Decentralized Communications: Trustworthy
Interoperability in Peer-To-Peer Networks

Paulo Chainho*, Steffen Driisedow’, Ricardo Lopes Pereira®,
Ricardo Chaves®, Nuno Santos, Kay HaensgeT, Anton Roman Portabales¥

*Altice Labs, TDeutsche Telekom AG, SINESC-ID / IST, University of Lisbon, 11Quobis

Abstract—This paper introduces a new communication
paradigm called Decentralized Communications, which enables
cross-domain communication services to trustfully use peer-to-
peer networks. Decentralized Communication services are inher-
ently inter-operable without the need to standardize protocols or
service APIs. This property is achieved by using the Protocol-
on-the-fly concept and the Reporter-Observer communication
pattern. Users can select Identity Providers to mutually authenti-
cate themselves and secure communications, independently of the
Communication Service Provider. Decentralized Communications
can be applied to any kind of communication, including human-
to-human, human-to-things, and things-to-things communication.
The reTHINK project has developed an Open Source reference
implementation of a Decentralized Communications framework,
which was successfully used in various challenging scenarios.
The results of this project demonstrate the feasibility to enhance
interoperability and users’ privacy, and the freedom to select
whom to trust, without slowing down ICT innovation pace. It
is expected that Decentralized Communications will impact the
design of more agile Service Delivery frameworks for Internet of
Things and 5G networks.

Keywords—Decentralized communication, peer-to-peer, hyper-
linked entities, protocol on-the-fly, identity management, WebRTC.

I. INTRODUCTION

The impressive fast pace of innovation of the Web is
fostered by Global Web Players. Although the benefits to
consumers are countless, they should be protected from the
abuse of dominant market positions. Web Monopolies are
natural, but it means Web Communication Services only work
when users use the same Service [1]. The positive network
effect requires a critical mass of hundreds of millions of
peers, as the value of a product to one user depends on how
many other users there are. The more peers are available to
communicate with, the more valuable the Service becomes.

With Web Monopolies, the fundamental users’ freedom
to select whom to trust their data and select which Services
to be consumed are curtailed. Users are forced to consume
Services from the same organization in order to communicate
or share any kind of resource to each other. If users want
to be in contact and reachable from different Services, they
have to manage different Accounts and Applications. Before a
communication is accomplished, the user has to discover which
Service is used by the recipient. The data that is generated from
the Service consumption as well as a user’s own identity, are

978-1-5386-3873-6/17/$31.00 (©2017 IEEE

managed by the very same Service provider, giving no choice
to users as to whom to trust. The same problem pattern applies
to communication between humans and things (Internet of
Things). However, the scale and the complexity of the problem
for IoT communications is much higher.

Usually these kinds of problems are addressed with
strongly regulated and standardized services, as the ones
delivered by Telecommunication operators, including GSMA
(Global System Mobile Association) mobile telephony and
SMS (Short Message Service) [2]. Services are standardized
to ensure they inter-operate with each other regardless of the
Telecom Operator they are subscribed from. However, reaching
agreements on standards is a very complex activity. Standards
and rules in general (including regulating policies) in a fast
moving area as the ICT (Information and Communication
Technology) constraints stakeholders’ freedom to innovate
with alternative technologies or processes.

Decentralized Communications introduces a novel ap-
proach to solve these issues with non-standards and a full
decentralized architecture. A Decentralized Communication
infrastructure enables a Web of native inter-operable Services
that are able to securely communicate in a peer to peer mode
without having to agree on common network protocols or
service APIs, dramatically reducing the standardization effort.

The remainder of this paper is organized as follows. The
conceptual foundations underlying the design of Decentral-
ized Communications, including the Protocol on-the-fly and
the Reporter - Observer communication pattern concepts, are
described in Section II. A reference implementation of a
Decentralized Communications framework, developed in the
reTHINK Project, is described in Section III, that was eval-
uated as described in section IV. The paper concludes with
related work in Section V and conclusions in Section VI.

