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Abstract

Motivation: Mutation in DNA is the principal factor responsible for the differences among

human beings, and Single Nucleotide Polymorphisms (SNPs) are the most common mutations.

Hence, it is fundamental to complete a map of haplotypes (which identify SNPs) in the human

population. However, due to technological limitations, genotype data rather than haplotype data

is usually obtained. The haplotype inference by pure parsimony (HIPP) problem consists in

inferring haplotypes from genotypes s.t. the number of required haplotypes is minimum. Experi-

mental results provide support for this method: the number of haplotypes in a large population

is typically very small, although genotypes exhibit a great diversity.

Results: We define a new method for solving the HIPP problem using Boolean satisfiability

(SAT). Experimental results clearly demonstrate that our SAT-based tool is by far more efficient

than the existing tools following the pure parsimony approach. Besides being more efficient, our

tool is also the only capable of computing the solution for a large number of instances. Hence, we

have been able to infer haplotypes for a wide variety of biological data, that no other tool following

the pure parsimony approach is able to. Additionally, we compare the accuracy of the results

obtained with our tool with the accuracy of the results obtained with tools following statistical

approaches, and conclude that the pure parsimony criterion used by our methods leads to good

results in terms of precision of inferred haplotypes.

1 Introduction

Over the last few years, an emphasis in human genomics has been on identifying genetic variations

among different people. A comprehensive search for genetic influences on disease involves examining

all genetic differences in a large number of affected individuals. This allows to systematically test

common genetic variants for their role in disease; such variants explain much of the genetic diversity in

our species, a consequence of the historically small size and shared ancestry of the human population.

A particular focus has been put on the identification of Single Nucleotide Polymorphisms (SNPs),

point mutations found with only two common values in the population, and tracking their inheritance.

However, this process is in practice very difficult due to technological limitations. At a genomic

position for which an individual inherited two different values, it is currently difficult to identify from

which parent each value was inherited. Instead, researchers can only identify that the individual is

heterozygotic at that position, i.e. that the values inherited from both parents are different. If we

could identify maternal and paternal inheritance better, we could trace the structure of the human

population more accurately and improve our ability to map disease genes. This process of going from

genotypes (which include the ambiguity at heterozygous positions) to haplotypes (where we know

from which parent each SNP is inherited) is called haplotype inference.

The next high priority phase of human genomics will involve the development of a full Haplotype

Map of the human genome. The HapMap Project [25] represents the best known effort of scientists

to develop a public resource that will help researchers to find genes associated with human disease.

The HapMap resource can guide the design and analysis of genetic association studies, shed light
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on structural variation and recombination, and identify sites that may have been subject to natural

selection during human evolution. The achievement of these goals depends on an efficient method

that performs inference of haplotypes from genotypes.

A well-known approach to the haplotype inference problem is called Haplotype Inference by

Pure Parsimony (HIPP). The problem of finding such solutions is APX-hard (and, therefore, NP-

hard) [16]. The Pure-Parsimony problem is to find a solution to the haplotype inference problem that

minimizes the total number of distinct haplotypes used. Current methods for solving the haplotype

inference problem by pure parsimony utilize Integer Linear Programming (ILP) [11, 2, 4] and branch

and bound algorithms [26].

Other existing approaches are based on statistical methods (e.g. see [24, 21]). These methods start

by inferring haplotype frequencies and afterwards use these frequencies to compute the haplotypes

that explain the genotypes. The problem of finding such solutions can be made polynomial.

Although experiments results given in [11, 26] indicate that the accuracy of the HIPP approach is

competitive when compared with other approaches, most of the tools for solving the HIPP problem

are known for solving only very small problem instances. Indeed, this fact has motivated the use

of approximation algorithms inspired on pure parsimony [13]. Nonetheless, we argue that despite

the worst-case exponential case of all known algorithms for solving the HIPP problem, it may be

possible to build efficient tools. This is actually the case with Boolean Satisfiability (SAT) 1 [20, 9],

where state-of-the-art SAT solvers are currently able of solving formulas with hundreds of thousand

variables and tens of million clauses.

The contribution of this paper is three-fold. First, we describe a plain SAT model for encoding

the haplotype inference by pure parsimony problem. Second, we provide experimental results that

demonstrate the efficiency of the new model when compared with other models for solving the HIPP

problem. Finally, we provide experimental results that demonstrate that the HIPP approach is as

accurate as statistical-based approaches.

