
Efficient FPGA Implementation of the SHA-3 Hash
Function

Magnus Sundal and Ricardo Chaves
INESC-ID, Instituto Superior Técnico, Universidade Lisboa
Email: mvsundal@outlook.com, Ricardo.Chaves@inesc-id.pt

Abstract—In this paper, three different approaches are consid-
ered for FPGA based implementations of the SHA-3 hash func-
tions. While the performance of proposed unfolded and pipelined
structures just match the state of the art, the dependencies of the
structures which are folded slice-wise allow to further improve
the efficiency of the existing state of the art. By solving the
intra-round dependencies caused by the θ step-mapping with
the pre-computation of values and by improving the memory
mapping, it is possible to reduce the required area resources
and obtain shorter datapath. This allows to achieve an efficiency
improvement of at least 50% in regard to the state of art. This
work also provides an overview of the achievable performance
and cost for different folding/unrolling options.

I. INTRODUCTION

The SHA-3 standard was specified in 2012, with the con-
clusion of the public SHA-3 competition from the National
Institute of Security and Technology (NIST) [1], where a
selected sub-set of the Keccak sponge function was integrated.
This established the potentially more secure hashing standard,
given both the general life-expectancy of its predecessor, SHA-
2, and existing attacks [2].

Other than security, efficiency is major requirement when
implementing cryptographic algorithms. SHA-3 is seen to
exceed the performance of its predecessor [3] and multiple
solutions with increasing performance have been proposed,
each with its own particularities. While software allows for
a high flexibility and much shorter time to market, hardware
implementations allow achieving significantly higher through-
puts and overall better performance metrics. One alternative
for exploiting the benefits of both of these technologies are
FPGAs. These are fine-grained re-programmable logic devices
with a high number of logic cells and additional resources
which provide high parallel processing power. While ASICs
allow to better performances results and lower mass production
costs, FPGAs allow for a lower time to marked. FPGAs
also allow for the possibility to update the hardware imple-
mentation and to achieve a better performance than software
implementations. An additional advantage with FPGAs is the
ease of prototyping and evaluation. Given this, FPGAs are
herein chosen as the implementation technology, in particular
the Virtex-5 family from Xilinx, being the most used FPGA
family used in the state-of-the-art.

The existing literature is classified by the adoption of the
structural optimization techniques: folding, pipelining and un-
rolling. Solutions with various approaches to folding represent
the most compact SHA-3 structures while larger existing

solutions are unfolded and represent structures with a high
throughput. Solutions with further increases in throughput
utilize pipelining and the number of required clock cycles
(latency) is reduced in one example by the use of unrolling.

Herein three structures are proposed and developed con-
sidering a straight-forward solution, designated as basic, a
pipelined structure, and a compact structure which is folded
4 times. The basic structure is presented mostly as a refer-
ence point for the comparison with the remaining proposed
structures and the existing state-of-the-art. However, the main
contribution is in a proposed compact structure, derived from
the basic structure by adopting the technique of folding. An
additional pipelined structure is also considered as a parallel
processing option.

In regard to folded structures, the novel approach proposed
allows to solve or mitigate the data dependency issues, by pre-
processing the dependent state values in the θ computation.
The considered approach allows to improve the Throughput
per Area (T/A) efficiency in regard to the best existing state-
of-the-art by 50%. As expected, the folded structures allow for
more compact designs at a cost of lower throughputs but also
relatively lower efficiency, when compared with the straight-
forward unfolded structures. A wrapper component with IO-
buffering is also included and discussed, which in most of
the existing literature is not considered or not included in the
presented assessments.

The paper is organized as follows. Section 2 gives a brief
presentation of the underlying Keccak algorithm of the SHA-3
hash function. In section 3, the state-of-the-art is presented and
analyzed with regard to the most relevant existing solutions.
Section 4 describes the main contributions of this work while
the experimental evaluation of the presented structures is
presented and compared with the existing state-of-the-art in
Section 5. The paper is concluded with some final remarks in
Section 6.

II. THE SHA-3 ALGORITHM

The algorithm is a family of sponge functions called Keccak
which is based on the sponge construction [4], as depicted in
Figure 1. The sponge construction provides a generalized secu-
rity proof and involves the iteration of an underlying sponge
function along with the absorption of blocks, constituting a
padded input message, and truncation of the output digest.

