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Abstract

Most approaches to the design of networks that learn from examples
don’t address the architecture design problem except as a side issue. Logic
synthesis techniques can be used to derive both the structure and the con-
nection patterns for a network that matches the examples in the training set
while minimizing some cost function such as the size of the network. This
cost function yields a very effective solution for the classification of exam-
ples not present in the training set. Thus, minimizing the size of thenetwork
can be considered as an effective generalization principle in accordance with
theOccam’s razor paradigm.

In this paper we restrict our attention to the use of two-leveland-or net-
works. An efficient algorithm for the synthesis of networks of this type is
proposed and the quality of the generalization performed by the network is
evaluated against alternative approaches.

The algorithm was tested in several test problems taken from the machine
learning literature. Results show that, in most cases, the proposed approach
outperforms other popular methods, both in accuracy and in the number of
examples needed for accurate generalization.



1 Introduction

In the standard model of supervised learning, the task of thelearning algorithm is
to induce, from a set of positive and negative instances (thetraining set), a rule that
will accurately predict the class of future instances (the test set).

Many supervised connectionist models use gradient descentin the error [19] to
derive the pattern of weights between units. The problem with this approach is that
the solution is not guaranteed to generalize well, since many solutions that fit the
training set will not give the correct results in the test set.

In general, the smaller the network, the better the generalization obtained. The-
oretical [2, 5, 17] and practical [11, 12] results show that the quality of the gener-
alization improves with a reduction in the size of the network. However, smaller
networks are usually more difficult to train [9]. Ideally, one would like a net-
work just large enough to learn the mapping. Several procedures were proposed
to achieve simple networks, either by adding extra units to small networks [1, 7]
or by adding an extra term to the cost function that helps to minimize the number
of active weights [20]. This algorithms, however, still consider thearchitecture
design more like a side issue than as one of the major problemsto be solved in the
design of a practical neural network.

A different way to view the problem is to consider the design of the architecture
as a fundamental part of the problem. This is the approach that is taken in the field
of integrated circuits design. In general, a specified input-output specification ex-
ists for a given number of input patterns, and architecturesare designed to perform
the desired mapping in the most economical way.

Therefore, a strong motivation exists to apply some of the vast array of tech-
niques used in traditional circuit design in the definition of architectures for general
networks. In this paper, the possible uses of two-level logic synthesis techniques in
empirical learning are investigated. Under this restriction, the algorithm is closely
related to induction systems based on set covering algorithms, like, for example,
AQ15 [13]. Viewing the problem as a logic synthesis task, however, opens new
directions for extensions of the techniques used, either byconsidering other types
of gates [14] or by using multi-level design techniques [4] to generate networks
with more flexible architectures.

One of the advantages of this approach is that a hardware implementation of
the network using standard IC technology is straightforward. The implementation
is also very small and extremely fast as compared to other neural network solutions
for the problem.
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2 Basic concepts

2.1 Concepts

We will use the usual setting for the problem of learning fromexamples in an
attribute-based description language. LetBN be the set ofN objects in the in-
stance space. Concepts and hypothesis are subsets ofBN . The task of learning
from examples can be described as follows: givenm objects, chosen fromBN ac-
cording to some arbitrary distribution and labeled positive or negative according to
whether they belong or not to a given conceptC, derive an hypothesisH which is
a good approximation to the conceptC. How closelyH approximatesC is usually
measured by testing the generated hypothesis in an independent set of examples
drawn from the same distribution.

2.2 Cubes and Covers

Let f be a function ofn boolean variables,fx1; :::; xng. Formally,f is a mapping
from f0; 1gn ! f0; 1g. A literal is a variable or its negation. A cube (or monomial)
is a conjunction ofl literals (1 � l � n), where no two literals corresponding to
the same variable appear.

