bit block 
cipher based on a Substitution-Permutation Structure. It 
accepts 128-, 192-, and 256-bit long keys processed over 10, 
12 or 14 rounds, repetitively. After the initial addition with the 
first round (performed by the XOR operation), the input data 
goes through several operation on each round. The round 
computation is composed of SubBytes, where each byte is 
replaced by another one, which can be implemented by a 
Look-Up-Table (SBox); ShiftRows, where the second to fourth 
row of the State are left-round shifted one to three bytes, 
respectively; MixColumns, where each column of the State is 
multiplied over GF(2^8), where the entire State is XORed with 
the corresponding 128-bit Round Key. The decryption process 
of the AES cipher is performed identically to the encryption, 
but with the inverse operations [14]. 

The CLEFIA algorithm is a 128-bit block cipher, based on 
a 4-branched Feistel network, accepting key lengths of 128-, 
192- and 256-bit, processed over 18, 22, or 26 rounds. The 
128-bit (16 bytes) of plain text are arranged into an array of 
four 32-bit words. The first step of the encryption process is to 
XOR the second and fourth words of the input data with the 
first and second 32-bit of the original key, performing a key 
whitening procedure. After this operation the rounds are 
executed. In each round, the four input words are processed, 
where copies of the first and third input words go through a 
32-bit output non-linear function, F0 and F1 respectively. In 
each one, the result is XORed with the second and fourth 
words. The resulting four words are then swapped by left-
round shifting them [13]. 

Despite having different computation structures, both share 
similar ciphering techniques, such as diffusion matrices and 
byte substitution (SBoxes). 

IV. PROPOSED MULTI-ALGORITHM ARCHITECTURE 
Towards the targeted multi-encryption structure, the state of 

the art compact structures for dedicated AES [14-18] and 
CLEFIA [19-21] ciphers are considered. As the prototyping 
platform, Field Programmable Gate Arrays (FPGAs) is herein 
considered as targeted technology, given their increasing 
deployment in embedded systems, adaptability, and ease of 
prototyping.  

The proposed architecture [17] considers the use of a folded 
round structure, computing each round in multiple iterations 
with a datapath of 32-bit using a TBox approach, as depicted in 
Figure 1.   



 
Fig. 1. Proposed AES/CLEFIA Datapath 

The 32-bit folded structure is suggested by the state of the 
art to be the best compromise towards a compact structure still 
capable of achieving high throughputs. 

Since the initial step for both algorithms is to XOR the 
plaintext with the first input keys, a 32-bit XOR operation is 
considered, as depicted by block (1) at the top of the Figure 1. 
For the AES Shift Rows operation, a byte addressable 32-bit 
wide 32-bit deep shift register is considered block (2), given 
the resulting compactness of this solution on Xilinx FPGAs 
when using the SRL32 LUT mode, as demonstrated in the state 
of the art (previously known as SRL16). This Shift Register is 
used to temporarily store and address the State. To allow for a 
more efficient datapath, a forwarding multiplexer is used to 
select the data fed to the TBoxes. This block is also used to add 
Round Keys, as in the case of the CLEFIA computation.  

 The main computation is performed in the TBox (4), used 
to store the lookup tables that process the byte substitution and 
the coefficient multiplications. Both AES and CLEFIA require 
SBox operations followed by a matrix multiplication, which 
can be partially compressed into a TBox. Depending on the 
addressed memory region different SBox permutations are 
performed, thus implementing the AES or CLEFIA 
operations. The remaining part of the matrices multiplication, 
the necessary GF(28) additions, are performed by a XOR tree 
stage (block (5)). 

V. RESULTS & ANALYSIS 
 In order to properly compare with the existing state of the 
art structures, experimental results for Xilinx VIRTEX 5 
technology are herein considered, as depicted in Table 1 and 
Table 2, for AES and CLEFIA algorithms respectively. 

