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Abstract 
 

Recent technological advancements have led to a dramatic increase in the quantity of available 

biological data. In this context, a general challenge nowadays is to transform the data into useful 

information. One of the most important problems is how to model and infer a gene regulatory 

network (GRN) from microarray expression data. A GRN consists of a set of mutually-

influencing genes. Influence is exerted by several means, such as transcriptional regulation or 

post-translational modifications. There are several computational approaches for modeling and 

inferring GRNs. In this technical report we study the following topics: modeling the yeast’s cell 

cycle GRN and analyzing its dynamics in both wild type and mutant strains, using Boolean 

networks; inferring parameters in artificial GRNs, from artificial expression data, using a 

particular piecewise linear equations model.  

 

Keywords: Bioinformatics, computational biology, gene regulatory network, Boolean network, 

cell cycle, piecewise linear equation, machine learning, gradient descent. 
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1. Introduction 
 
A cell reacts to its environment by selectively producing and changing the functional state of 

several proteins. A protein’s function is specified by a sequence of amino acids: it may act as an 

enzyme, it may transport certain metabolites in and out of the cell, and so on. Proteins are 

produced from messenger ribonucleic acid (mRNA) molecules. An mRNA molecule’s basic 

building blocks are, essentially, the bases adenine (A), guanine (G), cytosine (C) and uracil (U). 

An mRNA molecule defines a unique code from which a protein can be derived. mRNA itself is 

produced using a part of the DNA molecule called a gene. A gene, since being part of the DNA 

molecule, shares the same kind of bases with the mRNA molecules, with the exception of uracil, 

which is substituted by thymine (T). The process of going from DNA to protein is summarized in 

the following sequential steps: 

- transcription: an mRNA molecule is created from a gene; this molecule completely 

specifies the protein that should be produced later; 

- translation: the mRNA molecule, which conveys information regarding the protein to 

be produced, is used to synthesize it; one mRNA molecule may be used in the 

production of several units of the same type of protein. 

Figure 1.1 illustrates the process. 

 
Fig. 1.1 – Transcription followed by translation. 

 

In figure 1.1, the rose-colored area refers to the cell’s nucleus (in eukaryotic (i.e. with cellular 

nucleus) organisms, the nucleus contains the DNA molecule). The mRNA molecule migrates to 
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the cytoplasm, where it will be used by a ribosome to produce the specified protein (amino acids 

are required in this latter step). 

There are several factors which affect the overall quantity of protein in an active form. Some of 

these are mRNA production and degradation rates, protein synthesis rate, protein degradation 

rate, or even post-translational modifications, such as phosphorylation, that alter a protein’s 

activation state. The process of regulating mRNA production rate is called transcriptional 

regulation. This process is commonly studied in computational biology, so we describe it here in 

more detail. Each gene has a region, called the promoter, upstream of the region that defines the 

code for a protein. A transcription factor, which is itself a type of protein, can bind to a gene’s 

promoter region. As a consequence of this binding, the mRNA production for the gene will 

increase or diminish. Some genes code for transcription factors, thereby regulating other genes’ 

mRNA production rate. A system of genes that influence each other by means of this kind of 

regulation is called a transcriptional regulatory network. Understanding transcriptional or general 

GRNs is crucial for improving the diagnostic and treatment of diseases like cancer [1].  

Currently, there is only partial information regarding which genes interact with each other and the 

nature of their interactions, given a metabolic context. Even in extensively studied biological 

processes, such as glycolysis, the underlying GRN hasn’t been completely discovered [2]. 

Besides, GRNs are extensive and complex [3], making it difficult to intuitively understand their 

dynamics [4]. 

Recently, there has been a steep increase in the quantity of available biological data. This is being 

caused by improvements in already-existing experimental techniques, such as DNA sequencing, 

and also by the emergence of new technologies such as microarrays. A microarray is a 

simultaneous measurement of each gene’s mRNA expression level in a neighborhood of cells. A 

sequence of microarray experiments, during a cellular process, originates a time series. There are 

several publicly-available sets of microarray experiments, some of them frequently used in 

bioinformatics [5]. Besides microarrays, there are other kinds of biological data, such as DNA 

sequence or protein expression measurements, that are useful in discovering genetic regulation 

processes. Given the enormous quantity of raw data available, there is the challenge of 

transforming it in useful biological information. Two of the most studied problems are how to 
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model and infer GRNs, and how to compare protein or DNA sequences in order to discover 

whether they share a significant motif. 

This technical report will focus on the problem of modeling and inferring GRNs. Frequent 

approaches to this problem rely, for example, on the use dynamic Bayesian networks [6-8] or 

systems of linear differential equations [9-10]. Although most of the analyzed approaches use, as 

input data, microarray expression levels, there are methods which combine microarrays with 

other kinds of data [11]. One of the key obstacles in evaluating a method’s capacity to detect 

correct GRNs is the often incomplete knowledge about them. Frequently, a method detects many 

relations which are neither supported nor denied by biological literature, and that is a bane of 

precise algorithm evaluation. It is important to refer that most studied GRNs come from simpler 

organisms than the human, such as yeast (saccharomyces cerevisiae), a unicellular eukaryotic 

organism. 