The state, which is processed by the sponge function,
is composed of the outer state, with r bits, and the inner

Fig. 1: SHA-3 sponge construction.

state, with c bits, initiated to zero. The outer state is where
the message is absorbed and the digest is extracted after
processing. Its size is referred to as the block size. The inner
state is empty at the start of processing and its size is the main
parameter related with the security proof of SHA-3. When
the input message and the output digest are smaller than the
outer state, with r bits, the sponge function only needs to be
processed once. The state (composed of the outer and inner
state) is represented as a 3-dimensional block, as depicted in
Figure 2.

Fig. 2: The state in conventional 3-dimensional representation.
There are currently four sub-versions of SHA-3 supported

by NIST: SHA3-224, -256, -384 and -512, where the numbers
indicate the length of the digest. They differ in the size-
ratio between the inner and outer state (block size), but the
complete state is always 1600 bits (5x5x64). The sponge
function consists of 24 rounds where the state is processed
and updated. According to the sponge function specification,
the absorbing phase is iterated if the message is large, however,
the squeezing is only performed once as all of the four SHA-3
sub-versions produce digests smaller than the block size/outer
state.

The logic providing the processing of each of the 24 rounds
is referred to as the round function and is made up of a 5-
step sequence of transformations and permutations. These are
further referred to as step-mappings and are largely based on
XORs, rotations as well as a few NOT and AND operators,
as depicted in Figure 3.

Theta (θ) provides diffusion on to two adjacent columns.
Rho (ρ) permutates each lane internally by a rotation offset
given by a 5x5 matrix r. Pi (π) permutates the lanes with

θ-Theta (A)

B[x , z] = A[x , 0 , z] ⊕ A[x , 1 , z] ⊕ . . .
⊕ A[x , 4 , z]

C[x , z] = B[x−1, z] ⊕ B[x +1 , z−1]
D[x , y , z] = A[x , y , z] ⊕ C[x , z]

ρ-Rho (D,r)

E [x , y , z+ r (x , y)] = D[x , y , z]

π-Pi (E)

F [y , 2 x+3y , z] = E [x , y , z]

χ-Chi (F)

G[x , y , z] = F [x , y , z] ⊕
((NOT F [x +1 , y , z]) AND F [x +2 , y , z])

ι-Iota (G,RC)

H[0 , 0 , z] = G[0 , 0 , z] ⊕ RC[z]

Fig. 3: The five steps of the round function

respect to each other in the x and y positions, changing rows
into columns. Chi (χ) provides non-linearity, acting on each
row and Iota (ι) XORs the center lane with round-specific
constants.

The input blocks are XORed with the state lane-wise, start-
ing at the center. A message block fills up the 3-dimensional
state in the following sequence with [x,y] coordinates: [1-
4,0],[1-4,1], etc. The inner state ends at the highest coordinate,
i.e. from [4,4], and fills up the lower coordinates till the end
of the outer state. The padding of messages is such that a ’1’
bit is appended after the LSB of the last byte of the message
and finally a ’1’ bit is appended to the MSB of the last byte
of the block. The NIST API specifies a byte-wise big-endian
bit-order while the internal Keccak ordering is little-endian,
thus a bit-reordering is required [5].

III. STATE-OF-THE-ART

Several structures for the computation of SHA-3 have
already been proposed in the existing literature. These struc-
ture vary mainly in the level of folding and the number of
pipeline stages. While unfolded structures allows to obtain
higher throughputs, folded structures require less resources
at a cost of lower throughputs. It should be noted that due
to the dependencies within the round caused by the step-
mappings, the complexity is increased as the folding technique
is adopted. For example, folding a state along the lanes will
split up the ρ step-mapping which rotates each lane. As such,
additional logic and possibly additional clock cycles must be
used to solve the dependencies. This results in lower T/A
efficiency metrics can complicate further optimization, e.g. by
the use of pipelines. Folded structures are distinguished by
the orientation of the folding and the degree in which they
are folded, i.e. the folding factor (FF). The relevant existing

solutions are either folded lane-wise or slice-wise and the
maximum folding factor is respectively 64 and 25, denoting
the total number of lanes and slices of the state.

