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Abstract

Most approaches to the design of networks that learn from examples
don't address the architecture design problem except as a side issue. Logi
synthesis techniques can be used to derive both the structure and the con-
nection patterns for a network that matches the examples in the training set
while minimizing some cost function such as the size of the netwohis T
cost function yields a very effective solution for the classificationafre-
ples not present in the training set. Thus, minimizing the size ohéteork
can be considered as an effective generalization principle in accordance with
theOccam'srazor paradigm.

In this paper we restrict our attention to the use of two-lewelor net-
works. An efficient algorithm for the synthesis of networks of thyipd is
proposed and the quality of the generalization performed by the network i
evaluated against alternative approaches.

The algorithm was tested in several test problems taken from the machine
learning literature. Results show that, in most cases, the proposecdhahpro
outperforms other popular methods, both in accuracy and in the number of
examples needed for accurate generalization.



1 Introduction

In the standard model of supervised learning, the task ofetliming algorithm is
to induce, from a set of positive and negative instancest(giging set), a rule that
will accurately predict the class of future instances (Hwt set).

Many supervised connectionist models use gradient destére error [19] to
derive the pattern of weights between units. The problerh this approach is that
the solution is not guaranteed to generalize well, sinceynsatutions that fit the
training set will not give the correct results in the test set

In general, the smaller the network, the better the gerzatidin obtained. The-
oretical [2, 5, 17] and practical [11, 12] results show theg guality of the gener-
alization improves with a reduction in the size of the netwdrdowever, smaller
networks are usually more difficult to train [9]. Ideally, ®would like a net-
work just large enough to learn the mapping. Several praesdwere proposed
to achieve simple networks, either by adding extra unitstalsnetworks [1, 7]
or by adding an extra term to the cost function that helps toimrize the number
of active weights [20]. This algorithms, however, still consider #ehitecture
design more like a side issue than as one of the major prolieies solved in the
design of a practical neural network.

A different way to view the problem is to consider the desifithe architecture
as a fundamental part of the problem. This is the approadhstiiaken in the field
of integrated circuits design. In general, a specified imuput specification ex-
ists for a given number of input patterns, and architectaresdesigned to perform
the desired mapping in the most economical way.

Therefore, a strong motivation exists to apply some of thet geray of tech-
nigues used in traditional circuit design in the definitidmachitectures for general
networks. In this paper, the possible uses of two-leveklsgnthesis techniques in
empirical learning are investigated. Under this reswittithe algorithm is closely
related to induction systems based on set covering algasithike, for example,
AQ15 [13]. Viewing the problem as a logic synthesis task, &asv, opens new
directions for extensions of the techniques used, eitherdmgidering other types
of gates [14] or by using multi-level design techniques plpenerate networks
with more flexible architectures.

One of the advantages of this approach is that a hardwareingpitation of
the network using standard IC technology is straightfodydrhe implementation
is also very small and extremely fast as compared to otheaheeatwork solutions
for the problem.



2 Basic concepts

2.1 Concepts

We will use the usual setting for the problem of learning fremamples in an
attribute-based description language. 1B be the set ofV objects in the in-
stance space. Concepts and hypothesis are subs8ts.ofl he task of learning
from examples can be described as follows: gineobjects, chosen froms ac-
cording to some arbitrary distribution and labeled positiv negative according to
whether they belong or not to a given concéptderive an hypothesi& which is
a good approximation to the concept How closelyH approximates” is usually
measured by testing the generated hypothesis in an indeperdt of examples
drawn from the same distribution.

2.2 Cubesand Covers

Let f be a function of» boolean variables|z1, ..., 2, }. Formally, f is a mapping
from {0,1}" — {0, 1}. Aliteral is a variable or its negation. A cube (or monomial)
is a conjunction of literals (1 < I < n), where no two literals corresponding to
the same variable appear.