II. DECENTRALISED COMMUNICATION CONCEPTS

The conceptual foundations of Decentralized Communica-
tions are illustrated in Figure 1, which includes a Decentral-
ized Messaging Framework providing message delivery in a
peer-to-peer mode, the Protocol on-the-fly mechanism provid-
ing transport interoperability without requiring to standardise
messaging protocols, the Reporter — Observer data stream
synchronisation communication pattern that enables seman-
tic interoperability, and the Decentralised Trust Framework
that enables trustworthy interoperability by using independent
Identity Providers. These concepts are further detailed in the

Runtime

Runtime

Provider:

o
3
g

—J.-L.—:_:LW' sation Streams

Decentralized Messaging Framework

Protocol on-the-fly

Fig. 1. Decentralized Communication Concepts.

following sections and a reference implementation is discussed
in section IIL

A. Decentralized Messaging Framework

Decentralised Communications are built on top of a Re-
source Oriented Messaging model that supports publish/sub-
scribe as well as request/response messaging patterns. Mes-
sages are used to perform CRUD (Create, Read, Update,
Delete) operations on resources handled by communication
endpoints, for example to create or update a WebRTC con-
nection.

The Message delivery is based on a network of routers
where each router only knows adjacent registered routers or
end-points. The routers forward messages to all registered
listeners, which can be other routers or the final recipient
end-point. Listeners are programmatically registered and un-
registered by Routing Management functionalities, which take
their decisions according to a higher level view of the Routing
Network.

There are different layers of routers in the Decentralized
Communication architecture. The lower layers are responsible
for the communication between components on a single end-
point. The upper layers - the Message Nodes - route messages
between end-points in the same service provider domain or
even between different domains. The Decentralized Messaging
Framework is protocol agnostic, i.e. domains with different
internal messaging protocols (e.g. SIP, Matrix) can exchange
message with each other. This is achieved by Message Nodes
supporting the Protocol on-the-fly concept, which is described
in the next section.

B. Protocol on-the-fly (Protofly)

Protocol on-the-fly extends the usage of signalling on-the-
fly concept [5] to ensure messaging protocol interoperability
between any distributed software Services. Protocol on-the-
fly leverages the code on-demand support by runtime engines
(e.g. JavaScript) to dynamically select, load, and instantiate
the most appropriate protocol stack at run-time. This feature
enables protocols to be selected at run-time and not at design
time, which brings several benefits, namely: enables protocol
interoperability among distributed Services, promotes loosely
coupled Service architectures, makes platform updates much

easier, and minimizes standardization efforts and optimizing
resources spent. These benefits stem from the fact that Pro-
tocol Gateways can be avoided in Services’ middleware. The
implementation of the protocol stack (e.g. as a JavaScript file)
which is dynamically loaded and instantiated at run-time is
called a ProtoStub.

C. Semantic Interoperability: Reporter - Observer data stream
synchronisation

While the Protofly provides transport interoperability with-
out requiring the standardisation of messaging protocols, the
Reporter — Observer communication pattern enables semantic
interoperability between Services without having to standard-
ize Service APIs. This pattern extends existing Observable
communication patterns by using a P2P data stream synchro-
nization solution for programmatic Objects, e.g. JSON Objects,
hereafter simply called Data Objects [6]. To avoid concurrency
inconsistencies between peers, only one peer is granted writing
permissions to the Data Object — the Reporter service. All the
other service instances have permissions only to read the Data
Object — the Observers. As soon as the Reporter performs
changes to Data Objects, they are immediately propagated to
any authorized Observer by using the messaging framework. In
this way, the Data Object monitored by the Observer is always
synchronized with the Data Object owned by the Reporter. Full
interoperability is achieved between two service instances by
having to agree only on the usage of common formats for the
Data Objects.

To be noted that, conceptually, more complex semantic
interoperability and data synchronization technologies, such as
Semantic Web and Operational Transformation, can be used.

D. Decentralized Trust

With Decentralized Communications, services are securely
associated to User Identities that are managed by independent
Identity Providers. The end-user is empowered to decide
about which Identity Provider to trust, i.e. User Identities are
decoupled from Service Providers. Users are human beings
(including group of human beings e.g. corporation) or things
(including group of things and physical spaces, e.g. a smart
home or smart building). The Decentralized Communication
Trust Model extends the WebRTC Identity model where Iden-
tity tokens are generated, inserted in intercepted Messages sent
by Services, and validated before being delivered to the target
Service [4].