A cube withn literals is called a minterm, and it corresponds to a vertex in
then dimensional hypercube that represents the input space1. A cubec1 is said to
cover another cubec2 if c2 ) c1, i.e., if the truth values defined inc2 makec1 true.
If c1 6= c2, thenc1 properly coversc2.

A single output boolean functionf , is described by the following disjoint sets
of minterms:fON , fOFF andfDC . ThefON (fOFF ) set specifies which minterms
should turn the output on (off). Non trivial boolean functions should have non-
emptyfON andfOFF sets. ThefDC (don’t care) set contains all minterms not
contained in the previous sets.

A set of cubes is called a cover off if all minterms in thefON set of a function
are covered by at least one cube, and no cube covers any minterm in thefOFF set.
Given a cover, there is a trivial realization of a two level network that realizes the
desired function: simply allocate oneand gate for each cube and connect them all
to anor gate in the second level.

A cover is said to be irredundant if the removal of any cube from the cover
produces a set that is no longer a cover. For a given function,a cubec is called
a prime cube if there is no other cube that does not intersect the fOFF set and
properly containsc. A cover consisting only of prime cubes is called a prime1By extension, a minterm also defines a truth assignment of allthe input variables.

2



cover. If a prime cube is contained in all prime covers of a function, then such a
prime is essential. The existence of essential primes greatly simplifies the task of
finding a minimum cover. In particular, if all primes are essential, such a task can
be achieved in a time polynomial in the number offON minterms.

In general, the problem of finding a minimum cover for a given function is
NP-complete [8]. Hence, most algorithms are heuristic and find only approximate
solutions using reasonable amounts of time. Unlike other training algorithms, the
resulting solution is always guaranteed to represent a network that performs the
right input/output mapping, even if the absolute minimum was not found.

2.3 Expanding and Reducing cubes

Most heuristic algorithms are based on the incremental modification of a cover
obtained by applying one of the following two operations to the cubes in that cover:� Expand : Drop one literal from the cube. This operation is only legal if the

resulting cube does not contain any minterm in thefOFF set. The resulting
cube properly contains the original one.� Reduce : Add one literal to a cube. This operation is only legal if the fON
minterms no longer covered by this cube are still covered by some other cube
in the cover. The resulting cube is properly contained in theoriginal one.

3 The synthesis procedure

The objective of the synthesis procedure described here is to derive a network that
performs the input-output mapping specified by the set of examples while minimiz-
ing the overall size of the network, as measured by the numberof gates. In logic
synthesis notation, the positive examples define thefON set, the negative ones thefOFF set and the rest of the minterms will be in thefDC set.

The algorithms used in logic synthesis, like, for instance,ESPRESSO [3],
could conceptually be used in our approach. However, the type of boolean func-
tions that is common in machine learning problems is relatively unimportant in
classical synthesis. In particular, the presence of very large don’t-care sets2 is quite
uncommon in traditional logic synthesis problems. Finally, the size of the input in
some cases is far too large to be handled by general purpose logic minimizers.2When compared to the sizes of thefON andfOFF sets.
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3.1 Finding a small cover

As described before, from the list of positive and negative examples in the training
set, a two-leveland-or network that performs the desired mapping can be readily
derived. The starting point is simply anor of minterms. This network (or the cover
it corresponds to) is then reduced in size until no further improvement is obtained.

We use a branch and bound algorithm to search for a more compact cover. A
search tree is built with a predefined branching factorr, and, at each step, the most
promising node in the tree is expanded.