The first folded structure was proposed by Bertoni et al.
in the Keccak Implementation Overview [5], with FF=25 and
the state stored on an embedded memory. The inconvenience
of the lane-wise folding is demonstrated by the high latency
of this solution with 215 clock cycles per round. The θ
step-mapping requires that 11 lanes are read from memory
before one lane is processed. Improvements to this structure is
proposed by Kerckhof et al. [6] where the latency is reduced to
88 clock cycles per round by more efficient control logic which
improves the instruction parallelism. San & At [7] propose
further improvements to the latency and frequency by pipeline
registers so that two rounds are completed in 88 clock cycles.

Jungk & Apfelbeck [8] propose the first slice-wise solution,
with FF=8 so that 8 slices are processed in parallel. A slice-
wise folding allows for the complete round function processing
of a fold in one clock cycle, but requires a re-scheduling of
the round function. Therefore, the latency is a multiple of the
folding factor and thus lower than for lane-wise folding. The ρ
and θ step-mappings still require additional logic for provision
of the necessary input bits. As proposed in [9], [10], the re-
scheduling of the round function allows for incorporating the
ρ step-mapping into addressing of the state in memory. This
implies the increase of the number of rounds, from 24 to 25,
as the step-mapping sequence is altered. This folding approach
is a highly flexible solution with respect to the folding factor,
i.e. the number of slices being processed in parallel can easily
be modified with minor changes to the control logic.

Winderickx et al. [11] propose a slice-wise structure with
FF=64, so that 1 slice of 25 bits is processed in parallel. In this
approach, the state is stored with shift register lookup tables
(SRLs) for easy processing of the ρ step-mapping.

Akin et al. [12] present the first pipelined unfolded structure
with 5 pipeline registers incorporated in the round function.
This optimization achieves a very high frequency, but at a cost
of high area requirements, resulting in a low T/A efficiency.
Additional variations of pipelined structures have also been
explored [13], [14], [15] and results suggest that one or two
pipeline stages in the round function is the optimal trade-off
between increased throughput and area.

As is pointed out by Ioannou et al. [16], pipelining is not
relevant for applications where single larger messages need to
be processed. The specifications of the Keccak sponge function
dictates that the state containing a block must be processed
by the 24 rounds before absorbing the next block of the same
message. Two blocks of the same message will therefore not
fill a pipeline. Regarding multiple small messages, Ioannou
et al. propose an unrolled structure which incorporates an
external pipeline.

IV. PROPOSED SOLUTION

As described above, several design options can be consid-
ered when implementing the SHA-3 algorithm in hardware.
Herein, 3 different implementations are presented considering

distinct structural options, namely; a straight-forward imple-
mentation, designated as a basic structure; a pipelined structure
computing two message blocks in parallel; and a folded
structure, the most novel structure with a 4 level folding, round
re-scheduling and dependency resolution by pre-computing
partial θ values.

A complete SHA-3 structure can be divided into 3 main
components: the wrapper, the state and the round function.
The wrapper component includes the interface with the SHA-
3 core, the byte reordering according to the sequence needed
by the scheduling of operations, the control logic and the IO-
buffering. The state contains the registers for storing the 1600
bits of the state and the round function contains the 5 step-
mappings needed to compute SHA-3. Input message padding
is assumed to be already performed, for example in software,
as considered in most of the existing state-of-the-art.

The following sections describe the 3 proposed SHA-3
structures and a few of the implementation decisions involved.

A. Unfolded structures

The basic structure contains one instance of the 3 aforemen-
tioned components, computing one round per clock cycle. A
multiplexer controlled by a round counter determines whether
the state is updated with the result of the round function
or from the input block provided by the wrapper during the
absorption phase. The separate IO-buffer allows to output the
resulting digest and absorbing a new message in parallel with
the processing of a message, as considered in [5]. The resulting
structure is identical to the straight-forward ones considered
in [3], [16].

The main goal of this structure is to serve as a reference
point for the relative evaluation with the state-of-the-art.

The pipelined structure is modified from the basic structure
with an internal pipeline register which separates the θ step-
mapping from the rest of the round function. This is realized
by implementing a synchronized input to the ρ step-mapping.
Two messages must be prepared by the wrapper in parallel
with two messages being processed in the round function. The
latency is increased to 48 clock cycles, however, the clock
cycles per block remains 24.