This paper is organized as follows. The next section describes the haplotype inference problem

and the pure parsimony approach. Afterwards, we describe Boolean satisfiability, which is the basis

for our model for solving the HIPP problem. Section 4 explains how to compute haplotypes using

Boolean satisfiability, including a description of the SAT model. Next, we give experimental results

that, besides demonstrating that our tool is much more efficient than existing tools for haplotype

inference by pure parsimony, also compare the accuracy of the HIPP approach with the accuracy of

other approaches on a wide range of biological data. This extensive comparison shows that the HIPP

approach is as accurate as other well-known approaches. Finally, the paper concludes and suggests

future research work.

1SAT was the first problem to be proved to be NP-complete [5].
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2 Haplotype Inference by Pure Parsimony

A haplotype is the genetic constitution of an individual chromosome. The underlying data that

forms a haplotype can be the full DNA sequence in the region, or more commonly the SNPs in

that region. Diploid organisms pair homologous chromosomes, and thus contain two haplotypes, one

inherited from each parent. The genotype describes the conflated data of the two haplotypes. In

other words, an explanation for a genotype is a pair of haplotypes. Conversely, this pair of haplotypes

explains the genotype. If for a given site both copies of the haplotype have the same value, then the

genotype is said to be homozygous at that site; otherwise is said to be heterozygous.

Given a set G of n genotypes, each of length m, the haplotype inference problem consists in

finding a set H of 2 · n haplotypes, such that for each genotype gi ∈ G there is at least one pair

of haplotypes (hj , hk), with hj and hk ∈ H such that the pair (hj , hk) explains gi. The variable n

denotes the number of individuals in the sample, and m denotes the number of SNP sites. gi denotes

a specific genotype, with 1 ≤ i ≤ n. (Furthermore, gij denotes a specific site j in genotype gi, with

1 ≤ j ≤ m.)

Without loss of generality, we may assume that the values of the two possible alleles of each SNP

are always 0 or 1. Value 0 represents the wild type and value 1 represents the mutant. A haplotype

is then a string over the alphabet {0,1}. Moreover, genotypes may be represented by extending the

alphabet used for representing haplotypes to {0,1,2}. Homozygous sites are represented by values 0

or 1, depending on whether both haplotypes have value 0 or 1 at that site, respectively. Heterozygous

sites are represented by value 2.

Table 1 gives twelve haplotypes of the β2AR genes 2. Each haplotype has 13 sites. Each site

corresponds to a specific nucleotide in a gene where a mutation occurred. Each nucleotide is char-

acterized by the position in the sequence. For each nucleotide, a pair of possible alleles is given:

the first allele corresponds to the wild type and the second to the mutant. The last column of each

haplotype contains the representation of that haplotype. Different genotypes may result from this

set of haplotypes: for example, the pair of haplotypes (h1, h7) explains the genotype 200000020222,

whereas the pair (h7, h8) explains the genotype 0020000020121.

One of the approaches to the haplotype inference problem is called Haplotype Inference by Pure

Parsimony (HIPP). A solution to this problem minimizes the total number of distinct haplotypes

used. The HIPP problem is APX-hard (see [11, 16] for proofs and historical perspective). Exper-

imental results provide support for this method: the number of haplotypes in a large population

is typically very small, although genotypes exhibit a great diversity. For example, consider the

set of genotypes: 2120, 2102, and 1221. There are solutions for this example that use six distinct

haplotypes, but the solution 0100/1110, 0100/1101, 1011/1101 uses only four distinct haplotypes.

Over the last few years, a number of authors have proposed optimization models for the HIPP

problem, most of which based on ILP [12]. With a few notable exceptions [26], the majority of the

2These data were obtained from [8].
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Table 1: Haplotypes of the β2AR genes.

Nucleotide -1023 -709 -654 -468 -406 -367 -47 -20 46 79 252 491 523

Alleles G/A C/A G/A C/G C/T T/C T/C T/C G/A C/G G/A C/T C/A

h1 A C G C C T T T A C G C C 1000000010000

h2 A C G G C C C C G G G C C 1001011101000

h3 G A A C C T T T A C G C C 0110000010000

h4 G C A C C T T T A C G C C 0010000010000

h5 G C A C C T T T G C G C C 0010000000000

h6 G C G C C T T T G C A C A 0000000000101

h7 G C G C C T T T G C A T A 0000000000111

h8 G C A C C T T T A C A C A 0010000010101

h9 A C G C T T T T A C G C C 1000100010000

h10 G C G C C T T T G C A C C 0000000000100

h11 G C G C C T T T G C G C C 0000000000000

h12 A C G G C T T T A C G C C 1001000010000

proposed models utilize Integer Linear Programming (ILP) [11, 2, 4].