E. Decentralized Microservices: Hyperties

Hyperties is a new Service paradigm designed according to
Decentralised Communication principles. It follows Microser-
vices architectural patterns, i.e. Hyperties are independently
deployable components. Each Hyperty provides a small set of
business capabilities using the smart endpoints and dumb pipes
philosophy. Hyperties also follow emerging Edge and Fog
computing paradigms [7] as opposed to more popular Cloud
Computing and they tend to be executed as much as possible
in end-users devices. Hyperties are dynamically loaded from
a Catalog Support Service and instantiated in the runtime
environment, when required by Applications. Each Hyperty
instance is registered in a Registry Support Service to become
discoverable.

F. Quality of Service

Providing dedicated quality of service for real time com-
munications may complement decentralized communication
services.

One approach is based on a Last Hop Connectivity Broker
(LHCB) which is able to select the best network to attach
before the actual communication starts. The LHCB aims at
providing means to obtain information on the various alterna-
tive networks available at a client for communication, as well
as on QoS parameters of those.

A second approach is network-based. It relies on traffic
management in the network during communications and cov-
ers several loosely coupled schemes between Communication
Service Provider, Network Service Provider and their end-
users. Leveraging the network capabilities, a brokering in-
stance may provide the most feasible communication path for
an optimal real-time communication set-up. Another approach
for network-based quality support is to use policies, pre-
defined inside the network to support communication stability
as well as quality enhancements. This mechanism is possible
in enterprise environments where the managing IT unit is able
to provide such rule-sets on the network level.

III. IMPLEMENTATION

The reTHINK Project has developed a reference implemen-
tation of a Decentralized Communication framework which is
available as Open Source (Apache 2.0 license) in reTHINK
Github repositories [8]. The reference implementation of the
Hyperty Runtime and of the Decentralized Messaging frame-
work are described in the following sections.

A. Hyperty Runtime

The Hyperty Runtime supports the execution of Hyperties
providing all required functionalities to securely manage its
life-cycle, only consuming back-end support Services when
strictly required. Thus, the Runtime features a catalogue func-
tionality from where Hyperties source packages are deployed,
as well as a registry functionality to handle the registration of
Hyperty instances in order to make the Hyperties reachable
within the runtime.

The Runtime design enables the reuse of the core runtime
components through different platforms including Browsers,
Standalone Mobile Application, Network Side Application
Servers and more constrained M2M/IoT standalone devices.

The Hyperty Runtime is designed to support the execution
of multiple untrusted software components, namely Applica-
tions, Hyperties, ProtoStubs, and Hyperty Core Runtime com-
ponents. Therefore, to provide for the overall system security,
it is necessary to ensure that different components execute in
isolation from each other and to restrict their communication
path to secure channels.

To enforce isolation, the Hyperty Runtime implements
a sandboxing mechanism which confines components down-
loaded from different Service Providers to independent sand-
boxes. Applications and Hyperties may or may not run within
the same sandbox depending on their trust level. If they are
downloaded from the same Service Provider, it is assumed

Generate Assertion
ssertion

Identity
Module
—

Identity
Module
B ——
Policy
Engine

Policy
Engine

4) Intercept
Incoming Message

Runtime

Runtime

Fig. 2. Decentralized Trust implementation.

that they trust each other and that they can share the same
sandbox. Otherwise, Hyperties and Application run in different
sandboxes. On the other hand, Protocol Stubs and Hyperties
live in separate sandboxes even if they are distributed by the
same Service Provider. To preserve compatibility with existing
device native runtimes, Hyperty Core Runtime components
are downloaded from the Hyperty Runtime Service Provider
and executed in a sandbox named Core Sandbox. The Core
Sandbox is responsible for the deployment, execution, and su-
pervision of components downloaded from Service Providers.