B. Folded structure

Towards a more compact SHA-3 structure, folding of the
round computation can be considered. In this case each round
is computed over multiple clock cycles, depending on the
folding factor (FF). Targeting a throughput of about 1GBs
and a moderate folding factor, a FF=4 is proposed. Given
the results and approaches considered in the state-of-the-art,
a slice-wise folding structure is considered, resulting in the
processing of 16 slices in each iteration. However, special care
must be taken regarding data dependencies in the θ and ρ step-
mappings, in order to provide the necessary input values for
the computation of the slices on each iteration.

The ρ step-mapping dependencies can be solved by re-
scheduling the round computation in a similar manner as
proposed in [8]. With this, the re-scheduled computation

Fig. 4: Simplified schematic of the folded structure.

becomes Rresc = θ◦ι◦χ◦π◦ρ. Thus, it is possible to split the
round function into RF1, containing θ, and RF2, containing
π,χ and ι. The ρ step-mapping can be embedded in the state
memory. The selection between the input block, feed in the
first round to RF1, and the output of RF2, feed in the following
iterations, is done using a multiplexer. The resulting structure
is illustrated in Figure 4.

When larger messages composed by multiple input blocks
are considered, the output of RF2 of round 24 must be XORed
with the new messages block before entering RF1. When
processing a new message, the input block is directly fed to
RF1. This is accomplished by a multiplexer selecting the input
block or the XOR of this data with the output of RF2, as
illustrated in the center of Figure 4. With this approach, the
processing of each block requires 96 clock cycles.

Distributed RAM can be used to store both the IO-buffer
(in the wrapper component) and the state. FPGA LUTs are
cascaded and treated as 16x64 bit memory blocks. The optimal
approach to mapping the state into memory blocks depends on
the folding factor and orientation. In the proposed solution,
both the state and the IO-buffer are organized in such a way
that each memory block contains one lane. Different depths
of the memory contain different folds, i.e. the 16 first bits of
each lane (z=0-15) are located at address 0, bits z=16-31 at
address 1 etc.

The ρ step-mapping is solved by addressing. There are two
instances of the state located at different addresses of the
memory blocks, i.e. instance one is located at address 0-3 and
instance two at address 4-7. The read address corresponds to
the sub-round and is therefore incremented by a sub-round
counter from 0 to 7. The rotation is performed by adding an
offset to the write address of the different memory blocks,
however, a mismatching occurs as the rotation of each lane
is not aligned with the four folds. Addressing is therefore
determined by the future location of the majority of the bits of
each lane. With FF=4, < 8 bits will be located at the adjacent
fold for each lane. These mismatched bits are packed into the
other memory blocks (lanes) with the same addressing. In this
way, they can be accessed during the correct future sub-round.
Without this compression, additional registers are necessary in
order to provide all the dependency bits of each fold.

The processing of a slice in the θ step-mapping depends
on the equivalent input slice and the slice with the lower z-
coordinate, i.e. θ output fold 1 slice 0 (F1S0’) depends on
F1S0 and F0S15. This and the equivalent cases with the slices
of the subsequent folds are easily solved as the intermediate

Fig. 5: θ step-mapping dependency solution: F0S0 pre-
processing.

FXS15 values are simply stored in a temporary register until
the next sub-round. However, F0S0, can not be calculated
without access to F3S15, which is not available until the last
sub-round. The existing literature [8], [10] has solved this by
storing the intermediate value of F0S0 and completing this
processing during the last sub-round.

An alternative solution to this is herein proposed, by per-
forming the F0S0 pre-processing. In this solution the future
value of the F3S15 slice, belonging to round x+1.3, is collected
from the output of the round function during the sub-rounds of
round x. The above description considers round x and x+1 as
the xth and x+1th rounds of SHA-3, respectively, and .3 as the
3rd iteration of a round, given that with FF = 4 each round
requires 4 loop iterations to be computed. With this approach,
Slice F3S15 is therefore available in the θ step-mapping in RF1
during processing of F0S0 in the initial sub-round iteration, i.e.
round x+ 1.0. This pre-computation is depicted in Figure 5.

C. Implementation

While the considered structures and proposed solution are
independent from the implementation technology, prototypes
were implemented in order to properly test and compare with
the existing state-of-the-art. For this the Xilinx FPGA Virtex-5
family was considered.

