
Efficiency of Cryptography for Multi-Algorithm
Computation on Dedicated Structures

Nicolas SklavosI, João Carlos ResendeII, Ricardo ChavesII, Francesco RegazzoniIII, Osnat KerenIV

I KNOSSOSnet R.G., CIED Dept., Technological Educational Institute of Western Greece, Greece
II INESC-ID, IST, University of Lisbon, Portugal

III ALaRI Institute, University of Lugano, Switzerland
IV Bar Ilan University, Israel

Abstract— Currently, the more efficient implementations for

cryptographic engines are dedicated structures and only allow
processing a single algorithm. On the other hand the existing
multi-algorithm processors impose significantly higher costs,
resulting in low efficiency structures. One possible solution is to
use reconfigurable systems. However reconfigurable technologies
impose additional costs, both in efficiency, as well as in the
reconfiguration process itself. The solution herein proposed
considers the support for multi-algorithm by looking into the
common operations and merging there computation into
common components. The obtained results suggest that by
proper component reuse and adequate scheduling, efficiency and
cost metrics identical to those of dedicated structures can be
achieved, while supporting the computation of multiple
algorithms. As future perspective, the implementation of security
codes against Differential Fault Analysis, in such multi-algorithm
architectures, is studied.

Keywords—multiple algorithms, FPGA, AES, CLEFIA,
security codes, circuits & systems, hardware design, Differential
Fault Analysis attacks

I. INTRODUCTION
In the near future almost each aspect of our everyday live

will be pervaded by a number of devices connected to form
the so called Internet of Things (IoT). These devices will
include some sort of computational power, sensing
capabilities, and of course, network connectivity.
Additionally, considering the potential sensitivity of the data
involved and the eventual use in critical applications, it is
possible to envision that cryptographic functionalists will be
included too. However, each device, will be designed to
address a specific function, which is characterized by its
specific requirements and applications constraints. This will
also affect the type of cryptographic primitives which will be
included into devices, and the way in which they will be
implemented. Devices which have to fulfill extremely strict
requirements in terms of power and energy will support only
lightweight algorithms, such as PRESENT [1] or KATAN [2].
Others, which have more relaxed constraints, will support
more complex ones such as AES [3]. Nevertheless, they have
to guarantee and support connectivity, as they will all be
connected together. The communication among devices,
implementing different algorithms, would require the presence

of a node acting as hub. Devices would then communicate
with a hub, supporting a number of different algorithms and
schemes, which will support different protocols and allow the
interoperability.

Although, different cryptographic algorithms have a
common or similar structure. Often there is a non linear step
implemented using Look-Up-Tables (LUTs), a diffusion layer,
and a key addition carried out, using XOR gates. As a result, it
would be in principle possible to integrate several algorithms
into a single architecture, achieving a minimum cost in terms
of area, while maintaining an acceptable level of performance.
A simple and cost effective way to implement this
functionality exploits the potential of reconfigurable hardware.
FPGAs have been used so far mainly as prototyping devices
and address market segments, characterized by low volume.
But it is possible to envision that their usage will be increased
more, and that they will be integrated in future processors.

Towards this, the paper explores a scenario where multiple
cryptographic functions co-exist on the hub. In this context,
this work proposes a design that supports a range of different
block ciphers, realized on top of a common base architecture.
It is shown that by a detailed analysis of targeted algorithms, it
is possible to efficiently reuse computational blocks, to
implement compact multi-algorithm encryption engines. To
achieve this, the operations of each algorithm have to be
properly scheduled, and some of the components have to be
designed to perform different operations, such as the common
S-Box operation (in this case T-Box).

If the available computational resources of the supporting
technologies are properly explored, it is possible to derive
cryptographic engine, supporting multiple algorithms, with
high throughput and relatively low area footprints. In this
particular case, considering the Xilinx VIRTEX 5 technology,
a dual AES/CLEFIA cryptographic engine achieving
throughputs between 1 Gbps and 850 Mbps, at a cost of 123
Slices and 3 BRAMs, is achieved in this work.

The last part of this paper, deals with future design
perspectives; the implementation of security codes against
Differential Fault Analysis (DFA), in multiple algorithms
architectures, is considered. Codes that can detect weak
attacks, as well as codes for strong ones are introduced.