The original ILP models are linear in the number of possible haplotypes [11], and so exponential

on the number of given genotypes. A new variable is created for each pair of haplotypes that can be

used for explaining a given genotype. The objective function is to minimize the number of variables

representing distinct haplotypes. This formulation is commonly referred to as RTIP.

In [26], the RTIP model was adapted to a branch and bound algorithm that searches all the

possible solutions and returns the one with the fewer number of haplotypes. In addition, remarkable

reductions on the size of the model are achieved by identifying haplotypes that may only explain one

or two genotypes. This formulation was implemented in the Hapar solver.

Recent ILP models are polynomial in the number of sites and population size [2]. For each site

in each genotype, two binary variables are created. The sum of each pair of variables depends on the

value of the genotype in the corresponding site. This formulation is commonly referred to as Poly.

The size of the Poly model is O(n2m).

More recently, Brown and Harrower [4] introduced a new polynomial-size formulation that is a

hybrid of the two ILP formulations above and inherits many of the strengths of both. In addition

to the variables mentioned above, a small set of possible explaining haplotypes is created. The final

solution may include some of these haplotypes. This formulation is commonly referred to as Hybrid.

3 Boolean Satisfiability

The Boolean satisfiability (SAT) problem is represented using n propositional variables x1, x2, . . . , xn,

which can be assigned truth values 0 (false) or 1 (true). A literal l is either a variable xi (i.e., a

positive literal) or its complement ¬xi (i.e., a negative literal). A clause ω is a disjunction (∨) of
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literals and a CNF formula ϕ is a set of clauses (interpreted as a conjunction (∧) of clauses). A

literal lj of a clause ωa that is assigned truth value 1 satisfies the clause, and the clause is said to be

satisfied. If the literal is assigned truth value 0 then it is removed from the clause. A clause with a

single literal is said to be unit and its literal has to be assigned value 1 for the clause to be satisfied.

The iterative application of this rule is called unit propagation. The derivation of an empty clause

indicates a conflict and therefore the formula is unsatisfied for the given assignment. The formula is

satisfied if all its clauses are satisfied. The SAT problem consists of deciding whether there exists a

truth assignment to the variables such that the formula becomes satisfied.

For example, consider formula ϕ = {ω1, ω2}, with ω1 = {x1} and ω2 = {¬x1 ∨ x2}. Simply by

applying unit propagation we get the satisfying assignment x1 = 1 and x2 = 1. Now consider formula

ϕ′ = ϕ ∪ {ω3} with ω3 = {¬x1 ∨ ¬x2}. Clearly, there is no truth assignment such that ϕ′ becomes

satisfied.

Over the years a large number of algorithms has been proposed for SAT, from the original Davis-

Putnam procedure [7], followed by Davis-Logemann-Loveland backtrack search procedure (DLL) [6],

to recent backtrack search algorithms and to local search algorithms, among many others. Local

search algorithms can solve extremely large satisfiable instances of SAT. These algorithms have also

been shown to be very efficient on randomly generated instances of SAT. On the other hand, several

improvements to the DLL backtrack search algorithm have been introduced. These improvements

have been shown to be crucial for solving large instances of SAT derived from real-world applications,

and in particular for those where local search cannot be applied, i.e. for unsatisfiable instances.

Indeed, proving unsatisfiability is often the objective in a large number of significant real-world

applications.

Recent state-of-the-art SAT solvers utilize different forms of intelligent backtracking [1, 19, 27]. In

these algorithms each identified conflict is analyzed to identify the variable assignments that caused

it, and a new clause (nogood) is created to explain and prevent the identified conflicting conditions

from happening again. The created clause is then used to compute the backtrack point. Moreover,

some of the recorded clauses are eventually deleted.