In this technical report, we study two approaches for modeling and inferring GRNs – boolean 

networks and piecewise linear equations. We intend to understand the potential and applicability 

of each formalism. Boolean networks are studied under the perspective of modeling, via a case 

study – the cell cycle. Piecewise linear equations are studied under both perspectives, modeling 

and inference, using several artificial networks; we study the dynamics that the equations allow 

for; we apply optimization algorithms to artificial GRNs, in order to infer parameters that best 

explain their respective time series. In the first part of this technical report, we introduce several 

useful concepts. In the second part, we analyze and extend the results on a Boolean model of the 

cell cycle [12]. In the third part, we describe a particular piecewise linear equations model; we 

describe an optimization algorithm; we discuss results for parameter inference in several artificial 

GRNs. In the last part, we conclude on the possibilities and limitations of each approach, and 

conjecture on possible future research directions. 
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2. Gene regulatory networks 
 

In this chapter, we present several useful concepts for the comprehension of our work. We 

describe the cell cycle GRN and the concept of recurring motif in a GRN. We introduce three 

approaches to the problem of modeling and inferring GRNs: Boolean networks, linear differential 

equations (via a case study) and piecewise linear equations. We also describe a tool called 

Genetic Network Analyzer (GNA), which has the purpose of qualitatively simulating and 

analyzing a GRN. 

 

 2.1. The cell cycle 

 
The cell cycle is an essential process to every living being. It consists of a sequence of events 

which allow for the division of a cell into two daughter cells, each having a copy of the mother 

cell’s DNA molecule. The main events that comprise the cell cycle are: 

 - G1 (gap one) – The cell grows and prepares to replicate its DNA. At the end of this part 

of the cell cycle, the cell makes a commitment to divide itself; 

 - S – The cell replicates its DNA; 

 - G2 (gap two) – The cell prepares for mitosis (division into two twin cells). In this phase, 

cell growth is observed; 

 - M (mitosis) – The cell divides into two twin cells. This part of the cell cycle involves 

four phases – prophase, metaphase, anaphase and telophase.  

The set of the first three phases is called interphase. Figure 2.1 portrays the cell cycle.  

 

Fig. 2.1 – The sequence of processes in the cell cycle. 
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The progression from a phase to the next one is significantly controlled by two types of proteins 

– cyclins and cyclin-dependent kinases (CDK). The purpose of a kinase is to catalyze the 

phosphorylation (i.e. the supply of a phosphate group) of a target molecule. This transformation 

may change the target molecule’s activation state. Thus, in the context of the cell cycle, selective 

phosphorylation is a way of regulating the passage from a phase to the next one. CDKs are 

cyclin-dependent, that is, they need to be activated by cyclins. A particular CDK-cyclin 

combination defines which molecules are targets. It is common for the same CDK to react with 

different cyclins in different cell cycle phases, thereby acting on different molecules. Each type 

of cyclin is characteristic of a particular phase of the cell cycle. Cell cycle progression is also 

monitored via a series of checkpoints that check whether, for example, the replicated DNA is 

damaged or not. In general, higher organisms have more complex cell cycles. In this technical 

report we study the yeast cell cycle, where there is only one CDK protein, named cdc28 (cell 

division cycle 28) and less types of cyclins than, for example, in the human being.  

 

 2.2. Recurring motifs in gene regulatory networks  

  
R. Milo et al [13] have proposed a simple algorithm to identify recurring motifs in directed 

graphs. The graphs are representations of several networks – transcriptional GRNs, biological 

neural networks, food chains, electronic circuits and the internet. The algorithm searches for 

motifs of three or four nodes. Motifs with a low p-value are returned. The results show that each 

network has a set of significant motifs, and that these sets partially overlap (i.e. there are 

significant motifs that appear in more that one network). One of these motifs is the feed-forward 

loop. It appears in transcriptional GRNs and biological neural networks. Figure 2.2 illustrates the 

feed-forward loop. 

 
Fig. 2.2 – Feed-forward loop. 
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One of the possible roles of a feed-forward loop is to activate a gene only if the activation signal 

is persistent, and inactivate it more quickly in the absence of that signal. S. Mangan and U. Alon 

[14] make a theoretical analysis of the motif’s function. We have created an artificial feed-

forward loop, using a piecewise linear equation model, and inferred its parameters from artificial 

expression data, to validate that the parameter inference algorithm is capable of recovering 

parameters from motifs that are commonly present in transcriptional GRNs. 