II. DESIGN OF RECONFIGURABLE SYSTEMS
 Reconfigurable systems are emerging as key technologies,
towards dedicated ones, while still being highly adaptable and
with high efficiency computation structures. This technology
also allows to be dynamically adapted to the particular
computing requirements, thus reducing the overall cost of the
system. The last feature is very useful in systems that need to
be remotely configured/adapted, or that operate on
heterogeneous environments, such as the IoT. Reconfigurable
systems use highly flexible computing fabric, usually the Field
Programmable Gate Arrays (FPGAs). The partial dynamic
reconfiguration functionality of modern FPGAs enables the
device to repeatedly change its configuration while operating.
In [4], it is shown that the usage FPGAs in the nodes of
heterogeneous clusters, can result in significant speedup and
energy reductions, in comparison to the traditional clusters.

The main components of these reconfigurable systems are a
set of programmable logic blocks, typically implemented as
small programmable Look-Up-Tables (LUTs) and
interconnection matrixes, composing configurable network of
logic operations. The adaptation of the network is performed
by a configuration bitstream defining the content of each
Look-Up-Tables (LUTs), and thus their logical operation, and
their interconnection. This configuration bitstream is topically
stored on an external memory and loaded into the
reconfiguration device, when it is needed to be reconfigured.

However, this flexibility comes at a cost, particularly in
terms of reconfiguration time, energy, and security. The
reconfiguration time is imposed by the need to update the
internal state of each Look-Up-Table (LUT) and
interconnection matrix. This also comes at an energy cost,
since this update is also energy consumed. Security wise, the
resulting threats are mainly due to the fact that most FPGAs are
volatile and the configuration data needs to be stored on,
potentially unsecured, external memory and sent into the
device. If the configuration data are not authenticated before
being loaded, the device itself may be compromised. These
threats are particularly relevant when the system is deployed in
a hostile or public environment [5]. To mitigate this problem
FPGAs provide bitstream encryption and authentication
mechanisms. Modern reconfigurable devices include on-chip
AES decryption engine, use Cyclic Redundancy Check to
validate the integrity of the configuration and perform
bitstream authentication using strong hash functions.

However, several attacks can still be performed, such as
system downgrade attacks [6] and corruption of reserved
regions [7]. Several solutions have been proposed to further
minimize these threats [7-9]. However, all these present added
costs in terms of area and energy.

III. MULTI-ENCRYPTION SYSTEM
Given the cost and possible threats that reconfiguration

implies, an alternative solution can be the reuse of
computational structures, in order to provide support for
multiple algorithms. Towards this, multi-cryptographic co-
processors have been proposed [10-12]. These resembled
general processors, making them suitable for general
encryption systems, with lower encryption throughputs.

However, given the general approach they are not able to
provide adequate efficiency metrics and also impose
significantly higher energy consumption when compared with
dedicated structures. In order to provide adaptable encryption
structures, but with high efficiency and low footprint,
cryptography engines, dedicated multi-encryption structures
capable of efficiently computing a restricted set of algorithms
can be considered [13].

In order to provide a proof of concept that multi-
encryption structures capable of high throughputs with
relatively low area footprints can be achieved two very
different symmetrical block ciphers are herein examined, AES
and CLEFIA.

The well known AES algorithm [3] is a 128-bit block
cipher based on a Substitution-Permutation Structure. It
accepts 128-, 192-, and 256-bit long keys processed over 10,
12 or 14 rounds, repetitively. After the initial addition with the
first round (performed by the XOR operation), the input data
goes through several operation on each round. The round
computation is composed of SubBytes, where each byte is
replaced by another one, which can be implemented by a
Look-Up-Table (SBox); ShiftRows, where the second to fourth
row of the State are left-round shifted one to three bytes,
respectively; MixColumns, where each column of the State is
multiplied over GF(2^8), where the entire State is XORed with
the corresponding 128-bit Round Key. The decryption process
of the AES cipher is performed identically to the encryption,
but with the inverse operations [14].

The CLEFIA algorithm is a 128-bit block cipher, based on
a 4-branched Feistel network, accepting key lengths of 128-,
192- and 256-bit, processed over 18, 22, or 26 rounds. The
128-bit (16 bytes) of plain text are arranged into an array of
four 32-bit words. The first step of the encryption process is to
XOR the second and fourth words of the input data with the
first and second 32-bit of the original key, performing a key
whitening procedure. After this operation the rounds are
executed. In each round, the four input words are processed,
where copies of the first and third input words go through a
32-bit output non-linear function, F0 and F1 respectively. In
each one, the result is XORed with the second and fourth
words. The resulting four words are then swapped by left-
round shifting them [13].