A cube withn literals is called a minterm, and it corresponds to a vernex i
then dimensional hypercube that represents the input Spaceubec; is said to
cover another cube, if ¢y = ¢y, i.e., if the truth values defined i3 makec; true.

If ¢; # co, thenc; properly covers:.

A single output boolean functiof, is described by the following disjoint sets
of minterms: fon, forr @andfpc. The fon (forr) set specifies which minterms
should turn the output on (off). Non trivial boolean functsoshould have non-
empty foy and forpr sets. Thefpe (don't care) set contains all minterms not
contained in the previous sets.

A set of cubes is called a cover ¢iif all minterms in thefo 5 set of a function
are covered by at least one cube, and no cube covers any miméne o 7 set.
Given a cover, there is a trivial realization of a two levetvwnark that realizes the
desired function: simply allocate omed gate for each cube and connect them all
to anor gate in the second level.

A cover is said to be irredundant if the removal of any cubenfritie cover
produces a set that is no longer a cover. For a given functiauybec is called
a prime cube if there is no other cube that does not inter$ecfs . set and
properly contains:. A cover consisting only of prime cubes is called a prime

!By extension, a minterm also defines a truth assignment di@input variables.



cover. If a prime cube is contained in all prime covers of acfiom, then such a
prime is essential. The existence of essential primeslgrsiatplifies the task of
finding a minimum cover. In particular, if all primes are ess&, such a task can
be achieved in a time polynomial in the numberfgfy minterms.

In general, the problem of finding a minimum cover for a givendtion is
NP-complete [8]. Hence, most algorithms are heuristic amdl dnly approximate
solutions using reasonable amounts of time. Unlike ottenitng algorithms, the
resulting solution is always guaranteed to represent aarktihat performs the
right input/output mapping, even if the absolute minimunswat found.

2.3 Expanding and Reducing cubes

Most heuristic algorithms are based on the incremental fivation of a cover
obtained by applying one of the following two operationshe tubes in that cover:

e Expand : Drop one literal from the cube. This operation is/degal if the
resulting cube does not contain any minterm in fae - set. The resulting
cube properly contains the original one.

e Reduce : Add one literal to a cube. This operation is onlylldghe fon
minterms no longer covered by this cube are still coveredinyesother cube
in the cover. The resulting cube is properly contained indtiginal one.

3 Thesynthesisprocedure

The objective of the synthesis procedure described hecedsrive a network that
performs the input-output mapping specified by the set afingtas while minimiz-
ing the overall size of the network, as measured by the numibgates. In logic
synthesis notation, the positive examples definefthe set, the negative ones the
forr set and the rest of the minterms will be in tfig: set.

The algorithms used in logic synthesis, like, for instanESPRESSO [3],
could conceptually be used in our approach. However, the offboolean func-
tions that is common in machine learning problems is redtiunimportant in
classical synthesis. In particular, the presence of vegeldon't-care setss quite
uncommon in traditional logic synthesis problems. Finalhe size of the input in
some cases is far too large to be handled by general purpgiseniinimizers.

2When compared to the sizes of tfiex and forr sets.



3.1 Finding a small cover

As described before, from the list of positive and negatixanaples in the training
set, a two-levebnd-or network that performs the desired mapping can be readily
derived. The starting point is simply an of minterms. This network (or the cover

it corresponds to) is then reduced in size until no furthgeriorement is obtained.

We use a branch and bound algorithm to search for a more cdropeer. A
search tree is built with a predefined branching faet@nd, at each step, the most
promising node in the tree is expanded.