 

 2.3. Modeling gene regulatory networks 

 

 2.3.1. Modeling using differential equations 

 
We have analyzed an approach based on first degree differential equations [10]. The derivative 

for the expression of a gene i is given by: 

 

)()()()(' ttXtGtX iiiii ξλ +−=       (2.01) 

where Gi(t) is the gene’s transcription rate in instant t, �i is the gene’s constant rate of degradation 

and �i(t) is noise. The function Gi(t) is given by: 
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where ci0 is the gene’s basal production rate, cij is a constant, named the regulatory capacity 

between the regulating gene j and the regulated gene i, and Sj is a sigmoid function. The 

parameters for the sigmoid function are �j = {r, Mj}, where r is the sigmoid’s steepness and Mj is 

the average expression level for gene j. The sigmoid function is thus given by 
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The GRN inference method starts by finding a fixed number of regulators that minimizes the 

Akaike information criterion. Given this fixed number, an iterative algorithm is used to obtain the 
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most likely regulators for each gene. The candidates are 53 genes which are known to participate 

in the cell cycle (thus, this algorithm does not discover any regulations involving genes 

previously unknown to participate in the cell cycle GRN). Basically, the algorithm verifies which 

gene has the highest expression correlation with the regulated gene. This gene is selected as a 

regulator, and the corresponding parameter cij is determined, using a least-squares method. The 

newfound regulation is able to partially explain the regulated gene’s expression. The algorithm is 

repeated, this time using the regulated gene’s expression which could not be explained by the 

inferred regulation. The algorithm stops after the fixed number of regulators has been found.  

H. Chen et al [10] present the regulators found, for regulated genes which are also known to be 

part of the cell cycle GRN. Most regulations are neither confirmed nor denied by biological 

literature. There is some incongruence between the source code provided by the authors and the 

method described in their article [10]. The method’s robustness was tested in the following way: 

 - run the algorithm; use the inferred network and parameters to make an artificial 

simulation; 

 - use the new artificial expression time series as an input to the algorithm; 

 - run the algorithm again and compare the inferred regulators and parameters with the 

original ones.   

We verified that both the new network architecture and the new parameters were very different 

from the ones originally obtained, so we consider this method not to be robust. 

 

 2.3.2. Genetic Network Analyzer 

 
The Genetic Network Analyzer (GNA) is a tool for the qualitative simulation and analysis of 

GRNs, based on piecewise linear differential equations [4]. Gebert et al [9] give a detailed 

explanation of this particular formalism. The derivative for a gene’s expression level is given by 
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where xi(t) is the gene’s expression level, x(t) is a vector containing all expression levels, fi is the 

synthesis function and gi is the degradation function. The synthesis function is given by 
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The function bil is a step function, that is either given by 
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in which case we write bil as s+(xl, ilθ ), or by )),(1( illxs θ+− , in which case we write bil as s-(xl, 

ilθ ). The function fi is therefore a linear combination of step functions. The degradation function 

gi has a similar definition. Given the nature of the function bil, each function fi has a small set of 

possible values (the number of distinct values fi can display is bounded by 2|Li|, where Li is the 

number of genes regulating gene i). The same happens for gi. The following detail will be 

important later on: the threshold parameter ilθ  is particular to a regulating gene l and a regulated 

gene i. If the same gene l is to regulate another gene j, then the corresponding threshold 

parameter, jlθ , is not necessarily equal to the former. Thus, for a gene l, there is a set of threshold 

parameters jlθ  related to the set of genes that l regulates. 

The equilibrium states for the gene’s expression level are given by  
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The motivation for working with a symbolic, qualitative model instead of with a numeric one is 

twofold: the symbolic model can summarize the dynamics of a set of numerical models; direct 

numerical data, especially for the threshold parameters �il and for the constants kil, is seldom 

unavailable, being easier to obtain qualitative information such as an ordering of the threshold 

parameters [4]. In order to obtain a qualitative model, we first define an ordering for the threshold 

parameters �il, given a regulating gene l: 
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Pl is the number of genes regulated by gene l. Then we define, for every possible combination of 

values between fl and gl, the equilibrium state for gene l (see equation 2.07): 
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What is mentioned in equation 2.09 is that, for each combination of values of fi and gi, the 

expression level for gene l will tend toward a value in the interval ] l
aθ , l

bθ [. What is important 

to notice is that, while “on its way” to the equilibrium state, gene l may have to pass by an 

intermediate state. This may cause a regulated gene’s expression level to change. If this change 

propagates back to gene l, it may change its dynamics and, as a consequence, change its 

equilibrium state. This constitutes the GRN’s dynamic evolution. 

The qualitative dynamics can be represented by a graph, where each node is a GRN state and 

each edge a transition between two states. A particularly interesting aspect of this kind of 

dynamics is that there is usually more than one path between two nodes, that is, given a source 

and destination states, there is usually more than one way to go from one to another. The 

conclusion from this observation is that one state may have more than one transition coming out 

from it. This happens for a simple reason: given each state, there is a set of genes that is not in 

equilibrium. Therefore, each gene in this set will head towards its respective equilibrium level, 

possibly passing by intermediate levels. There is no information regarding which are the genes 

that cross into new intermediate levels first. Therefore, all options need to be considered: what 

happens when the first gene in the set crosses into a new level before the others? What happens 

when all the genes cross into new levels at the same time? In general, if there are n > 0 genes 

whose expression is changing, we have to consider 2n -1 transitions. These transitions reflect 

different levels of synchronism in the GRN. 