The IO-buffer in the wrapper component is implemented
with flip flops as a FIFO for the basic structure. For the
pipelined structure, two messages are managed by the wrapper
in the IO-buffer and so the depth of distributed RAM can be
used. The situation is similar for the folded structure where
only parts of the message are accessed in each clock cycle.
Regarding memory usage and considering SHA3-512, 9 16x16
single port RAM blocks were deployed, using Distributed
RAM Blocks produced by the XIlinx IPCore generator. Mul-
tiplexers are used to assign the respective inputs to the correct
memory block and to select the correct state bits to the digest
value output.

Paper FPGA Buffer PL UF FF Latency
(cycles)

f
(MHz)

A
(slices)

T
(Gbps)

T/A
(M/s)

T/A (scaled)
(M/s)

Ioannou[16]* V-5 no 1 1 1 24 382 1581 9.17 5.79 5.79
Gaj[3]* V-5 yes 1 1 1 24 283 1272 12.82 5.37 5.37
Basic V-5 yes 1 1 1 24 223 1192 5.35 4.49 4.49
Baldwin[17] V-5 yes 1 1 1 25 196 1971 8.52 4.32 2.40
Ioannou[16]* V-5 no 2 2 1 24 352 2652 16.90 6.37 6.37
Pipelined V-5 yes 2 1 1 48 273 1163 7.80 6.06 6.06
Athan.[15] V-5 no 2 1 1 48 389 1702 18.70 10.98 5.49
Pereira[13]* V-5 yes 4 1 1 100 452 3117 7.70 3.34
Akin[12]* V-4 yes 5 1 1 121 509 4356 22.33 5.13 2.69
Folded V-5 yes 1 1 4 96 200 476 1.20 2.52 2.52
San & At[7]* V-5 yes 1 1 25 1062 520 151 0.25 1.66 1.66
Jungk[10] V-5 no 1 1 2 50 144 914 3.13 2.04 1.33
Jungk[10] V-5 no 1 1 4 100 150 489 1.63 1.99 1.30
Jungk[8] V-5 no 1 1 8 200 159 393 0.86 2.19 1.17
Jungk[18] V-5 yes 8 1 64 1665 257 90 167 1.85 0.98
Winder.[11]* V-5 yes 1 1 64 1730 248 134 0.25 1.16 0.62
Kerckhof[6]* V-6 yes 1 1 25 2154 250 144 0.07 0.46 0.46

TABLE I: SHA3-512 implementations results. Nomenclature: FF=folding factor, UF=unrolling factor, PL= pipeline stages.
M/s=Mbps/slice.
*Source of results not mentioned or from synthesis results.

Distributed RAM is also used for the state register of
the folded structure where 25 16x16 simple dual port (SDP)
memory blocks store the 4 25x16 bit folds.

The round constants were precomputed and hard-coded in
the design and are provided by the wrapper using multiplexers
controlled by the round-counter (resulting in a more compact
circuitry than computing them on-th-fly with a LFSR). The
pre-computed θ intra-round values, used to solve the data
dependencies, are provided to RF1 either from the IO-buffer,
during round 0, or from the round logic, during the remaining
rounds. This selection is performed by another multiplexer
controlled by the round counter.

Particular components from the FPGA technology may be
used, such as LUT-based FIFOs, BRAMs, or DSPs. However,
to present less technology biased results and to better compare
with the existing state-of-the-art, these were not considered in
the implemented structures.

V. RESULT ANALYSIS

All proposed structures have been developed considering a
Xilinx xc5vlx50t Virtex-5 FPGA. The presented results were
obtained after Place and Route using the Xilinx ISE 14.7
tool. LUT combining has been used to optimize the area
requirements.

These results obtained for the developed structures and the
results presented in the related literature are listed in Table I,
sorted by design structures and efficiency.

Since the various results in the state-of-the-art are presented
for different SHA-3 sub-versions (i.e. SHA3-256, SHA3-...),
results for normalized/scaled efficiency values are also pre-
sented in the last column of Table I, (T/A (scaled)). Depending
on the SHA-3 sub-versions, the input message is inputted in
different block sizes. For example, in SHA3-256 the message
is inputted in 1088-bit blocks while for SHA3-512 the message

is inputted in 576-bit blocks. Since in all cases the state
is always 1600-bit and processed over 24 round, the size
of the input block, i.e. the SHA-3 version, directly impacts
the throughput and respective T/A efficiency. As such, this
efficiency scaling is based on (1), where the block size, r,
is adjusted to 576 bits. f is the frequency, L is the latency
denoting the required number of clock cycles for processing
of a block, and A is the area.