Every noden; in the search tree corresponds to asself cubes and has a value
given byv; = Ku — m, whereu is the number of uncovered minterms,is the
number of minterms covered more than once &hdome large constant. {f is
non-positive, then node; represents a solution with one less cube than the root. A
new noden; is created by modifying the cover of a given node in the tigéhe
parent node). Set; is obtained by modifying the set of the parent node with
one of the following two operations:

1. Removing one cube from the set.

2. Changing one cube so that it covers a new minterm.

Children of the root node are created applying operationidceSoperation 1
removes one cube from the cover, any solution that is fourgpiisg to have one
less cube than the original solution. All other nodes (ektle@ root) are created
using operation 2. Operation 2, the creation of children adev:; by changing
one of the cubes in the cover is performed by the followingatgm:

m <+ pick_oneuncoveredminterm@;, fon);
fori =1tor do{
Cold < Choosenextcub(mn);
gon < build_on setgn, n;, coq);
c +expdcubetyq, gon, forr);
nj < createchild(n;, s; U {c} \ {coa});
vj < evaluate;);

}

The expansion of a node works by choosing theosest candidate cubes that
can be expanded to cover a given (and still uncovesedet minterm.
Function buildon_set creates thg, y* set by adding minternm to the list of

%In general, thigjox set will not be equal to th¢o v set.



minterms chosen to be covered hyProcedure createhild simply adds one more
children to noden;, with a set of cubes appropriately modified.

Function expdcube returns the maximally reduced cube covering all minser
in the gon set and none in thé, 7 set. If no such cube exists it reports failure
and no child node is created.

Readers familiar with two level logic simplifiers will noeahat the algorithm
does indeed perform the normal steps, i. e. expansion angtied of cubes.
However, unlike these algorithms, the expansion and remluphases are not per-
formed in batch, but individually for each cube, in order taka some particular
cube redundant. Empirical comparisons [15] have showntthiatprocedure is
more efficient and less time consuming. However, it depemdthe fact that alll
examples are minterms, and cannot be used as a general glitolgic minimizer.

As an example, consider the function defined byiss; and fo rr Sets shown

in figure 1:
Xg B ® ON st
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Figure 1:0n andOff sets of functionf.

An hypothetic search tree is shown in figure 2. The initiaugioh in level O
consists simply of a cover formed by all tiig ; minterms of functionf. The first
level nodes in the tree are constructed by removing one cobethe cover. Cubes
2 and 4 were selected for illustration purposes. In the lefhbh, this leaves the
minterm D uncovered and cubes 1 and 3 are chosen to be expahdadilar situ-
ation exists in the right branch. In this trivial exampld dalevel 2 nodes in the tree
are solutions, but, in general, deeper search trees aredgesidce removal of one
cube may leave several minterms uncovered. The network umefi§ represents
the actual implementation of solutidty.

Figure 2 also illustrates how generalization takes plaiceolution Sy is taken
as the final solution, th¢p point marked with? in figure 1 would have been
considered as belonging to the concept that generated #igvpeexamples that
define thefo v set.
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Figure 2: Search tree used to find a compact cover for fungtion
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Figure 3: Implementation of solutiofl



4 Empirical evaluation

4.1 Experimental setting

The performance of the algorithm was tested in three setsalfigms: the first
was proposed by Pagallo and Haussler in [18] and consistdifiieBent concepts
that accept compact DNF descriptions. The second test setracted from chess
game endings and was proposed by Quinlan in [16]. Finalgythird consists in
the recognition of segmented and normalized handwrittgitsdiising the ZIP code
database provided by the US Postal Service.

4.2 Conceptswith a compact DNF representation

A detailed description of the test concepts used in this@ectn be found in [18],
including the process by which the terms in the randomly geied functions were
obtained.

Some information about the test concepts is given in tabl&€hke number of
terms is the number of monomials in the most compact DNF sgmtation of the
concept. The number of examples was selected as in [18]dingdo the formula
M, whereN is the number of attributedS the number of literals needed
to write down the smallest DNF description of the target @mt@nde, the upper
limit on the error, was set to 0.1.

name | description # attributes| # terms| # exampleg
dnfl | random DNF 80 9 3292
dnf2 | random DNF 40 8 2185
dnf3 | random DNF 32 6 1650
dnf4 | random DNF 64 10 2640
mx6 | 6-multiplexer 16 4 720
mx11 | 11-multiplexer 32 8 1600
pard | 4-parity 16 8 1280
par5 | 5-parity 32 16 4000