Efficient implementations represent the most recent paradigm shift in SAT solvers. Due to the

huge size of many of the benchmark problem instances, a careful implementation can make the

difference between being able or unable to solve a given problem instance in a reasonable amount

of time. Moreover, learning new clauses may significantly increase the clause database size, though

this technique is essential for solving hard real-world instances. This motivates the use of very

efficient data structures. In recent years, they have evolved from intuitive to more sophisticated

data structures. Efficient implementations for backtrack search SAT solvers with learning are based

on lazy data structures [20]. The laziness in these structures allows the status of a clause to be

imprecisely known. Nevertheless, unit and empty clauses are always identified, ensuring that unit

propagation is always applied and conflicts are always detected.
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4 Computing Haplotypes with Boolean Satisfiability

This section reviews the SAT-based model introduced in [18, 17].

The SAT-based formulation models whether there exists a set H of haplotypes, with r = |H|

haplotypes, such that each genotype gi ∈ G is explained by a pair of haplotypes in H. The SAT-

based algorithm considers increasing sizes for H, from a lower bound lb to an upper bound ub.

Trivial lower and upper bounds are, respectively, 1 and 2 · n. The algorithm terminates for a size of

H for which there exists r = |H| haplotypes such that every genotype in G is explained by a pair of

haplotypes in H.

In what follows we assume n genotypes each with m sites. The same indexes will be used

throughout: i ranges over the genotypes and j over the sites, with 1 ≤ i ≤ n and 1 ≤ j ≤ m. In

addition r candidate haplotypes are considered, each with m sites. An additional index k is associated

with haplotypes, 1 ≤ k ≤ r. As a result, hkj ∈ {0, 1} denotes the jth site of haplotype k. Moreover,

a haplotype hk, is viewed as a m-bit word, hk 1 . . . hk m. A valuation v : {hk 1, . . . , hk m} → {0, 1}m

to the bits of hk is denoted by hv
k.

For a given value of r, the model considers r haplotypes and seeks to associate two haplotypes

(which can possibly represent the same haplotype) with each genotype gi, 1 ≤ i ≤ n. As a result,

for each genotype gi, the model uses selector variables for selecting which haplotypes are used for

explaining gi. Since the genotype is to be explained by two haplotypes, the model uses two sets,

a and b, of r selector variables, respectively sa
ki and sb

ki, with k = 1, . . . , r. Hence, genotype gi is

explained by haplotypes hk1
and hk2

iff sa
k1i = 1 and sb

k2i = 1. Clearly, gi is also explained by the

same haplotypes iff sa
k2i = 1 and sb

k1i = 1.

If a site gij of a genotype gi is 0 or 1, then this is the value required at this site and is used by

the model.

If a site gij is 0, then the model requires, for k = 1, . . . , r:

(¬hkj ∨ ¬sa
ki) ∧ (¬hkj ∨ ¬sb

ki) (1)

If a site gij is 1, then the model requires, for k = 1, . . . , r:

(hkj ∨ ¬sa
ki) ∧ (hkj ∨ ¬sb

ki) (2)

Otherwise, one requires that the haplotypes explaining the genotype gi have opposing values at

site i. This is done by creating two variables, ga
ij ∈ {0, 1} and gb

ij ∈ {0, 1}, such that ga
ij 6= gb

ij. In

CNF, the model requires two clauses:

(ga
ij ∨ gb

ij) ∧ (¬ga
ij ∨ ¬gb

ij) (3)

In addition, the model requires, for k = 1, . . . , r:

(hkj ∨ ¬ga
ij ∨ ¬sa

ki) ∧ (¬hkj ∨ ga
ij ∨ ¬sa

ki)∧

(hkj ∨ ¬gb
ij ∨ ¬sb

ki) ∧ (¬hkj ∨ gb
ij ∨ ¬sb

ki)
(4)
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Clearly, for each i, and for a or b, it is necessary that exactly one haplotype is used, and so

exactly one selector variable be assigned value 1. This can be captured with cardinality constraints:
(

r
∑

k=1

sa
ki = 1

)

∧

(

r
∑

k=1

sb
ki = 1

)

(5)

Since the proposed model is purely SAT-based, a simple alternative solution is used, which consists

of the CNF representation of a simplified adder circuit.

The complexity of the proposed SAT model becomes O(r nm). Since r = O(n), the proposed

model is O(n2 m), which is the complexity of the model proposed in [2]. Nevertheless, our experience

is that r is in general much smaller than n, and so our model yields significantly more compact

representations than the models of [2, 4].