Despite having different computation structures, both share
similar ciphering techniques, such as diffusion matrices and
byte substitution (SBoxes).

IV. PROPOSED MULTI-ALGORITHM ARCHITECTURE
Towards the targeted multi-encryption structure, the state of

the art compact structures for dedicated AES [14-18] and
CLEFIA [19-21] ciphers are considered. As the prototyping
platform, Field Programmable Gate Arrays (FPGAs) is herein
considered as targeted technology, given their increasing
deployment in embedded systems, adaptability, and ease of
prototyping.

The proposed architecture [17] considers the use of a folded
round structure, computing each round in multiple iterations
with a datapath of 32-bit using a TBox approach, as depicted in
Figure 1.

Fig. 1. Proposed AES/CLEFIA Datapath

The 32-bit folded structure is suggested by the state of the
art to be the best compromise towards a compact structure still
capable of achieving high throughputs.

Since the initial step for both algorithms is to XOR the
plaintext with the first input keys, a 32-bit XOR operation is
considered, as depicted by block (1) at the top of the Figure 1.
For the AES Shift Rows operation, a byte addressable 32-bit
wide 32-bit deep shift register is considered block (2), given
the resulting compactness of this solution on Xilinx FPGAs
when using the SRL32 LUT mode, as demonstrated in the state
of the art (previously known as SRL16). This Shift Register is
used to temporarily store and address the State. To allow for a
more efficient datapath, a forwarding multiplexer is used to
select the data fed to the TBoxes. This block is also used to add
Round Keys, as in the case of the CLEFIA computation.

 The main computation is performed in the TBox (4), used
to store the lookup tables that process the byte substitution and
the coefficient multiplications. Both AES and CLEFIA require
SBox operations followed by a matrix multiplication, which
can be partially compressed into a TBox. Depending on the
addressed memory region different SBox permutations are
performed, thus implementing the AES or CLEFIA
operations. The remaining part of the matrices multiplication,
the necessary GF(28) additions, are performed by a XOR tree
stage (block (5)).

V. RESULTS & ANALYSIS
 In order to properly compare with the existing state of the
art structures, experimental results for Xilinx VIRTEX 5
technology are herein considered, as depicted in Table 1 and
Table 2, for AES and CLEFIA algorithms respectively.

The presented values depict the throughput when
processing one input block at a time. In unrolled or highly
pipelined structures higher throughputs can be achieved, but
only if multiple blocks are processed simultaneously. When
considering a single data stream in a feedback mode, such as
CBC, these structures cannot be efficiently used due to the
data dependency between blocks. This implies that the
computation of input block 'i' can only be started after the
computation of the input data block 'i-1' is concluded. As an

efficiency metric, we consider the use of the Throughput per
Slice ratio [14].

Regarding the key expansion, two main approaches are
used, either computing them locally with dedicated logic, or
computing them off chip and then storing them in local
memory. Although being possible to share some resources
with the datapath to perform the key expansion computation,
dedicated logic is still required. The off chip computation of
the key expansion and loading to an auxiliary BRAM typically
yields in more compact and efficient designs, [18].

Since the proposed structure [13] can compute both AES
and CLEFIA algorithms, it can be found in Tables 1 and 2.
This structure allows for a ciphering throughput of 1 Gbps for
the CLEFIA algorithm and near 850Mbps for the AES
algorithm. These results are achieved at a cost of 123 Slices
and 3 BRAMs on a Virtex 5 device, including the control unit
and an extra BRAM for the round keys storage.

Considering the related AES state of the art, the unrolled
architecture proposed in [22] allows for a throughput above 60
Gbps in ECB mode. However, when considering feedback
modes, considered more secure, the maximum throughput is
of 3.2 Gbps with an area cost of 3121 Slices resulting in a
Throughput per Slice efficiency of 1.03. The 128-bit folded
datapath structure, single cycle per round, presented in [14]
achieves a throughput of 2.4 Gbps with an efficiency of 5.96
at a cost of a higher BRAM usage. A more compact structure
is proposed in [15] allowing for a throughput up to 1.76 Gbps
requiring 107 Slices. However, if feedback modes are used,
the maximum throughput lowers to 880 Mbps. An important
characteristic of this proposal is the use of 4 DSP blocks to
implement the XOR operations, instead of regular Slices. With
this option an efficiency of 8.22 Throughput per Slice is
achieved. Note that DSPs are Xilinx FPGA dedicated
components, and are also not considered in the efficiency
metric herein applied. Without the use of DSPs, 212 Slices are
needed instead, resulting in an efficiency of 4.15 when
considering feedback modes.