The GNA tool allows to configure, simulate and analyze a GRN using a qualitative piecewise 

differential equations model. In this technical report we show how to use GNA in order to 

simulate asynchronous dynamics in a Boolean network. 
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2.3.3. Modeling using Boolean networks 

 
Boolean networks, applied to GRN modeling, were introduced in 1969 by S. Kauffman [6]. In 

the classical Boolean model, each gene’s regulation program is completely defined by a Boolean 

truth table. In figure 2.3 we illustrate the concept with a simple example. 

 
Fig. 2.3 – A simple boolean network. 

 

One should notice that, in the classical model, the update of gene expression levels is 

synchronous (or parallel). This is in contrast with the qualitative model described in the previous 

section. However, there are Boolean approaches which relax this assumption. The motivation is 

that, in GRNs, one observes that each type of chemical reaction (transcription, translation, 

degradation, phosphorylation, and so on) takes its particular time. Besides, since biological 

systems are inherently stochastic, the order of occurrence of their processes is not deterministic. 

In Chaves et al [18], two types of asynchronism are tested, over a Drosophila melanogaster GRN 

previously modeled as a synchronous Boolean network. The authors obtain a set of constraints, 

regarding the relative duration of each chemical reaction, which allow for dynamics consistent 

with biological data. Another alternative to the classical model is the probabilistic Boolean 

network: a gene’s regulatory program is described by more than one truth table; in each time 

point, one of the truth tables is selected to determine the gene expression level for the next 

instant, using a probability distribution. This kind of model tries to portray uncertainty on three 

levels – biological processes are stochastic, measurements convey errors and models often ignore 

or excessively approximate relevant variables and processes [17].  
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Boolean networks represent an extremely simplified version of genetic regulation processes. 

However, it is argued that these models may be useful in modeling large networks and in 

portraying large-scale, global effects, something that more complex formalisms fail to do. Today, 

it is known that the complexity of several biological systems translates into comparatively simple 

macro dynamics [21]. Therefore, it is important to search for models that ignore molecular details 

and focus on the system’s global behavior. Boolean networks have already been successfully 

used to reproduce the qualitative dynamics of both wild type and mutant strains, on a pattern 

segmentation GRN of Drosophila melanogaster [19]. 

Part of this technical report describes a study on a Boolean model of the cell cycle [12]. We show 

that the model is capable of simulating several mutant strains dynamics; we extend the model in 

order to differentiate between mRNA and protein expression, which allows for more realistic 

dynamics; using the GNA tool, we study the dynamics relaxing the assumption of synchronism. 

 

2.3.4. Modeling using piecewise linear equations  

 
Coutinho et al [22] introduce a discrete time model with continuous variables. The expression of 

gene i, at time t + 1, is given by  
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The constant ∈a [0,1[ is the degradation term, equal to all N genes. I(i) is the set of genes 

regulating gene i. Each of those genes j has a regulation strength Kij > 0; if, for each gene i, 

�
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ijK  is normalized to 1, then, for each initial set of points in Nℜ , the system’s orbit will 

eventually enter the N-dimensional [0,1] cube [22]. H(x) is the Heaviside function,  
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sij ∈{-1,1} is the sign of the regulation from gene j to gene i, and Tij ∈]0,1[ is the threshold that 

defines, for the regulation from gene j to gene i, the frontier between the two possible Heaviside 

function values. 

This particular formalism presents several interesting properties. For example, when the 

parameter a converges to 1, the attractors converge to those of the ordinary differential equation 

system 

�
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dt
dx
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Coutinho et al also interpret the parameter a as a delay parameter [22].  

The authors study the dynamics of several artificial networks, which, despite being simple in 

structure, exhibit non-trivial dynamics, namely periodic orbits whose period depends on the 

system’s parameters. The dynamics, in this formalism, are clearly quantitative, in contrast to the 

previously described models. 

We have applied a particular version of gradient descent to the networks studied by Coutinho et 

al [22], aiming to infer approximate parameters and reproducing the artificial time series given as 

inputs. 
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3. Analysis of a Boolean model 
 
In this chapter, we analyze a Boolean model of the yeast cell cycle. First, we review published 

work; then, we obtain new results regarding mutant strains dynamics, separation between mRNA 

and protein expression and generalization of the dynamics in conditions of asynchronism.  

3.1. Related Work 
 

The yeast cell cycle has been previously modeled as a classical Boolean network by Li et al [12]. 

The authors present two models of the process, but most results pertain to only one of them. 

Figure 3.1 illustrates the proposed network. 

 
Fig. 3.1 – Model of the yeast cell cycle [12].  