A key technique for pruning the search space is motivated by observing the existence of symmetry

in the problem formulation.

Consider two haplotypes hk1
and hk2

, and the selector variables sa
k1i, sa

k2i, sb
k1i and sb

k2i. Further-

more, consider Boolean valuations vx and vy to the sites of haplotypes hk1
and hk2

. Then, hvx

k1
and

h
vy

k2
, with sa

k1is
a
k2is

b
k1is

b
k2i = 1001, corresponds to h

vy

k1
and hvx

k2
, with sa

k1is
a
k2is

b
k1is

b
k2i = 0110, and one

of the assignments can be eliminated. To remedy this, one possibility is to enforce an ordering of

the Boolean valuations to the haplotypes3. Hence, for any valuation v to the problem variables we

require hv
1 < hv

2 < . . . < hv
r .

Another key technique for pruning the search space is the use of a lower bound on the size of the

number of required haplotypes.

Two genotypes, gi and gl, are declared incompatible iff there exists a site for which the value of

one genotype is 0 and the other is 1. For example, g1 = 012 is incompatible with g2 = 112, whereas

the genotypes g1 and g3 = 210 are not incompatible. Clearly, for two incompatible genotypes, gi and

gl, the haplotypes that explain gi must be distinct from the haplotypes that explain gl. Given the

incompatibility relation we can create an incompatibility graph I, where each vertex is a genotype,

and two vertices have an edge if they are incompatible. Suppose I has a clique of size k. Then the

number of required haplotypes is at least 2 · k − σ, where σ is the number of genotypes in the clique

which do not have heterozygous sites. In order to find the largest lower bound, our objective is to

identify the maximum clique in I. Since this problem is NP-hard, we use the size of a maximal clique

in the incompatibility graph, computed using a simple greedy heuristic.

Moreover, we note that the information regarding the lower bound can be used for reducing the

size of the model. If a genotype gi is part of the clique and has at least one heterozygous site,

then we can associate two dedicated haplotypes with gi. If a genotype gi is part of the clique and

all its sites are homozygous, then we associate only one dedicated haplotypes with gi. In addition,

when considering the candidate haplotypes for a genotype gl, which is incompatible with genotype

gi included in the clique, the haplotypes associated with gi need not be considered as candidates for

gl. This eliminates s variables and the corresponding clauses.

3See for example [10] for a survey of earlier work on the utilization of lexicographic orderings for symmetry breaking.
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Furthermore, it is possible to increase the lower bound obtained with a maximal clique. Suppose

a genotype gi is heterozygous at site j, and further assume that all other genotypes assume the same

homozygous value (either 0 or 1) at site j. Then, it is straightforward to conclude that explaining

genotype gi requires one haplotype which cannot be used to explain any of the other genotypes.

Hence, gi can be used to increase the lower bound by 1.

One additional simplification consists of using the structural properties of genotypes with the

purpose of reducing the search space 4. Clearly, in the presence of two equal genotypes, one can be

discarded, assuming the two genotypes are phased identically. Hence, the solution for the remaining

genotype is also the solution for the discarded genotype. Duplicate sites can also be discarded, i.e.

sites for which each genotype has equal values. Moreover, complemented sites can also be discarded,

where two sites are complemented if the homozygous sites have complemented values.

5 Experimental Results

The main goal of this section is two-fold: (1) to show that the HIPP problem is effectively solved

using our model and a state-of-the art SAT solver and (2) to compare the accuracy of the HIPP

approach with other approaches.

5.1 Experimental Setup

We have implemented the algorithm described in the previous section using a Perl script that

encodes the problem to be given to the minisat SAT solver [9]. Our solution is called SHIPs (Sat-

based Haplotype Inference by Pure Parsimony).

For evaluating SHIPs, as well as the other tools, we have collected a significant number of problem

instances. Problem instances of the haplotype inference problem may be obtained following two

different approaches:

• Generate problem instances: The problem instances are typically generated using Hudson’s

program ms [14]. This program generates haplotypes following a standard coalescent approach

in which the genealogy of the sample is first randomly generated and then mutations are

randomly placed on the genealogy and a set of haplotypes is generated. Given the haplotypes,

genotypes are generated and given to a HIPP solver.