When considering the CLEFIA state of the art, the
dedicated unrolled structure of [19] allows for a throughput of
21 Gbps in non-feedback modes.

TABLE I. AES IMPLELEMATION SYNTHESIS RESULTS

Results
Round Structure Device

Resources Throughput
[Gbps]

Efficiency
[Mbps/S] Designs Slices BRAMs

Resende et al. [2015] Rolled (32b) V5 123 2+1 0.850 6.91

Chaves et al. [2006] Rolled (32b) V5 407 8+2 2.427 5.96

Drimer et al. [2009] Rolled (32b) V5
107 2+1 0.88 8.22

212 2+1 0.88 4.15

Liu et al. [2013] Unrolled V5 3579 0 2.305 0.64

Bulens et al. [2008] Rolled (128b) V5 400 0 1.07 2.67

TABLE II. CLEFIA IMPLELEMATION SYNTHESIS RESULTS

Results
Round Structure Device

Resources Throughput
[Gbps]

Efficiency
[Mbps/S] Designs Slices BRAMs

Kryjak et al. [2009] Unrolled V5 2479 0 1.188 0.48

Proença et al. [2011]
Rolled (128b)

V5
170 4+1 1.707 10.04

Rolled (32b) 86 2+1 1.301 15.13

Resende et al. [2015] Rolled (32b)
V5 123

2+1
1.073 8.72

V6 115 1.012 8.80

 In feedback modes the maximum throughput is reduces to
1.2 Gbps. With an area cost of 2479 Slices, an efficiency of
0.48 is achieved for feedback modes. The structure proposed
in [20] allows for a throughput of 1.7 Gbps at a cost of 170
Slices. The same authors also proposed a more compact
structure, allowing for a throughput of 1.3 Gbps at a cost of 86
Slices, resulting in efficiency of 15.13. With a maximum
CLEFIA throughput of 1 Gbps.

Overall, the proposed structure allows for a throughput
between 1 Gbps and 850 Mbps in feedback modes for
CLEFIA and AES algorithms, respectively, at a cost of 123
Slices and 3 BRAMs. The resulting efficiency metric is better
than most of the state of the art, supporting only the CLEFIA
or the AES ciphers.

VI. FUTURE PERSPETIVES: SECURITY ORIENTED CODES
Cryptographic components as well as on-chip memories

are threatened by Differential Fault Analysis (DFA) attacks.
DFA attacks use information obtained by examining the
difference between the correct operation of a device and its
operation in the presence of a fault, in order to retrieve secret
or personal information stored in the device. To manipulate
the device, an attacker can inject faults and errors of almost
any multiplicity and type. Consequently, to protect the device
from malicious attacks, all injected errors must be detected
with high probability regardless of their multiplicity.

Fault injection attacks can be detected with relatively high
probability by error detecting codes. Traditional error
detection methods are based on linear codes. Linear codes can
detect any random errors of small multiplicity and thus they
increase the reliability of hardware systems. However, linear
codes cannot increase the immunity of a system against fault
injection attacks, in which an attacker can flip any number of

bits he wishes [23-24]. Codes that can detect any attack are
called security oriented codes.

 In general, there are two types of security oriented codes:
codes that can detect weak attacks in which the attacker
cannot control the codeword to be used, and codes designed to
detect strong attacks in which the attacker chooses the
information word to be transmitted. Robust codes, such as the
Quadratic-Sum and the Punctured-Cubic codes, with or
without pre-mapping [25-27] are considered as a
countermeasure against weak attacks, and Algebraic
Manipulation Detection (AMD) codes [28] are considered a
countermeasure against strong attacks.

We distinguish between three types of injected errors:
errors that are always detected, errors that are never detected,
and errors that are detected with some probability. Fig. 2)a
illustrates how an error distorts a weak attack detecting code
C. Errors that are always detected map all the codewords to
non codewords (see error e1 in Fig. 2)a).