 

All nodes, with the exception of the “Cell Size” node, represent genes (there is no distinction 

between protein or mRNA). Green arrows represent positive regulation, red arrows represent 

negative regulation and yellow arrows represent auto-degradation. All genes share a similar 

regulation program, given by the following Boolean function: 
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In equation 3.1, Si(t) is the state (0 or 1) of gene i at time t, and aij is the weight of the regulation 

from gene j to gene i (1 or -1). Intuitively, the functions Si(t) represent a democratic voting, in 

which the state does not change in case of a draw. This is clearly a coarse approximation to the 

true regulatory programs. In table 3.1 we present the general biological function of the protein 

corresponding to each modeled gene. 

 

Gene Protein function Gene Protein function 

Cln3 Cyclin Cdh1 Involved in the proteolysis of Clb2  

Cln1,2 Cyclin Cdc14 Phosphatase 

Clb5,6 Cyclin Swi5 Transcription factor 

Clb1,2 Cyclin SBF Transcription factor 

Sic1 
Stechiometric inhibitor of 

Cdc28/Clb2 and Cdc28/Clb5  
Mcm1 Transcription factor 

Cdc20 
Involved in the proteolysis of 

Clb2 and Clb5 
MBF  Transcription factor 

Tab. 3.1 – Biological function of each cell cycle protein [20]. 

 

In the literature related to cell cycle modeling, there is a very common approximation, even in 

more complex models, that is to ignore the chemical reactions between each cyclin and the 

Cdc28 kinase [20]. In the model we study, we use the same approximation, that is, we assume 

that Cdc28 concentration is in excess, and that the chemical reaction between Cdc28 and each 

cyclin is instantaneous. It is important to point out that the network in figure 3.1 contains 

arbitrary regulations, which are necessary for obtaining correct network dynamics. First, only 

some genes suffer auto-degradation. These are the genes which do not suffer any negative 

regulation from other genes. The absence of an auto-degradation term would prevent those genes 

from ever going from state 1 to state 0. This is the justification presented by Li et al [12]. 

However, the gene Swi5, despite being negatively regulated by gene Clb1,2, also degrades itself. 

This is inconsistent with the previous explanation. Nevertheless, our experiments suggest that 

Swi5 auto-degradation is necessary for proper network dynamics. These examples show that the 

criterion for imposing some arrows in the network was not solely biological.  
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The network, when initialized to a state that corresponds to the beginning of the G1 phase, goes 

through a series of states that can be approximately identified to the sequence of events in the 

biological cell cycle described in chapter 2. See Li et al [12] for the full state sequence. 

The authors analyze the network dynamics, beginning from each of its 211 states. They observe 

that 1784 states, corresponding to 86,13% of the total number of states, converge to the same 

attractor. This attractor corresponds to the end of the cell cycle. The authors also point out that 

most states, before converging to the attractor, transit to one of the “cell cycle states” [12].  

The network from figure 3.1 was compared to several random graphs with the same number of 

nodes and edges, in order to observe whether similar results regarding trajectory convergence 

could be observed by chance. It was observed that the probability of an attractor in a random 

network having a basin of attraction at least as big as 1784 states is 0.1034. Since 10% is a 

significant magnitude for a p-value, we conclude that the original result, about the basin of 

attraction of the state representing the end of the cell cycle, is not particularly strong. In order to 

quantify trajectory convergence, the authors measure the average traffic on the path from each 

state to its attractor. Given an edge, its traffic is defined as the number of trajectories that pass by 

that edge [12]. Since, in general, there is a lower trajectory convergence in random networks than 

in the cell cycle graph, the natural result is that the distribution of average traffic, in random 

networks, has a lower peak, and is denser around smaller average traffics, than the distribution in 

the cell cycle network. Finally, the authors perturb the system, by modifications such as 

removing an arrow or changing an arrow’s color. They observed that most changes did not 

significantly affect the system dynamics. 

3.2. Mutant strains 

 

3.2.1. Experimental procedure 

 
A mutant strain can cause a range of effects in the cell cycle, depending on which gene is 

eliminated. Intuitively, the more important the gene is for the cell cycle, the greater the effects 

will be. While some of these effects are quantitative, and therefore difficult, if not impossible, to 

express in formalisms such as Boolean networks, others are of a qualitative nature and serve as a 

way to validate a hypothetical network. In particular, some mutant strains cause an arrest in the 
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cell cycle. Our objective was to observe whether the cell cycle Boolean network of figure 3.1 was 

capable of correctly simulating some of these mutants. We simulated the network for a set of 

single (one eliminated gene) and double (two eliminated genes) mutant strains which are known 

to cause severe changes in the cell cycle.  

 

3.2.2. Results 

 
In tables 3.2 and 3.3 we summarize our results regarding single and double mutant strains.  