• Obtain real problem instances: Haplotypes for small genomic regions have been identified

and are available from scientific publications [15, 22, 8]. Additionally, the HapMap project [25]

provides a large source of genotype data over four populations. Since only genotypes are

available, it is not possible to check the accuracy of the HIPP approach on these problems.

4See for example [2] for a detailed description of the techniques used for identifying structural properties of genotypes.
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Table 2: Results for RTIP, Poly and Hybrid (taken from [3]), Hapar and SHIPs.

Benchmarks Sites Recomb Genotypes RTIP Poly Hybrid Hapar SHIPs

Uniform 10 – 50 15/15 15/15 15/15 15/15 15/15

10 4 50 15/15 15/15 15/15 15/15 15/15

10 16 50 15/15 12/15 15/15 15/15 15/15

30 – 50 7/15 11/15 15/15 15/15 15/15

50 – 30 0/50 27/50 35/50 50/50 50/50

75 – 30 0/10 4/10 6/10 9/10 10/10

100 – 30 0/10 3/10 3/10 9/10 10/10

Non-Uniform 10 – 50 15/15 14/15 15/15 15/15 15/15

30 – 50 15/15 8/15 15/15 15/15 15/15

50 – 30 8/15 0/15 6/15 14/15 15/15

75 – 30 2/15 0/15 5/15 6/15 15/15

100 – 30 0/15 0/15 3/15 4/15 15/15

Hapmap 30:75 – 7:68 0/24 15/24 15/24 17/24 23/24

TOTAL 10:100 0:16 7:68 92/229 124/229 163/229 199/229 228/229

5.2 SHIPs vs RTIP, Poly, Hybrid and Hapar

In order to compare the performance of SHIPs with the performance of other tools based on the

HIPP approach, we have used three benchmarks 5. These benchmarks are as follows:

1. Uniform: Given a set of haplotypes obtained by using the ms program, remove repeated

haplotypes. Randomly pick any two haplotypes as an explanation for a genotype.

2. Non-uniform: Given a set of haplotypes obtained by using the ms program, pairs are obtained

by randomly pairing two haplotypes, which form a genotype. Repeated haplotypes are not

removed and so have a higher probability of being picked.

3. Hapmap: Genotype inputs obtained over all four HapMap populations: Yoruba of Ibadan -

Nigeria, Japanese of Tokyo, Chinese of Beijing and US with northern and western European

ancestry. For each DNA sequence considered, a continuous collection of SNPs with a small

amount of recombination was selected.

Table 2 provides results for a set of 229 problem instances, including uniform, non-uniform and

hapmap instances. The ms program has generated uniform and non-uniform instances with 10, 30,

50, 75 and 100 sites. Uniform instances with 10 sites include different recombination levels: 0, 4 and

16. All the other instances have recombination level 0. Moreover, instances with 10 and 30 sites have

5These benchmarks were provided by Daniel G. Brown and Ian M. Harrower.
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Figure 1: Hapar vs SHIPs on uniform, non-uniform and hapmap instances.

50 genotypes, whereas instances with 50, 75 and 100 sites have only 30 genotypes. For the problems

obtained from the HapMap project, sequences of lengths 30, 50 and 75 were tested. The number of

genotypes in these problems range from 7 to 68 genotypes.

Table 2 compares the performance of RTIP [11], Poly [2], Hybrid [4], Hapar [26] and SHIPs on

solving these 229 problem instances. For each solver, the number of problems solved within 7200s is

given. Results for RTIP, Poly and Hybrid were taken from [3], where a 1.5GHz Intel Pentium 4 with

1GB of RAM running Debian Linux was used. We have applied a conversion factor to the results

for Hapar and SHIPs, that compensates for the different speed of the machine used to run SHIPs

and the machine used to run RTIP, Poly and Hybrid.

From Table 2 it is clear that Hapar and SHIPs are by far the most effective solvers. All others

abort on many more problem instances. Moreover, SHIPs aborts 1 single instance out of 229, in

contrast with Hapar which aborts 30 out of 229.