E =
T

A
=

r · f
L ·A

(1)

As such the scaling is done by dividing the original T/A value
by the size of the input block (which for SHA3-256 is 1088
bits) and multiplying by 576, the size of SHA3-512 input
block, resulting in:

Scaled E = E × SHA3 Block Size

576
(2)

Other than this, the other differences between SHA-3 sub-
version implementations are related with the size of the IO-
buffer and the amount of logic used in XORing the input
blocks with the state. Since this will always be advantageous
for the structures supporting SHA3-512, as is the case of
the ones herein presented, it not considered in the presented
normalization/scaling.

When comparing with the basic unfolded structures [17],
[12], [3], [16] with the basic herein proposed, while some
differences exist they are not too significant, since they are
structurally identical. It is the authors’ belief that the existing
differences are mainly due to the way the results were obtained
and the existence or not of a wrapper interface. Some of the
results presented in the state-of-the-art were obtained after
synthesis only, presenting better results or using the ATHENa
tool as in the case of Homsirikamol et al. [3]. It is unclear if

the latter results are for synthesis or post place and route.
The basic structure is mostly presented as a base of

comparison. It should be noted that [17] includes a padding
component and [12] is implemented on a Virtex-4, which
should yield a lower efficiency. The cost of the wrapper with
IO-buffer for the proposed basic structure is about 160 slices,
including the control logic, storing 9x64 bits.

The obtained results for the pipelined structure are identical
to the ones in the state of art. The structure proposed in [16]
presents better results, but does not consider the input and
wrapper component. When compared with identical folding
structure proposed in [15], with no unfolding and one level of
pipeline the obtained efficiency is 10% better, while including
the wrapper logic.

As already noted, pipelined structures are only relevant in
situations where hashing messages are equal to or smaller
than the block size. For hashing of larger messages, solutions
similar to the basic structure represent roughly the highest
obtainable efficiency for SHA-3.

The folded structure considers a folding factor of 4, mean-
ing that 25% of the state is processed in each clock cycle,
presenting a trade-off between lower area requirements and
throughput. When compared with the best state-of-the-art
considering slice-wise folding, proposed in [10], the obtained
results suggest that for the same folding level faster designs
can be devised with identical area costs, resulting in an
improved efficiency, up to 89%. This improvement is achieved
by a more efficient structure which only contains the absolute
necessary registers for a proper functionality and a mem-
ory mapping that reduces the required RAM. Nevertheless,
the main improvement is achieved by the proposed pre-
computation of θ, solving the intra-round dependencies more
efficiently.

When compared with the lane-wise solution folding pro-
posed in [7], the results suggest an efficiency improvement
of 51%. This suggests that lane-folding may not be the best
design approach, even when using BRAM, as is the case in [7].
It is not clear how the inter-round dependencies are solved
in [7] nor how the authors were able to achieve such a high
operating frequency.

To allow and facilitate the comparison with the proposed
solutions, the implemented structures (using VHDL) are made
available at: http://sips.inesc-id.pt/∼rjfc/cores/SHA3/ .

VI. CONCLUSION

In this paper FPGA based SHA-3 solutions and techniques
are considered and 3 structures proposed and evaluated. This
work considers a straightforward, a pipelined, and a folded
structure. While the first two do not present particular chal-
lenges or contributions, the folded structure allowed to present
some innovations towards improved computational efficiency.
The achieved efficiency improvements, in the order 50% to
90%, were achieved by considering a slice-wise folding ap-
proach with an adequate memory mapping and θ dependency
pre-computation. This resulted in smaller design and lower
critical path, and consequently in a higher efficiency.

ACKNOWLEDGMENTS

“This work was partially supported by national funds
through Fundação para a Ciência e a Tecnologia (FCT) with
reference UID/CEC/50021/2013.”

REFERENCES

[1] National Institute of Standards and Technology. FIPS PUB 202 - SHA-
3 Standard: Permutation-Based Hash and Extendable-Output Functions,
2015.