Table 1: Target concepts

The first four are randomly generated DNF functions, withyireg numbers of
terms and variables. The N-multiplexer examples are takan the multiplexer
domain. For an N-multiplexer, the firstog, N | bits act as selectors for one of the



following N — |log, N | bits, which gives the value of the function. Finally, thetlas
two ones are taken from the exor domain, and the value of theitin is given by
the exclusive or of the first N bits. A given number of random bits (corresporgi
to irrelevant attributes) is added to each of the last 4 exasnjpespectively 10, 21,
12 and 27). A complete description of the minimum DNF repnés#ons of these
functions can be found in [18].

The examples were generated usiagdom, a pseudo-random number gen-
erator available in most unix systems. The number of nodakensearch tree
was restricted to 1000, although a much smaller number waslgcused in all
examples but the last.

We compare the results obtained by our algorithm with the besults de-
scribed in [18]. These results were obtained by choosingdbis to be made in
each node of the decision tree according to a specific heymstmedtringe.

Table 2 lists the error incurred by each one of the algoritima test set of
2000 examples. The results shown are the average of 10 indepieruns for each
example.

target LogSynt Fringe

concept| Aver. Err (%) | Aver. # terms| Aver. Err (%) | Aver. Tree Size
dnfl 0.0 9.0 0.0 9.0
dnf2 0.015 8.0 0.5 7.6
dnf3 0.04 6.1 0.3 6.1
dnf4 0.0 10.0 0.0 10.0
mx6 0.0 4.0 0.0 4.9

mx11 0.0 8.0 0.0 11.6
pard 0.0 8.0 0.0 4.9

par5 0.0 16.0 22.1 120.7

Table 2: Results

Also interesting is to analyze how the performance of thesifeers varied with
the number of examples used. The evolution of the performavith the size of
the training set size is shown in figure 4 for one of the exasmef4. For ref-
erence, we also show the performance of a non-modified decigée algorithm
and a gradient descent algorithmWe used a conjugate gradient method [10] that

*This value, reported in [18] is probably a misprint, since thinimal DNF description of this
concept requires 8 terms.
Data forfringe was obtained from graphical information on [18].



performed better than standard back-propagation in trasye. We first selected
the optimal number of nodes in the intermediate layer (foraming set size of
2640) and then used that network for different training &stss Computation was
stopped after convergence was obtained or 2 days of CPU timmelECstation

3100 was reached. Due to the computational requisites, Dulijferent experi-

ments were performed with each training set size for thisieg algorithm.

% Error

40.00{
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\
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Figure 4: Error x Training Set Size fainf4

4.3 Chessendings

The previous examples all accepted compact DNF descrgpénd the good gener-
alization results obtained by a method that searches fopaohDNF realizations
are somehow to be expected. It is interesting to analyze hewnethod compares
with alternative approaches in cases where no compact Dplieésentations are
known to exist.

The (white) king-rook versus (black) king-knight chess iagdwvas proposed
by Quinlan in [16] as a test case for the ID3 algorithm, an atiun system that
implements a classification procedure based on decisies.tre

Every position in this chess ending can be considered asrdiht for black
or drawrf. In particular, a position is considered last N-ply iff the best possible
sequences of no more than N moves lead to a position where

e Black king is in checkmate, or

e The black knight was captured, the white rook is safe and diséipn is not
stalemate.

We used thdost 3-ply positions as a test bed. With the codification used by
Quinlan, a total of 551 different vectors with 39 attribuesch exist. We randomly

SFor simplicity, the extremely rare cases where black careragt ignored.



selected training sets of sizes from 100 to 400 and compaedesults with the
ones obtained by a decision tree algorithm, using, as thegg&ghe full set of vec-
tors. Table 3 shows these results. The first two columns sheweisults obtained
by the decision tree algorithm and by the LSAT algorithm wiaenetwork with
one output is used. Although these results show that the et® is significantly
lower for the logic synthesis algorithm, even more intdérestesults are obtained
when a network with 2 outputs is synthesized. One of the dsitgignals a position
that is considered lost and the other one signals a poshitrid considered drawn.
When none of the outputs @ or when both ar@n, we consider the example as
unclassified. The last two columns of table 3 give the pesggnbf unclassified
inputs and the error rate in the classified ones.