 

Mutant Biological cell cycle Model 

Size of the attraction 
basin (% of all states) 
(if not mentioned, the 

attractor is the 
biggest in the system) 

Number of attractors 
(the original system 

has 6) 

�Cln3 Viable Static 83,54 7 
     

�Sbf Unviable Unviable 22,95 6 
     

�Mbf Viable Unviable 31,74 (*) 5 
     

�Cln1,2 Viable, arrest in G1 Arrest in G1 21,29 12 
     

�Sic1 Viable,G1 lasts less Arrest in M2, G1 lasts 
less 80,27 5 

     

�Clb5,6 Viable, S phase lasts 
longer Arrest in S 33,59 10 

     

�Cdh1 Viable, degrades less 
Clb2 

Viable, doesn’t degrade 
less Clb2 89,26 4 

     
�Clb1,2 Viable, arrest in G2 Arrest in G2 62,5 8 

     
�Mcm1/SFF Unviable Viable 70,8 7 

     

�Cdc20/Cdc14 Unviable, arrest in 
metaphase Arrest in M1 66,7 9 

     
�Swi5 Viable Arrest in M2 66,7 9 

 

(*) – The attractor is only the second greatest of the system. 

 

Tab. 3.2 – Simulating single mutant strains. 
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Mutant Biological cell cycle Model 

Size of the attraction 
basin (% of all states) 
(if not mentioned, the 

attractor is the biggest 
in the system) 

Number of attractors 
(the original system has 

6) 

�Cln1 �Swi5 Viable Arrest in M2 78,91 7 
     

�Cln1 �Cdh1 Viable Arrest in G1 18,75 (*) 6 
     

�Cln1 �Clb5 Arrest in G1 Arrest in G1 60,16 12 
     

�Cln1 �Sic1 Viable Arrest in M2 78,91 7 
     

�Cdc20 �Clb5 Arrest in metaphase Arrest at the end of G1 27,93 (*) 11 
     

�Sic1 �Cdh1 Arrest in mitosis Arrest in M2 85,94 3 
     

�Swi5 �Cdh1 Arrest in telophase Arrest in M2 73,63 5 
     

�Clb1 �Cdh1 Viable 
Arrest in a state with no 
parallel in the biological 

cell cycle 
62,5 5 

 

 (*) – The attractor is only the second greatest of the system. 

 

 Tab. 3.3 – Simulating double mutant strains. 

 

The symbols M1 and M2 refer to the prophase and metaphase processes, respectively. The 

column named “mutant” refers to the genes that were eliminated. The column named “biological 

cell cycle” summarizes the biological effects of the mutant strain. A viable mutant is one in 

which the organism (in this case, yeast) continues to grow, even if it cannot divide itself(in the 

cases where the cell cycle arrests). An unviable mutant does not allow the organism to survive. 

For example, the �Clb1,2 mutant is viable and its cell cycle arrests in the G2 phase, while the 

mutant �Cdc20/Cdc14 is unviable and arrests in the metaphase. 

The dynamics of 8 out of the 19 tested mutants (42%) are in concordance with biological results. 

These mutants are �Sbf, �Cln1,2 , �Cdh1, �Clb1,2 , �Cdc20/Cdc14, �Cln1�Clb5, �Sic1�Cdh1 

and �Swi5�Cdh1. In all of them, the “end of cell cycle” attractor is the one with the largest basin 

of attraction. The average number of attractors is 7.4, in comparison with the 6 attractors of the 

original system. We believe that incomplete modeling of the cell cycle (the network in figure 3.1 

is a simplified skeleton of the process) and the use of overly simplistic Boolean functions are the 

two major reasons for not having achieved the desired results with other mutants. 
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3.3. Separating mRNA from protein 

 

3.3.1. Experimental procedure 

 
The arrows in the network of figure 3.1 represent more than one type of chemical reaction. For 

example, the transcription factor SBF regulates the rate of mRNA production for gene Cln1,2; 

Cln1,2 regulates not the gene Sic1, but its respective protein, via a phosphorylation reaction. This 

happens because each node has an ambiguous meaning – it means mRNA in some cases and 

protein in others. In order to obtain a less ambiguous relation between the graph components and 

their biological meaning, we have separated each node into two, one representing mRNA, the 

other representing protein. Arrows were changed accordingly. We repeated the mutant strains 

experiment for the new network. 

3.3.2. Results 

 
The mRNA-protein separation caused richer and more realistic dynamics for three genes: Sic1, 

Clb1,2 and Clb5,6: 

 - In figure 3.2 one can observe the differences in expression between Sic1 mRNA and 

protein, during a biological cell cycle [23]. 

 
Fig. 3.2 – Protein (TAP) and mRNA expression, for Sic1, during the cell cycle [23]. 

 

It is important to notice that, in the G1 phase, protein expression is much higher that mRNA. Our 

new model allows expressing this difference, and obtaining dynamics qualitatively similar to 

figure 3.1; 
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 - Clb1,2 degradation is sometimes due to post-translational regulation, not to a decrease in 

mRNA transcription. Our new model allows for this differentiation; 

 - The Clb5,6 protein is degraded by Cdc14/20, while its mRNA transcription rate is 

reduced by Sic1. With the new model, we obtain new expression profiles in which one can 

distinguish between lack of Clb5,6 mRNA or lack of its protein (this is important because 

Cdc14/20 and Sic1 are not acting on Clb5,6 at the same time). 

These network improvements did not increase the number of mutant strains achieving 

satisfactory dynamics, but improved the realism of the dynamics of those which already 

presented good results. 