Communication between components residing in different
sandboxes is possible only through messages exchanged via
the Message Bus component located in the Core Sandbox. To
communicate with a Service Provider, a Protocol Stub playing
the role of a bridge between the Hyperty Runtime and the
Service Provider, is used. If Hyperty and Application share
the same sandbox, they can communicate directly through a
local API, otherwise they have to exchange messages through
the Message Bus.

As illustrated in Figure 2, the Policy Engine uses the
Identity Module to enforce user trust policies, e.g. identity
assertions and communication encryption:

1) Outgoing messages are intercepted by the Policy
Engine,

2) The Policy Engine requests the Identity Module to
generate an Identity Assertion through the IdP Proxy,

3) The Policy Engine embeds the Identity Assertion into
message body before it is routed outside the runtime,

4) In the recipient runtime, the incoming message is
intercepted by the Policy Engine,

5) The Policy Engine requests the Identity Module to
validate the Identity Assertion from the message
sender through the IdP Proxy,

6) If successful, the Policy Engine authorizes the de-
livery of the message to the recipient with validated
identity assertion.

This mechanism is used to support Mutual Authentication
and to generate symmetric keys to encrypt communications.

Domain level Message Delivery

Msg Node

Sandbox
level

Message
Delivery

BUS

Sandbox _Sanibox i San{|box Sandbox Sandbox

Runtime
level

Message
Delivery

\ Data Sync Stream between /
Data Objects Reporter and

Observer

Data Sync Stream Routing ~___———

Path Control

Runtime Runtime

Fig. 3. Implementation of the Messaging Framework and Reporter Observer
Data Sync Stream.

B. Messaging Framework implementation

The Decentralized Messaging Framework was imple-
mented at three layers (Figure 3): (1) at the Runtime Sandbox
level, where Services are executing, messages are delivered
by a minibus, (2) at the Runtime level, where Sandboxes are
hosted (e.g. in a Browser or in a NodeJS instance), messages
are delivered by a Message Bus, and (3) at Domain Level,
where message delivery is provided by the Message Node
functionality using the Protofly mechanism, i.e. communica-
tion between Message Bus and Message Nodes and among
Message Nodes are protocol agnostic. This also means that the
Message Node can be provided by any Messaging solution as
soon as there is a ProtoStub available.

The Data synchronization streams established between
Data Object Reporters and Observers (see example in Figure
3) are managed at the Runtime level by the Sync Manager
component and at Domain Level by the Message Node Sub-
scription Manager functionality. Services use a Syncher library
to manage the Data Objects Reporters and Observer, which
handles the required exchange of messages with the Sync
Manager component to control the Data Syncronization stream.
The Sync Manager exchanges messages with the Message
Node Subscription Manager to control the Data Synchroniza-
tion Stream between Runtime and Domain Message Node.

Message Nodes are responsible for routing messages be-
tween Hyperty Runtimes on intra- and inter-domain level. The
main tasks of Messages Nodes are:

e Assignment of unique addresses to entities (Hyperties
and Data Objects),

e Management of routing paths between entities,

e Gateway to support Services in a Service Provider
domain,

e Enforcement of provider policies concerning the mes-
sage routing.

Message Nodes can either be implemented from scratch, as a
stand-alone solution, or they can make use of existing mes-
sage routing systems and enrich them with support Services
for the tasks listed above. It is the ProtoStub that acts as

the “glue” between the reTHINK runtime and the Message
Node. Therefore, each Message Node and its corresponding
ProtoStub forms a unit that must be designed and implemented
together. All ProtoStubs must handle a common message
format, but the transport protocol between the ProtoStub and
the Message Node as well as internally in the Message Node
are implementation specific.

Depending on the complexity and flexibility of the Message
Node, different ProtoStub models are possible. In one extreme,
the ProtoStub might just be a pipe that transports messages
completely un-touched. The other extreme is a ProtoStub that
already analyses and translates reTHINK messages to another
format suitable for the specific Message Node.

ReTHINK provides reference implementations of Message
Nodes based on Vert.x [9], NodeJS [10], and Matrix.org [11].