Figure 1 compares the CPU time required by both Hapar and SHIPs on solving each of the 229

problem instances. (A log scale has been used.) Observe that for this plot the limit CPU time

was extended to 10000s, and a different machine was used (1.9 GHz AMD Athlon XP with 1GB

of RAM running RedHat Linux). With the only exception of one hapmap problem instance for

which both SHIPs and Hapar abort, each of the problem instances was solved by SHIPs in less than

30 seconds. Although Hapar aborted on 20 instances, around 80% of the instances were solved in

less than 100 seconds. These results contrast with the results obtained for the other three tools for

which, accordingly to [3], many of the instances solved required more than 100 seconds. Moreover,

and besides trivial instances, SHIPs is in general faster than Hapar by 1 to 4 orders of magnitude.
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Figure 2: Hapar vs SHIPs on additional uniform and non-uniform instances.

In order to further compare the performance of SHIPs and Hapar, we have performed experiments

on additional 175 hard problem instances. Some of the instances were also provided by Brown and

Harrower (although results in [3] for RTIP, Poly and Hybrid do not include them): 70 uniform

instances with 50 genotypes each (15 instances with 10 sites and recombination level 40, 3 × 15

instances with 30 sites and recombination levels 4, 16 and 40 and 10 instances with 50 sites) and

15 non-uniform instances (with 50 sites and 50 genotypes). Furthermore, we have generated more

3 × 15 uniform and 3 × 15 non-uniform problem instances with 75 sites and 50 genotypes, 100 sites

and 50 genotypes, and 100 sites and 100 genotypes.

Figure 2 provides a plot comparing the CPU time required by Hapar and SHIPs for solving each

of the additional 175 problem instances within 10000s. This comparison between Hapar and SHIPs

clearly demonstrates the advantages of the new SAT-based method. Similarly to the previous results,

and besides trivial instances, SHIPs is in general between 2 and 4 orders of magnitude faster than

Hapar. In addition, SHIPs aborted only 2 problem instances out of 175 (∼ 1%), while Hapar aborted

79 problem instances (∼ 45%), including most of the non-uniform instances.

5.3 SHIPs vs Phase and Haplotyper

The results of the previous section are clear. The SHIPs approach is by far the most efficient

solution for haplotype inference by pure parsimony. This section compares the accuracy of SHIPs

(and so of pure parsimony) with PHASE [24, 23] and Haplotyper [21]. We have selected PHASE

and Haplotyper because these tools use approaches for solving the haplotype inference problem that

are very different from the pure parsimony approach.
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PHASE and Haplotyper are both statistical-based methods following a coalescent approach. A

coalescent is a stochastic process that provides a history of how a set of sampled haplotypes in a

population has evolved. PHASE uses an infinite-sites model and the Gibbs sampling algorithm,

whereas Haplotyper uses a an expectation-maximization and a partition-ligation algorithm. In our

experiments, we have used PHASE version 2.1 and Haplotyper version 1.0. (Haplotyper has been

configured for 20 rounds, as suggested by the authors.)

We have performed this evaluation using three sets of haplotypes on biological data: B2AR, ACE

and CF. These sets of haplotypes are characterized as follows:

• B2AR is a set of 12 haplotypes with 13 SNPs obtained from [8] (see Table 1). These haplotypes

correspond to the β2-adrenergic receptors. The β2-adrenergic receptors (β2AR) are G protein-

coupled receptors that mediate the actions of catecholamines in multiple tissues.

• ACE is a set of 22 haplotypes with 52 SNPs obtained from [22]. The angiotensin converting

enzyme (ACE) is encoded by the gene DCP1 and catalyses the conversion of angiotensin I to the

physologically active peptide angiotensin II. Due to this key function in the renin-angiotensin

system, many association studies have been performed with DCP1. Rieder et al. [22] completed

the genomic sequencing of DCP1 from 11 individuals, and identified 78 varying sites in 22

chromosomes. Fifty two out of the 78 varying sites are non-unique polymorphic sites, and

complete data on these 52 biallelic markers are available.

• CF is a set of 29 haplotypes with 23 SNPs obtained from [15]. Cystic fibrosis (CF) is a life-

threatening disorder that causes severe lung damage and most people with the disease usually

do not live beyond their 40s. Cystic fibrosis is due to a defective gene that causes the secretions

to become thick and sticky, and therefore respiratory failure is the most dangerous consequence

of this disease.

For each of the three sets of haplotypes, we have generated sets of genotypes with different sizes.

Genotypes have been generated by randomly pairing two haplotypes. For each size we have generated

100 problem instances.