Every nodeni in the search tree corresponds to a setsi of cubes and has a value
given byvi = Ku �m, whereu is the number of uncovered minterms,m is the
number of minterms covered more than once andK some large constant. Ifvi is
non-positive, then nodeni represents a solution with one less cube than the root. A
new nodenj is created by modifying the cover of a given node in the treeni (the
parent node). Setsj is obtained by modifying the setsi of the parent node with
one of the following two operations:

1. Removing one cube from the set.

2. Changing one cube so that it covers a new minterm.

Children of the root node are created applying operation 1. Since operation 1
removes one cube from the cover, any solution that is found isgoing to have one
less cube than the original solution. All other nodes (except the root) are created
using operation 2. Operation 2, the creation of children of nodeni by changing
one of the cubes in the cover is performed by the following algorithm:m pick one uncoveredminterm(ni; fON );

for i = 1 to r dofcold  choosenext cub(m);gON  build on set(m;ni; cold);c expd cube(cold; gON ; fOFF );nj  createchild(ni; si [ fcg n fcoldg);vj  evaluate(nj);g
The expansion of a node works by choosing ther closest candidate cubes that

can be expanded to cover a given (and still uncovered)on set minterm.
Function buildon set creates thegON 3 set by adding mintermm to the list of3In general, thisgON set will not be equal to thefON set.
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minterms chosen to be covered byc. Procedure createchild simply adds one more
children to nodeni, with a set of cubes appropriately modified.

Function expdcube returns the maximally reduced cube covering all minterms
in the gON set and none in thefOFF set. If no such cube exists it reports failure
and no child node is created.

Readers familiar with two level logic simplifiers will notice that the algorithm
does indeed perform the normal steps, i. e. expansion and reduction of cubes.
However, unlike these algorithms, the expansion and reduction phases are not per-
formed in batch, but individually for each cube, in order to make some particular
cube redundant. Empirical comparisons [15] have shown thatthis procedure is
more efficient and less time consuming. However, it depends on the fact that all
examples are minterms, and cannot be used as a general two level logic minimizer.

As an example, consider the function defined by itsfON andfOFF sets shown
in figure 1:

ON set

OFF set

A

B

C

D

?

X
3

X 1

X 2

Figure 1:On andOff sets of functionf .

An hypothetic search tree is shown in figure 2. The initial solution in level 0
consists simply of a cover formed by all thefON minterms of functionf . The first
level nodes in the tree are constructed by removing one cube from the cover. Cubes
2 and 4 were selected for illustration purposes. In the left branch, this leaves the
minterm D uncovered and cubes 1 and 3 are chosen to be expanded. A similar situ-
ation exists in the right branch. In this trivial example, all 4 level 2 nodes in the tree
are solutions, but, in general, deeper search trees are needed, since removal of one
cube may leave several minterms uncovered. The network in figure 3 represents
the actual implementation of solutionS4.

Figure 2 also illustrates how generalization takes place. If solutionS4 is taken
as the final solution, thefDC point marked with? in figure 1 would have been
considered as belonging to the concept that generated the positive examples that
define thefON set.
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Figure 2: Search tree used to find a compact cover for functionf .
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Figure 3: Implementation of solutionS4
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4 Empirical evaluation

4.1 Experimental setting

The performance of the algorithm was tested in three sets of problems: the first
was proposed by Pagallo and Haussler in [18] and consists of 8different concepts
that accept compact DNF descriptions. The second test set isextracted from chess
game endings and was proposed by Quinlan in [16]. Finally, the third consists in
the recognition of segmented and normalized handwritten digits using the ZIP code
database provided by the US Postal Service.

4.2 Concepts with a compact DNF representation

A detailed description of the test concepts used in this section can be found in [18],
including the process by which the terms in the randomly generated functions were
obtained.

Some information about the test concepts is given in table 1.The number of
terms is the number of monomials in the most compact DNF representation of the
concept. The number of examples was selected as in [18], according to the formulaK�log2(N)� , whereN is the number of attributes,K the number of literals needed
to write down the smallest DNF description of the target concept and�, the upper
limit on the error, was set to 0.1.

name description # attributes # terms # examples
dnf1 random DNF 80 9 3292
dnf2 random DNF 40 8 2185
dnf3 random DNF 32 6 1650
dnf4 random DNF 64 10 2640
mx6 6-multiplexer 16 4 720
mx11 11-multiplexer 32 8 1600
par4 4-parity 16 8 1280
par5 5-parity 32 16 4000