The presented values depict the throughput when 
processing one input block at a time. In unrolled or highly 
pipelined structures higher throughputs can be achieved, but 
only if multiple blocks are processed simultaneously. When 
considering a single data stream in a feedback mode, such as 
CBC, these structures cannot be efficiently used due to the 
data dependency between blocks. This implies that the 
computation of input block 'i' can only be started after the 
computation of the input data block 'i-1' is concluded. As an 

efficiency metric, we consider the use of the Throughput per 
Slice ratio [14]. 

Regarding the key expansion, two main approaches are 
used, either computing them locally with dedicated logic, or 
computing them off chip and then storing them in local 
memory. Although being possible to share some resources 
with the datapath to perform the key expansion computation, 
dedicated logic is still required. The off chip computation of 
the key expansion and loading to an auxiliary BRAM typically 
yields in more compact and efficient designs, [18]. 

Since the proposed structure [13] can compute both AES 
and CLEFIA algorithms, it can be found in Tables 1 and 2. 
This structure allows for a ciphering throughput of 1 Gbps for 
the CLEFIA algorithm and near 850Mbps for the AES 
algorithm. These results are achieved at a cost of 123 Slices 
and 3 BRAMs on a Virtex 5 device, including the control unit 
and an extra BRAM for the round keys storage. 

Considering the related AES state of the art, the unrolled 
architecture proposed in [22] allows for a throughput above 60 
Gbps in ECB mode. However, when considering feedback 
modes, considered more secure, the maximum throughput is 
of 3.2 Gbps with an area cost of 3121 Slices resulting in a 
Throughput per Slice efficiency of 1.03. The 128-bit folded 
datapath structure, single cycle per round, presented in [14] 
achieves a throughput of 2.4 Gbps with an efficiency of 5.96 
at a cost of a higher BRAM usage. A more compact structure 
is proposed in [15] allowing for a throughput up to 1.76 Gbps 
requiring 107 Slices. However, if feedback modes are used, 
the maximum throughput lowers to 880 Mbps. An important 
characteristic of this proposal is the use of 4 DSP blocks to 
implement the XOR operations, instead of regular Slices. With 
this option an efficiency of 8.22 Throughput per Slice is 
achieved. Note that DSPs are Xilinx FPGA dedicated 
components, and are also not considered in the efficiency 
metric herein applied. Without the use of DSPs, 212 Slices are 
needed instead, resulting in an efficiency of 4.15 when 
considering feedback modes. 

When considering the CLEFIA state of the art, the 
dedicated unrolled structure of [19] allows for a throughput of 
21 Gbps in non-feedback modes. 

  



TABLE I.  AES IMPLELEMATION SYNTHESIS RESULTS 

Results 
Round Structure Device 

Resources Throughput 
[Gbps] 

Efficiency 
[Mbps/S] Designs Slices BRAMs 

Resende et al. [2015] Rolled (32b) V5 123 2+1 0.850 6.91 

Chaves et al. [2006] Rolled (32b) V5 407 8+2 2.427 5.96 

Drimer et al. [2009] Rolled (32b) V5 
107 2+1 0.88 8.22 

212 2+1 0.88 4.15 

Liu et al. [2013] Unrolled V5 3579 0 2.305 0.64 

Bulens et al. [2008] Rolled (128b) V5 400 0 1.07 2.67 

TABLE II.  CLEFIA IMPLELEMATION SYNTHESIS RESULTS 

Results 
Round Structure Device 

Resources Throughput 
[Gbps] 

Efficiency 
[Mbps/S] Designs Slices BRAMs 

Kryjak et al. [2009] Unrolled V5 2479 0 1.188 0.48 

Proença et al. [2011] 
Rolled (128b) 

V5 
170 4+1 1.707 10.04 

Rolled (32b) 86 2+1 1.301 15.13 

Resende et al. [2015] Rolled (32b) 
V5 123 

2+1 
1.073 8.72 

V6 115 1.012 8.80 

 
 In feedback modes the maximum throughput is reduces to 
1.2 Gbps. With an area cost of 2479 Slices, an efficiency of 
0.48 is achieved for feedback modes. The structure proposed 
in [20] allows for a throughput of 1.7 Gbps at a cost of 170 
Slices. The same authors also proposed a more compact 
structure, allowing for a throughput of 1.3 Gbps at a cost of 86 
Slices, resulting in efficiency of 15.13. With a maximum 
CLEFIA throughput of 1 Gbps. 