For both B2AR and ACE we have generate sets with sizes ranging from 5 to 50 genotypes. We

have observed that when using large sets (with size ≥ 30) the error rates are close to zero. For CF

we have generated sets with sizes ranging from 4 to 22 genotypes. We should note that to our best

knowledge never in the past such an extensive evaluation has been performed. For example, [26]

reports results for sets on biological data as large as 11 genotypes, whereas [13] reports results for

sets on biological data as large as 13 genotypes.

We have evaluated the accuracy of the three tools according to the error rate. This measure

is commonly used in the haplotype inference problem (e.g. see [26, 13]). The error rate gives the

proportion of genotypes whose original haplotype pairs are incorrectly inferred. For example, an

error rate of 0.15 means that 15% of the genotypes has been incorrectly explained.
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Figure 3: PHASE and Haplotyper vs SHIPs on B2AR instances.

The plots in Figures 3, 4 and 5 give the error rate as a function of the number of genotypes

for Haplotypes, PHASE and SHIPs on B2AR, ACE and CF, respectively. Each point is the average

error rate for a set of 100 instances having the same number of genotypes. From these figures, it

is clear that the error rate decreases as the number of genotypes increases. Observe that as the

number of genotypes increases, the probability of having genotypes uniquely explained (with at

most one heterozygous site) increases. Most probably, the haplotypes that explain these genotypes

also explain other genotypes. This process naturally serves the pure parsimony and the coalescent

approach.

The three tools have very similar performances with respect to accuracy. None of them dominates

either as the best or as the worst approach. Although PHASE is the most accurate on solving the

B2AR instances, it is the less accurate on the ACE instances. With Haplotyper occurs the opposite.

For both the B2AR and the CF instances, SHIPs is ranked as second. For the CF instances, the

accuracy of SHIPs can be worst than for PHASE and Haplotyper for small size instances but is as

good as PHASE for large problem instances. Indeed, SHIPs seems to be the most balanced approach.

Given these results, we believe that the HIPP approach is worthwhile investigating further. Since

it is most likely that none of the approaches will be clearly better than all the others, results with

different tools should be obtained and combined for solving the haplotype inference problem.

These results confirm the results obtained in [26], where the authors claim that the HIPP approach

is as accurate as other existing approaches. Nonetheless, in [13] Hapar has been reported as being

less accurate than the other tools. However, for these experiments many genotypes could not be

resolved by Hapar within two hours and consequently were discarded. Hence, this paper gives, for

the first time, results on the accuracy of the HIPP approach on large sets from biological data.
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Figure 4: PHASE and Haplotyper vs SHIPs on ACE instances.

6 Conclusions and Future Work

This paper conducts an experimental evaluation on SHIPs, the first SAT-based approach for

the problem of inferring haplotypes under the pure parsimony criterion. The SHIPs tool uses a

SAT model, incorporates a number of key pruning techniques and uses an iterative algorithm that

enumerates the possible solution values for the target optimization problem.

We compared the performance of SHIPs with that of other tools based on the pure parsimony

approach. The results presented in the paper are conclusive. SHIPs is much more efficient than all

existing combinatorial methods, either based on integer linear programming or on dedicated branch-

and-bound solutions. Besides being in general several orders of magnitude faster than the previous

best existing solution (i.e. Hapar) for non-trivial instances, SHIPs is also capable of solving a large

number of instances that no other approach is capable of.

We also compared the accuracy of SHIPs with that of other tools based on statistical methods,

using a diverse set of biological data. For the first time we have been able to evaluate a tool base on

the HIPP approach on a significant number of problem instances on biological data. Experimental

results indicate that the HIPP approach is as accurate as other approaches and therefore tools based

on the HIPP approach should be considered for performing haplotype inference on biological data.

Although SHIPs is both efficient and accurate on existing problem instances, several challenges

still remain. Expected improvements include the development of additional search pruning tech-

niques, more sophisticated lower bounding, and a more optimized encoding into SAT. Moreover, a

more extensive experimental evaluation should be conducted, including other tools and more problem

instances.
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Figure 5: PHASE and Haplotyper vs SHIPs on CF instances.

Finally, the SAT-based solution for the haplotype inference problem allows the utilization of

criteria other than pure parsimony or extensions of the pure parsimony criterion. For example, it

is simple modify the proposed model to give preference to specific haplotypes (e.g. the haplotypes

that can be used to explain the largest number of genotypes).
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