Table 1: Target concepts

The first four are randomly generated DNF functions, with varying numbers of
terms and variables. The N-multiplexer examples are taken from the multiplexer
domain. For an N-multiplexer, the firstblog2Nc bits act as selectors for one of the
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following N�blog2Nc bits, which gives the value of the function. Finally, the last
two ones are taken from the exor domain, and the value of the function is given by
theexclusive or of the first N bits. A given number of random bits (corresponding
to irrelevant attributes) is added to each of the last 4 examples (respectively 10, 21,
12 and 27). A complete description of the minimum DNF representations of these
functions can be found in [18].

The examples were generated usingrandom, a pseudo-random number gen-
erator available in most unix systems. The number of nodes inthe search tree
was restricted to 1000, although a much smaller number was actually used in all
examples but the last.

We compare the results obtained by our algorithm with the best results de-
scribed in [18]. These results were obtained by choosing thetests to be made in
each node of the decision tree according to a specific heuristic, namedfringe.

Table 2 lists the error incurred by each one of the algorithmsin a test set of
2000 examples. The results shown are the average of 10 independent runs for each
example.

target LogSynt Fringe
concept Aver. Err (%) Aver. # terms Aver. Err (%) Aver. Tree Size
dnf1 0.0 9.0 0.0 9.0
dnf2 0.015 8.0 0.5 7.6
dnf3 0.04 6.1 0.3 6.1
dnf4 0.0 10.0 0.0 10.0
mx6 0.0 4.0 0.0 4.9
mx11 0.0 8.0 0.0 11.6
par4 0.0 8.0 0.0 4.94
par5 0.0 16.0 22.1 120.7

Table 2: Results

Also interesting is to analyze how the performance of the classifiers varied with
the number of examples used. The evolution of the performance with the size of
the training set size is shown in figure 4 for one of the examples, dnf4. For ref-
erence, we also show the performance of a non-modified decision tree algorithm
and a gradient descent algorithm5. We used a conjugate gradient method [10] that4This value, reported in [18] is probably a misprint, since the minimal DNF description of this
concept requires 8 terms.5Data forfringe was obtained from graphical information on [18].

8



performed better than standard back-propagation in this example. We first selected
the optimal number of nodes in the intermediate layer (for a training set size of
2640) and then used that network for different training set sizes. Computation was
stopped after convergence was obtained or 2 days of CPU time in a DECstation
3100 was reached. Due to the computational requisites, only3 different experi-
ments were performed with each training set size for this learning algorithm.

0.00

10.00

20.00

30.00

40.00

330 660 1320 1980 2640 3960

LogSynt

Fringe

Grad. Desc.

Dec. Tree

Examples

% Error

Figure 4: Error x Training Set Size fordnf4

4.3 Chess endings

The previous examples all accepted compact DNF descriptions and the good gener-
alization results obtained by a method that searches for compact DNF realizations
are somehow to be expected. It is interesting to analyze how the method compares
with alternative approaches in cases where no compact DNF representations are
known to exist.

The (white) king-rook versus (black) king-knight chess ending was proposed
by Quinlan in [16] as a test case for the ID3 algorithm, an induction system that
implements a classification procedure based on decision trees.

Every position in this chess ending can be considered as either lost for black
or drawn6. In particular, a position is considered aslost N-ply iff the best possible
sequences of no more than N moves lead to a position where� Black king is in checkmate, or� The black knight was captured, the white rook is safe and the position is not

stalemate.