ProtoStub are also used for interworking with any open
legacy Communication Services using different types of net-
work protocols avoiding the need to use Interworking Gate-
ways. Interworking ProtoStubs were developed for IMS tele-
phony using SIP over Websocket protocol [12] and for Slack
Group Chat using Slack REST API [13].

IV. EVALUATION

A set of Hyperties and Applications were implemented to
evaluate Decentralized Communication reference implementa-
tion, including two WebRTC Hyperties providing Audio and
Video communications, two Group Chat Hyperties, a My-
bracelet Hyperty to collect and publish data from a connected
bracelet and two context management Hyperties to manage
user’s location and availability.

These Hyperties were used to implement several scenarios,
including a Call Center Application and a Smart Contextual
Assistance application both featuring chat, audio and video
communication, from different Hyperties. Interoperability tests
were successfully performed between these two applications,
each one provided from different domains. It was also success-
fully tested interoperability with telephony in IMS and Group
Chat in Slack, demonstrating that Decentralized Communica-
tions are inter-operable with any open legacy Communication
Services, avoiding the Service silos. The legacy Service only
has to provide an Inter-working ProtoStub and an appropri-
ate Inter-working IdP Proxy in order to achieve trustworthy
interconnections with non-Decentralized Communication end-
points.

Preliminary performance tests are also very promising. For
example, around 5000 messages / sec are currently supported
when exchanged between Hyperties while data synchronization
for 200 observers take around 400ms.

V. RELATED WORK

Decentralized Communications takes advantage of previ-
ous work done in several areas to introduce a novel commu-
nication paradigm.

Decentralized network topologies were introduced in Paul
Baran’s 1962 seminal Work [14], providing the foundations to
design the Internet and the Web with no single point of control
and failure. More recently, a few initiatives are ongoing to

address privacy, security and preservation by default for web
content [15].

The signalling on-the-fly concept was proposed in 2015 [5]
to ensure interoperability between any WebRTC administrative
domains without the need to use a standardized signalling
protocol such as Session Initiation Protocol (SIP). Decentral-
ized Communication extends the usage of signalling on-the-
fly by introducing the Protocol on-the-fly concept to ensure
messaging protocol interoperability between any distributed
software Services.

With respect to the runtime security, different architec-
tures have been proposed in the literature. JSand [16] is a
sandboxing mechanism that isolates third-party Javascript code
from surrounding browser components. Isolation is enforced
through code wrappers that prevent unauthorized accesses
to the environment according to user-defined access control
policies. ConScript [17] and WeblJail [18] provide isolation
not through code wrappers but by native sandboxing mech-
anisms available on the browser. Whereas in ConScript the
security policies that control execution of the scripts apply to
single web page components, WeblJail provides richer policy
support, allowing multiple components of web mashups to be
supervised. teTHINK takes one step further by providing a
flexible sandboxing model for isolation and access control of
Hyperty and application code. This flexibility is achieved by
allocating these components into independent native sandboxes
and routing all messages through a Message Bus where secu-
rity policies can be centrally enforced.

WebRTC technology enabled browsers to establish direct
communications, enabling the use of the Peer-to-Peer concept,
opening the door to a whole new range of opportunities that
were previously limited to native applications. However, We-
bRTC does not define how to handle the peer discovery and the
exchange of capabilities. The latter requires the two browsers
to exchange information before being able to establish the P2P
communication channel. Different approaches have been fol-
lowed to tackle these issues. Most rely on the use of centralized
servers [19], which have scalability and privacy issues. Further-
more, collaboration is limited to the users of the same server.
An alternative approach relies on a centralized server only to
establish a global P2P network among browsers, which is later
used for discovery and exchange of capabilities [20]. While
this approach reduces privacy concerns, latency and peer churn
limit its performance. Decentralized Communications uses a
hybrid approach, that separates peer discovery from capabil-
ities exchange. Peers access to the Registry Support Service,
a scalable hybrid P2P DHT and REST server architecture,
where all services providers participate in the DHT (Global
Registry) and each run their own server (Local Registry) [3].
After a peer has been discovered, communication between the
local ProtoStub and the remote Hyperty is performed using
the appropriate Message Node, which provides the means for
the exchange of the signaling messages necessary to establish
a P2P communication channel.