Training | Dec. Trees| Synt. 1 output Synt. 2 outputs

setsize | Error (%) Error (%) | Error (%) | Unclass. (%)
100 18.3 20.0 4.5 23.8
200 12.7 8.5 2.4 11.1
300 10.5 3.8 0.6 6.2
400 6.7 2.5 0.2 4.5

Table 3: Results in the chess endings problem.

4.4 Handwritten ZIP code digits

A problem much harder than the previous ones is the recogndf handwritten
characters. To test the algorithm we used the data provigedeoUS Postal Ser-
vice that data consists of approximately 10000 digits. Edigh was segmented
and normalized to a 16x16 binary grid. We then synthesizedtaark with 256
inputs and 10 outputs that gives the correct output for esagyof the 8000 digits
selected to be included in the training set. The resulting/okk was tested in an
independent test set consisting of approximately 200@digi

As described in the previous section we considered as wiftdasall the digits
in the test set that turned on zero or more than one of the JutsutWe obtained
a 2.0% error by rejecting as unclassified 30% of the charsciBnese results are
worst than the ones reported in [6] ( 1% error and 9% rejegtion were obtained
without using any field-specific knowledge.
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45 Analysisof theresults

The results show that the synthesis of minimal two-levetuits is an efficient
alternative approach to the problem of learning from exasipl

Although the method is computationally more expensive tteaision trees, it
is still much more efficient than gradient descent algorihifor the larger exam-
ples, the synthesis algorithm is faster by at least two erdémagnitude than a
gradient descent method. No data is available for the caatipattimes involved
in the use of modified decision trees that use complex hagiti generate higher
level attributes, like, for instancéringe.

Finally, the comparatively bad results obtained in the [@wbof handwritten
character recognition are probably a sign that no compaztéwel solutions exist
for these problems. In [6], @ much deeper network was usepbther with ex-
tensive knowledge about the topology of the problem anddlevant features to
extract. For the algorithm to be successful in these ham#yigms, more flexible
architectures and network constraints based on field-Bp&oowledge have to be
used.

5 Conclusions

We have presented and evaluated a novel approach for théepradf learning
from examples based on the synthesis of minimal networks.

Although currently restricted to the synthesis of two-lewetworks, there are
several interesting directions for future work in this aregnthesis of multi-level
networks, synthesis of multi-valued networks and gerneatibn of the cost func-
tions used.

Two level architectures are, in general, restrictive, uemnnulti-level networks.
Logic synthesis algorithms may realize the same logic fonatsing less gates if
allowed to use multi-level structures. Several importaigbfems are unlikely to
accept compact solutions in the form of two level networkac& multi-level tech-
niques are based on the extraction of common factors betdiéferent functions
in the network, they are likely to be an efficient method fog tthoice of useful
higher level features in problems that don't accept compaotlevel solutions.
The challenge is to efficiently use the don't-care pointshie tinimization pro-
cess since current multi-level synthesis algorithms usét dare information in a
very limited way.

The applicability of these techniques is not restrictedrabfems where the at-
tributes are boolean. If the attributes have more than tvesipte values but can be
discretized in a finite number of discrete values, multizeal synthesis algorithms
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can be applied, giving, as an additional result, an appatigodification for the
multi-valued variables.

Robustness to noisy exemplars is another topic that des@mnther research.
Currently, a small number of erroneous examples may sdyialznage the per-
formance of the system. This disadvantage is easily ovezdnnthanging the cost
function that one wants to minimize in order to accept a smathber of misclas-
sified examples if that helps to minimize the cost of the netwo
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