We used thelost 3-ply positions as a test bed. With the codification used by
Quinlan, a total of 551 different vectors with 39 attributeseach exist. We randomly6For simplicity, the extremely rare cases where black can mate are ignored.
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selected training sets of sizes from 100 to 400 and compared the results with the
ones obtained by a decision tree algorithm, using, as the test set, the full set of vec-
tors. Table 3 shows these results. The first two columns show the results obtained
by the decision tree algorithm and by the LSAT algorithm whena network with
one output is used. Although these results show that the error rate is significantly
lower for the logic synthesis algorithm, even more interesting results are obtained
when a network with 2 outputs is synthesized. One of the outputs signals a position
that is considered lost and the other one signals a position that is considered drawn.
When none of the outputs ison or when both areon, we consider the example as
unclassified. The last two columns of table 3 give the percentage of unclassified
inputs and the error rate in the classified ones.

Training Dec. Trees Synt. 1 output Synt. 2 outputs
set size Error (%) Error (%) Error (%) Unclass. (%)
100 18.3 20.0 4.5 23.8
200 12.7 8.5 2.4 11.1
300 10.5 3.8 0.6 6.2
400 6.7 2.5 0.2 4.5

Table 3: Results in the chess endings problem.

4.4 Handwritten ZIP code digits

A problem much harder than the previous ones is the recognition of handwritten
characters. To test the algorithm we used the data provided by the US Postal Ser-
vice that data consists of approximately 10000 digits. Eachdigit was segmented
and normalized to a 16x16 binary grid. We then synthesized a network with 256
inputs and 10 outputs that gives the correct output for everyone of the 8000 digits
selected to be included in the training set. The resulting network was tested in an
independent test set consisting of approximately 2000 digits.

As described in the previous section we considered as unclassified all the digits
in the test set that turned on zero or more than one of the 10 outputs. We obtained
a 2.0% error by rejecting as unclassified 30% of the characters. These results are
worst than the ones reported in [6] ( 1% error and 9% rejection) but were obtained
without using any field-specific knowledge.
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4.5 Analysis of the results

The results show that the synthesis of minimal two-level circuits is an efficient
alternative approach to the problem of learning from examples.

Although the method is computationally more expensive thandecision trees, it
is still much more efficient than gradient descent algorithms. For the larger exam-
ples, the synthesis algorithm is faster by at least two orders of magnitude than a
gradient descent method. No data is available for the computation times involved
in the use of modified decision trees that use complex heuristics to generate higher
level attributes, like, for instance,fringe.

Finally, the comparatively bad results obtained in the problem of handwritten
character recognition are probably a sign that no compact two-level solutions exist
for these problems. In [6], a much deeper network was used, together with ex-
tensive knowledge about the topology of the problem and the relevant features to
extract. For the algorithm to be successful in these harder problems, more flexible
architectures and network constraints based on field-specific knowledge have to be
used.

5 Conclusions

We have presented and evaluated a novel approach for the problem of learning
from examples based on the synthesis of minimal networks.

Although currently restricted to the synthesis of two-level networks, there are
several interesting directions for future work in this area: synthesis of multi-level
networks, synthesis of multi-valued networks and generalization of the cost func-
tions used.

Two level architectures are, in general, restrictive, versus multi-level networks.
Logic synthesis algorithms may realize the same logic function using less gates if
allowed to use multi-level structures. Several important problems are unlikely to
accept compact solutions in the form of two level networks. Since multi-level tech-
niques are based on the extraction of common factors betweendifferent functions
in the network, they are likely to be an efficient method for the choice of useful
higher level features in problems that don’t accept compacttwo-level solutions.
The challenge is to efficiently use the don’t-care points in the minimization pro-
cess since current multi-level synthesis algorithms use don’t care information in a
very limited way.

The applicability of these techniques is not restricted to problems where the at-
tributes are boolean. If the attributes have more than two possible values but can be
discretized in a finite number of discrete values, multi-valued synthesis algorithms
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can be applied, giving, as an additional result, an appropriate codification for the
multi-valued variables.

Robustness to noisy exemplars is another topic that deserves further research.
Currently, a small number of erroneous examples may seriously damage the per-
formance of the system. This disadvantage is easily overcome by changing the cost
function that one wants to minimize in order to accept a smallnumber of misclas-
sified examples if that helps to minimize the cost of the network.
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