VI. CONCLUSION

Decentralized Communications have been discussed in
this paper as a new Communication paradigm to address a
highly fragmented market of mostly isolated communication

platforms that restrict free, open, and inter-operable commu-
nication flows. Decentralized Communications leverage the
best from Telecommunication federated model and from Web
Players Walled Garden model to create a new trusted world-
wide communication model. Decentralized Communications
address Service scenarios not only between human entities
but all possible variations between human and non-human
entities. The reTHINK results pave the way for the design of
new Service Delivery Frameworks that are more agile, protect
users’ freedom to select whom to trust and which Services to
be consumed, without slowing down ICT innovation pace.

ACKNOWLEDGMENT

This project has received funding from the European
Unions Horizon 2020 research and innovation programme
under grant agreement No 645342; project reTHINK.

REFERENCES

[1]1 Everybody wants to rule the world, http://www.economist.com/news/
briefing/21635077-online-businesses-can- grow- very-large- very-fastit-
what-makes-them-exciting-does-it-also-make, last accessed February
20th, 2017.

[2] Global System Mobile Association: Universal
http://www.gsma.com/network2020/universal-profile/, 2017.

Profile,

[3] Friese, Ingo and Beierle, Felix and Copeland, Rebecca and Lopes
Pereira, Ricardo and Gondor, Sebastian and Crom, Jean-Michel, Cross-
Domain Discovery of Communication Peers, In European Conference on
Networks and Communications, 2017

[4] Bergkvist, Adam and Burnett, Daniel C and Jennings, Cullen and
Narayanan, Anant, WebRTC 1.0: Real-Time Communication between
Browsers, Working draft, W3C, 2012.

[5S] Chainho, Paulo and Haensge, Kay and Driisedow, Steffen and Mar-
uschke, Michael, Signalling-On-the-fly: SigOfly, International Conference
on Intelligence in Next Generation Networks, 2015.

[6] Reactivex: An API for asynchronous programming with observable
streams, http://reactivex.io/, last accessed February 20th, 2017.

[71 M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta and A. Neal,
Mobile-Edge Computing Introductory Technical White Paper ETSI, 2014

[8] reTHINK Github Repositories, https://github.com/reTHINK-project, last
accessed February 20th, 2017.

[9]1 VERTX, http://vertx.io/, last accessed February 20th, 2017.

[10] Node.js, https://nodejs.org/en/, last accessed February 20th, 2017.

[11] Matrix.org, https://matrix.org/, last accessed February 20th, 2017.

[12] RFC 7118: The WebSocket Protocol as a Transport for the Session Ini-
tiation Protocol (SIP), https://tools.ietf.org/html/rfc7118/, IETF, January,
2014.

[13] Slack API, https://api.slack.com/, last accessed April 28th, 2017.

[14] On Distributed Communications, http://www.rand.org/pubs/research_
memoranda/RM3420.html, 1962, last accessed February 20th, 2017.

[15] Decentralized Web Summit, https://www.decentralizedweb.net/, last ac-
cessed February 20th, 2017.

[16] P. Agten, S. Acker, Y. Brondsema, P. Phung, L. Desmet, and F. Piessens,
JSand: Complete Client-side Sandboxing of Third-party JavaScript With-
out Browser Modifications. In ACSAC, 2012.

[17] L. Meyerovich and B. Livshits, ConScript: Specifying and Enforcing
Fine-Grained Security Policies for JavaScript in the Browser. In IEEE
Security and Privacy, 2010.

[18] S. Van Acker, P. De Ryck, L. Desmet, F. Piessens, and W. Joosen,
WebJail: Least-privilege Integration of Third-party Components in Web
Mashups. In ACSAC, 2011.

[19] The PeerJS library, http://peerjs.com/, last accessed April 28th, 2017.

[20] Jung Ha Paik and Dong Hoon Lee, Scalable signaling protocol for Web
real-time communication based on a distributed hash table In Elsevier
Computer Communications, 70, 2015