Fig. 2. Error Types for A) Weak and B) Strong Attacks, Detecting Codes

Errors that are never detected map all the codewords onto
the code (see error e2, Fig. 2)a), and errors that are detected
with probability map at least one codeword to a non codeword
and at least one codeword into the code (error e3, Fig. 2)a). In
a good robust code, such as the Quadratic-Sum and the
Punctured-Cubic codes, all the possible errors are detected and
the size of the intersection between the code C, and the

B) Strong AttacksA) Weak Attacks

F2n

C
e2+S(x)

e1+S(x)
|S(x)|>1

e3+S(x)
e1+
C

C C e2+
C

F2n

C e3+
C

distorted code (e3+C) is minimal. In contrast to weak attack
detecting code, a code designed against strong attacks must
incorporate random bits. That is, an information word, say
“x”, is randomly encoded into a codeword form a (predefined)
set S(x). Fig. 2)b illustrates how an error distorts a strong
attack detecting code C. In a good code, there are no
undetected errors (e.g. errors like e2 in Fig. 2)b), and the size
of the intersection between the code and the shifted set (e3+C)
is minimal. Strong attack detecting codes, like the AMD
codes, are believed to be stronger than robust codes since
unlike the last their error masking probability does not depend
on the probability-mass-distribution of the codewords.
However, when the information is not uniformly distributed,
i.e. when entropy of the code is small, strong attack detecting
codes are not always stronger than the simple low-cost robust
codes [29]. A simple criterion, which directs how to choose a
security-oriented code with respect to the entropy of the data
to be protected, is presented in [29], which can also be applied
in modern security schemes integration [30], as well.

ACKNOWLEDGMENT
 This work is supported under the framework of EU COST
IC 1204: TRUDEVICE (Trustworthy Manufacturing and
Utilization of Secure Devices) Project and by national funds
through Fundação para a Ciência e a Tecnologia (FCT) with
reference UID/CEC/50021/2013.

REFERENCES
[1] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.

B. Robshaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-
lightweight block cipher,” in CHES, ser. Lecture Notes in Computer
Science, P. Paillier and I. Verbauwhede, Eds., vol. 4727. Springer, 2007.

[2] C. De Canniere, O. Dunkelman, and M. Kneˇ zevi ́ c, “Katan and
ktantana family of small and efficient hardware-oriented block ciphers,”
in Cryptographic Hardware and Embedded Systems-CHES 2009.
Springer, 2009, pp. 272–288.

[3] National Institute of Standards and Technology (NIST), “Announcing
the Advanced Encryption Standard (AES),” Federal Information
Processing Standards Publication 197, November 2001.

[4] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko, and D.
Buell, “The promise of high-performance reconfigurable computing,”
IEEE Computer, vol. 41, pp. 69–76, February 2008.

[5] N. Sklavos, “On the Hardware Implementation Cost of Crypto-
Processors Architectures”, Information Systems Security, The official
journal of (ISC)2, A Taylor & Francis Group Publication, Vol. 19,
Issue: 2, pp. 53-60, 2010.

[6] B. Badrignans, R. Elbaz, and L. Torres, “Secure FPGA configuration
architecture preventing system downgrade,” in Field Programmable
Logic and Applications, 2008. FPL 2008. International Conference on,
pp. 317–322, IEEE, September 2008.

[7] H. Kashyap and R. Chaves, “Secure partial dynamic reconfiguration
with unsecured external memory,” in Field Programmable Logic and
Applications (FPL), 2014 24th International Conference on, pp. 1–7,
IEEE, 2014.

[8] J. Vliegen, N. Mentens, and I. Verbauwhede, “Secure, remote, dynamic
reconfiguration of FPGAs,” ACM Trans. Reconfigurable Technol. Syst.,
vol. 7, pp. 35:1–35:19, Dec. 2014.

[9] F. Devic, L. Torres, J. Crenne, B. Badrignans, and P. Benoit, “SecURe
DPR: Secure update preventing replay attacks for dynamic partial
reconfiguration,” in Field Programmable Logic and Applications (FPL),
2012 22nd International Conference on, pp. 57–62, IEEE, August 2012.

[10] A. J. Elbirt and C. Paar, “An instruction-level distributed processor for
symmetric-key cryptography,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 16, no. 5, pp. 468–480, 2005.

[11] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M.
Chaves Filho, “MorphoSys: an integrated reconfigurable system for
data-parallel and computation-intensive applications,” Computers, IEEE
Transactions on, vol. 49, no. 5, pp. 465–481, 2000.