 

3.4. Asynchronous dynamics 

 

3.4.1. Experimental Procedure 

 
An interesting question is: how will the Boolean network behave, if we relax the assumption of 

synchronism in gene expression update? As we have seen in section 2.3.2., the GNA tool is 

adequate for the simulation of asynchronous systems. In abstract, for a given state of the system, 

there is a set of genes whose expression has to change. What happens if a subset of those genes 

changes before the rest? GNA essentially evaluates all options: if, given a state, there are n genes 

whose expression must change, there are 2n-1 possible transitions out of that state. We have 

analyzed the cell cycle network from figure 3.1 using GNA.  

 

3.5.2. Results 

 
We have observed that, from the initial state representing the beginning of the cell cycle, there 

are many paths which converge to the stable state representing the end of the process. This result 

suggests that the network is robust, not only in the classical sense (we observed that most states 

converge to the same attractor), but also in the sense that, even if genes are not synchronously 

updated, the system will probably still converge to the correct final state. This leads us to believe 
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that, if the network was to be modeled using any particular kind of asynchronism [18], it would 

still possess correct dynamics. We obtain similar results for mutant strains. For those that 

originally presented correct synchronous dynamics, we observed that the correct final state is 

stable, that is, has no transitions coming out of it; we also noticed that this state has a large in-

degree, which extends the conclusion of network robustness to the mutant strains. 

GNA has a very limited capability of automatically analyzing the transition graph. On future 

studies, one should quantitatively analyze these generalized dynamics, and determine the number 

of trajectories that converge to states that correspond to cell cycle stages. One could also study 

which kinds of asynchronism preserve the properties that were observed in the synchronous 

network. For example, Li et al [12] refers that the network was tested for the case when 

transcriptional regulation processes have a different duration than phosphorylation processes, and 

that the same results were obtained. However, they fail to mention which actual values were 

used.  
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4. Analysis of a piecewise linear equations model 
 

We study the problem of parameter inference in a GRN under a piecewise linear equations 

model, using expression data. The GRN topology is specified. The problem becomes one of 

finding the numerical values for the model parameters that generate dynamics as close as possible 

to the input expression data. We use a gradient descent algorithm, with momentum term and 

adaptive learning rate. We test the algorithm on several artificial networks.  

 

4.1. Parameter estimation using gradient descent 
 

The classical gradient descent (GD) algorithm is well-known among computer scientists. 

Consider a function with continuous first derivative f: ℜ→ℜn . The GD algorithm’s objective is 

to find a point np ℜ∈  such that f(p) is a global optimum. A global optimum may be the 

function’s global maximum or minimum, depending on whether we want to maximize or 

minimize the function. In practice, the GD algorithm finds a local optimum. Let the gradient of f 

at point p be  

 

),...,()(
1 np

f
p
f

pf
∂
∂

∂
∂=∇ .       (4.01) 

 

The algorithm relies on the following two observations: )( pf∇  indicates the direction of the 

steepest increase in f for point p; if 0)( =∇ pf , then p is a local optimizer of f.  

The algorithm works in the following way: first, it generates a first point p0 and calculates 

)( 0pf∇ . If the objective is to maximize the function, then the algorithm obtains a new point 

)( 001 pf∇+= ηpp , and calculates )( 1pf∇ . The idea is to move in the direction of steepest 

increase. The parameter � is a scaling factor for the step size. The algorithm proceeds in this 

fashion until finding a point for which the gradient is 0, or until the gradient becomes less than a 

specified threshold. In the case where a minimum, instead of an optimum, is to be found, the 

parameter update equation would become )( 001 pf∇−= ηpp . 
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If � is sufficiently small, the GD algorithm converges to a local optimum. If it is excessively 

small, convergence will be slower. If � is too big, oscillation around a local optimum will occur 

instead of convergence. 

There are several improvements on the classical GD method. We describe two of them – the 

momentum term and the adaptive learning rate. As for the momentum term, the idea is that, when 

we change the value of the parameter, we should take into account the last change that was made 

to it. That is, the parameter update equation ceases to be 
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In equation 4.03, [ ]1,0∈α  is the momentum constant. 9.0=α  is considered to be a reasonable 

value [25]. For 0=α  we obtain the classical method. Adding a momentum term accelerates 

convergence and makes the method find better local optima. As for the adaptive learning rate, the 

major motivation is the following: the constant η  that guarantees a quick convergence varies 

throughout the parameter space; the corollary of this is that the use of the same η  in the entire 

search procedure often leads to slow and poor convergence. The idea is to change η  according to 

the success the algorithm is having. We use the following formulation, for when the objective is 

to minimize f[25]: 
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*error diminished in the last k iterations. 

If f is systematically decreasing, there is evidence that we are in a parameter region that allows 

for a greater learning rate; if f increases, then η  is to big for the current parameter region. Notice 

that the update is conservative: η  increases linearly but decreases geometrically. Whenever f 
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increases, besides decreasing η , we should also undo the last parameter update and temporarily 

have α  (the momentum term) equal to 0 [25]. 