[2] Henri Gilbert and Helena Handschuh. Security analysis of SHA-256 and
sisters. In International Workshop on Selected Areas in Cryptography,
pages 175–193. Springer, 2003.

[3] Ekawat Homsirikamol, Marcin Rogawski, and Kris Gaj. Comparing
hardware performance of round 3 SHA-3 candidates using multiple
hardware architectures in Xilinx and Altera FPGAs. In Ecrypt II Hash
Workshop, pages 19–20, 2011.

[4] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Keccak sponge function family main document. Submission to NIST
(Round 2), 3:30, 2009.

[5] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. Keccak implementation overview. Report,
STMicroelectronics, Antwerp, Belgium, 2012.

[6] Stéphanie Kerckhof, François Durvaux, Nicolas Veyrat-Charvillon,
Francesco Regazzoni, Guerric Meurice de Dormale, and François-Xavier
Standaert. Compact FPGA implementations of the five SHA-3 finalists.
In International Conference on Smart Card Research and Advanced
Applications, pages 217–233. Springer, 2011.

[7] I. San and N. At. Compact Keccak Hardware Architecture for Data
Integrity and Authenticaion on FPGAs. Information Security Journal:
A Global Perspective, 21, pages 231–242, August 2012.

[8] Bernhard Jungk and Jurgen Apfelbeck. Area-efficient FPGA implemen-
tations of the SHA-3 finalists. In 2011 International Conference on
Reconfigurable Computing and FPGAs, pages 235–241. IEEE, 2011.

[9] Bernhard Jungk. FPGA-based evaluation of cryptographic algorithms.
PhD thesis, Johann Wolfgang Goethe-Universität, February 2016.

[10] Bernhard Jungk and Marc Stöttinger. Among slow dwarfs and fast
giants: A systematic design space exploration of KECCAK. In Re-
configurable and Communication-Centric Systems-on-Chip (ReCoSoC),
2013 8th International Workshop on, pages 1–8. IEEE, 2013.

[11] J. Winderickx, J. Daemen, and N. Mentens. ”Exploring the Use of
Shift Register Lookup Tables for Keccak Implementations on Xilinx
FPGAs”. 26th International Conference on Field-Programmable Logic
and Applications, Lausanne, 2016.

[12] O. C. Ulusel A. Akin, A. Aysu and E. Savas. Efficient Hardware
Implementations of High Throughput SHA-3 Candidates Keccak, Luffa,
Blue Midnight WIsh for Single- and Multi-Message Hashing. SINCONF,
Taganrog, Russia, pages 168–177, September 2010.

[13] Fábio Dacêncio Pereira, Edward David Moreno Ordonez, Ivan Daun
Sakai, and A Mariano de Souza. Exploiting parallelism on keccak: Fpga
and gpu comparison. Parallel & Cloud Computing, 2(1):1–6, 2013.

[14] Yusuke Ayuzawa, Naoki Fujieda, and Shuichi Ichikawa. Design trade-
offs in SHA-3 multi-message hashing on FPGAs. In TENCON 2014-
2014 IEEE Region 10 Conference, pages 1–5. IEEE, 2014.

[15] George S Athanasiou, George-Paris Makkas, and Georgios Theodoridis.
High throughput pipelined FPGA implementation of the new SHA-3
cryptographic hash algorithm. In Communications, Control and Signal
Processing (ISCCSP), 2014 6th International Symposium on, pages 538–
541. IEEE, 2014.

[16] Lenos Ioannou, Harris E Michail, and Artemios G Voyiatzis. High
performance pipelined FPGA implementation of the SHA-3 hash algo-
rithm. In 2015 4th Mediterranean Conference on Embedded Computing
(MECO), pages 68–71. IEEE, 2015.

[17] Brian Baldwin, Andrew Byrne, Liang Lu, Mark Hamilton, Neil Hanley,
Maire O’Neill, and William P Marnane. FPGA implementations of the
round two SHA-3 candidates. In 2010 International Conference on Field
Programmable Logic and Applications, pages 400–407. IEEE, 2010.

[18] Bernhard Jungk and Marc Stöttinger. Hobbit - Smaller but faster than
a dwarf: Revisiting lightweight SHA-3 FPGA implementations. In
ReConFigurable Computing and FPGAs (ReConFig), 2016 International
Conference on, pages 1–7. IEEE, 2016.