[12] N. Sklavos, P. Kitsos, E. Alexopoulos, O. Koufopavlou, “Open Mobile
Alliance (OMA) Security Layer: Architecture Implementation and
Performance Evaluation of the Integrity Unit”, New Generation
Computing: Computing Paradigms and Computational Intelligence,
Springer-Verlag, Vol. 23, No 1, pp. 77-100, 2005.

[13] J. C. Resende and R. Chaves, “Dual CLEFIA/AES cipher core on
FPGA,” in Applied Reconfigurable Computing, pp. 229–240, Springer,
2015.

[14] R. Chaves, G. Kuzmanov, S. Vassiliadis, and L. Sousa, “Reconfigurable
memory based aes co-processor,” in Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th International, IEEE, 2006.

[15] P. Chodowiec and K. Gaj, “Very compact FPGA implementation of the
AES algorithm,” in Cryptographic Hardware and Embedded Systems-
CHES 2003, pp. 319–333, Springer, 2003.

[16] M. El Maraghy, S. Hesham, and M. A. Abd El Ghany, “Real-time
efficient FPGA implementation of AES algorithm,” in SOC Conference
(SOCC), 2013 IEEE 26th International, pp. 203–208, IEEE, 2013.

[17] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, and J. Legat, “Compact
and efficient encryption/decryption module for FPGA implementation of
the AES Rijndael very well suited for small embedded applications,” in
Information Technology: Coding and Computing, 2004. Proc. ITCC
2004. International Conference on, vol. 2, pp. 583–587, IEEE, 2004.

[18] N. Sklavos and O. Koufopavlou, “Architectures and VLSI
implementations of the AES-proposal Rijndael,” Computers, IEEE
Transactions on, vol. 51, no. 12, pp. 1454–1459, 2002.

[19] T. Kryjak and M. Gorgon, “Pipeline implementation of the 128-bit block
cipher CLEFIA in FPGA,” in Field Programmable Logic and
Applications, 2009. FPL 2009. International Conference on, IEEE, 2009.

[20] R. Chaves, “Compact CLEFIA implementation on FPGAs,” in
Embedded Systems Design with FPGAs, pp. 225–243, Springer, 2013.

[21] P. Proença and R. Chaves, “Compact CLEFIA Implementation on
FPGAs,” in Field Programmable Logic and Applications (FPL), 2011
International Conference on, pp. 512–517, IEEE, 2011.

[22] Q. Liu, Z. Xu, and Y. Yuan, “A 66.1 Gbps single-pipeline AES on
FPGA,” in Field-Programmable Technology (FPT), 2013 International
Conference on, pp. 378–381, IEEE, 2013.

[23] V. Tomashevich, S. Srinivasan, F. Foerg, and I. Polian, “Cross-level
protection of circuits against faults and malicious attacks,” in Proc. IEEE
18th IOLTS, Sitges, Spain, 2012, pp. 150–155.

[24] Victor Tomashevich, Yaara Neumeier, Raghavan Kumar, Osnat Keren
and Ilia Polian, "Protecting Cryptographic Hardware against Malicious
Attacks by Nonlinear Robust Codes", The IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems (DFT'14),
Amsterdam, 1-3 October 2014.

[25] K. J. Kulikowski, M. G. Karpovsky, and A. Taubin, “Robust codes and
robust, fault tolerant architectures of the advanced encryption standard,”
J. Syst. Archit., vol. 53, no. 2/3, pp. 138–149, Feb. 2007.

[26] Y. Neumeier and O. Keren, “Robust generalized punctured cubic
codes,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 1–10, May 2014.

[27] Shumsky, O. Keren, and M. Karpovsky, “Robustness of security
oriented codes under non-uniform distribution of codewords,” in Proc.
DSN-DCCS, 2013, pp. 25–30.

[28] M. G. Karpovsky and Z. Wang, “Design of strongly secure
communication and computation channels by nonlinear error detecting
codes,” IEEE Trans. Comput., vol. 63, no. 11, pp. 2716–2729, 2014.

[29] O. Keren and M. Karpovsky, “Relations between the Entropy of a
Source and the Error Masking Probability for Security Oriented Codes”,
IEEE trans. On Communications, Vol. 63, No. 1, pp. 206-214, 2015.

[30] N. Sklavos, “Securing Communication Devices via Physical Unclonable
Functions (PUFs)”, Information Security Solutions Europe (isse’13),
Belgium, 22-23 October, pp. 253-261, Springer, ISBN: 973-3-658-
03370-5, 2013.