Overall, the proposed structure allows for a throughput 
between 1 Gbps and 850 Mbps in feedback modes for 
CLEFIA and AES algorithms, respectively, at a cost of 123 
Slices and 3 BRAMs. The resulting efficiency metric is better 
than most of the state of the art, supporting only the CLEFIA 
or the AES ciphers. 

VI. FUTURE PERSPETIVES: SECURITY ORIENTED CODES 
Cryptographic components as well as on-chip memories 

are threatened by Differential Fault Analysis (DFA) attacks. 
DFA attacks use information obtained by examining the 
difference between the correct operation of a device and its 
operation in the presence of a fault, in order to retrieve secret 
or personal information stored in the device. To manipulate 
the device, an attacker can inject faults and errors of almost 
any multiplicity and type. Consequently, to protect the device 
from malicious attacks, all injected errors must be detected 
with high probability regardless of their multiplicity. 

Fault injection attacks can be detected with relatively high 
probability by error detecting codes. Traditional error 
detection methods are based on linear codes. Linear codes can 
detect any random errors of small multiplicity and thus they 
increase the reliability of hardware systems.  However, linear 
codes cannot increase the immunity of a system against fault 
injection attacks, in which an attacker can flip any number of 

bits he wishes [23-24]. Codes that can detect any attack are 
called security oriented codes. 

 In general, there are two types of security oriented codes: 
codes that can detect weak attacks in which the attacker 
cannot control the codeword to be used, and codes designed to 
detect strong attacks in which the attacker chooses the 
information word to be transmitted. Robust codes, such as the 
Quadratic-Sum and the Punctured-Cubic codes, with or 
without pre-mapping [25-27] are considered as a 
countermeasure against weak attacks, and Algebraic 
Manipulation Detection (AMD) codes [28] are considered a 
countermeasure against strong attacks. 

We distinguish between three types of injected errors:  
errors that are always detected, errors that are never detected, 
and errors that are detected with some probability. Fig. 2)a 
illustrates how an error distorts a weak attack detecting code 
C. Errors that are always detected map all the codewords to 
non codewords (see error e1 in Fig. 2)a).  

 
Fig. 2. Error Types for A) Weak and B) Strong Attacks, Detecting Codes 

Errors that are never detected map all the codewords onto 
the code (see error e2, Fig. 2)a ), and errors that are detected 
with probability map at least one codeword to a non codeword 
and at least one codeword into the code (error e3, Fig. 2)a ). In 
a good robust code, such as the Quadratic-Sum and the 
Punctured-Cubic codes, all the possible errors are detected and 
the size of the intersection between the code C, and the 

B) Strong AttacksA) Weak Attacks

F2n
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distorted code (e3+C) is minimal. In contrast to weak attack 
detecting code, a code designed against strong attacks must 
incorporate random bits. That is, an information word, say 
“x”, is randomly encoded into a codeword form a (predefined) 
set S(x). Fig. 2)b  illustrates how an error distorts a strong 
attack detecting code C. In a good code, there are no 
undetected errors (e.g. errors like e2 in Fig. 2)b ), and the size 
of the intersection between the code and the shifted set (e3+C) 
is minimal. Strong attack detecting codes, like the AMD 
codes, are believed to be stronger than robust codes since 
unlike the last their error masking probability does not depend 
on the probability-mass-distribution of the codewords.  
However, when the information is not uniformly distributed, 
i.e. when entropy of the code is small, strong attack detecting 
codes are not always stronger than the simple low-cost robust 
codes [29]. A simple criterion, which directs how to choose a 
security-oriented code with respect to the entropy of the data 
to be protected, is presented in [29], which can also be applied 
in modern security schemes integration [30], as well. 
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