 

4.2. Using a sigmoid function to model gene activation  
 

A sigmoid is a continuous function of the form 
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The derivative of a sigmoid is given by 
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It is usual to use, instead of the classical sigmoid of equation 4.05, a composite function  

S2(x,r) = S(r*x). Figure 4.1 shows the plot of S2(x,r), for r = 1,2 and 5. 
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Fig. 4.1 – S2(x,r), for r = 1,2 and 5. 

 

It is important to notice that S2 saturates when x is very low or very high. The steepness of the 

transition from a saturation area to another depends on the steepness parameter r. There is 

experimental evidence that mRNA production rates, as a function of transcription factor 

concentration, follow this type of function [4].  

It is clear that, as ∞→r , )(),(2 xHrxS → , that is, the sigmoid tends toward a Heaviside 

function. This is a very useful result, as we will see in the next section. 

 

4.3. A sigmoid function as an approximation to a Heaviside function 
 

In the piecewise linear equations model that we have described in section 2.3.4., the expression of 

a gene i, at instant t+1, as a function of its regulators’ expression, is given by 
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This function is discontinuous, because it relies on Heaviside functions. As such, it cannot be 

used by a gradient descent algorithm. Our solution is to approximate a Heaviside function by a 

sigmoid. We use a low steepness for the initial sigmoid, so that the function parameters from 4.07 

can more freely change. On each iteration we increase the steepness parameter. The idea is to, 
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from a parameter set that leads to a certain error for a certain sigmoid steepness, find a parameter 

set that is slightly more adequate, for a slightly more adequate sigmoid steepness. 

 

4.4. Quadratic error and partial derivatives 
 

We intend to minimize the quadratic error over all patterns of gene expression. The quadratic 

error is given by 
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where T is the number of time points in the experiment, G  is the number of genes in the network,  

xg
t is the expression for gene g at time point t that we pretend to approximate, and Og

t is the 

expression of gene g at time point t, according to the model at the current iteration. E(g,t) is the 

component in E that refers to gene g and time point t.  

Using sigmoids instead of Heaviside functions, as mentioned in the previous section, and using 

the notation defined in the previous equation, expression of a gene i at time point t+1 is given by 
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where iθ  é the set of parameters that defines the regulation over gene i. We do not include 

parameter a in that set, because that parameter is of concern to the entire network.  

We now need to calculate the partial derivatives for the quadratic error. We define t
ijS  as 
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Using the previous definition, the partial derivatives considering only a gene and a time point are 

the following: 
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and 
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The complete partial derivatives are obtained by summing over all time points and genes. There 

are two technical details that should be pointed out. First, the parameters sij (the sign of the 

regulation), which should be integers ( { }1,1−∈ijs ), are being modeled as continuous real 

variables ( [ ]1,1−∈ijs ). Second, the gradient descent algorithm does not allow any parameter to 

exceed its definition interval. For example, a cannot be out of the interval [0,1]. 

 

4.5. Testing the algorithm on artificial networks 
 

The algorithm was tested on the artificial networks named self-inhibitor, negative-2, positive-2 

and feed-forward loop. All the networks, except for the last one, were taken from Coutinho et al 

[22]. The feed-forward loop [13] was considered with the intention of observing whether the GD 

algorithm was capable of finding the right parameters for a network motif that frequently occurs 

in GRNs. All the networks, with the exception of the feed-forward loop, exhibit oscillatory 

behavior. Figures 4.2 – 4.5 illustrate the expression profiles we intend to approximate.  
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Fig. 4.2 – Gene expression in self-inhibitor. 

 

 
Fig. 4.3 – Gene expression in negative-2 

 

 
Fig. 4.4 – Gene expression in positive-2 



 32 

 
Fig. 4.5 – Gene expression in feed-forward loop 

 

 

4.6. Results 
 

4.6.1. Algorithm parameters 
 

We ran our GD algorithm using the following parameters: 

 

Sigmoids’ initial steepness 0.1 

Steepness increase after an iteration where the error 

decreases 
0.1 

Steepness increase after an iteration where the error does 

not decrease 
1 

Learning rate, � 0.001 

Momentum constant 0.9 

Increase in �, when the error diminishes systematically 0.001 

Decrease in �, when the error increases 0.5 

Number of consecutive iterations, in which the error 

decreases, that are necessary for increasing �. 
2 

Maximum number of iterations 3000 

Number of times the algorithm is executed 10 

Tab. 4.1 – Parameters for the gradient descent algorithm. 
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To generate expression data, we simulated each network for 100 consecutive time points. The 

GD algorithm, after running 10 times, returns the best set of parameters that was found. 

 

4.6.2. Inferred network parameters and corresponding gene expression 
 

In all test cases, the algorithm managed to attain parameters very close to the optimal solution. 

These parameters lead to gene expression patterns that very closely resembled the ones given as 

input. In figure 4.6 we show the difference between the original gene expression and the one 

obtained after parameter inference, for the negative-2 network: 
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Fig. 4.6 – Difference between original and inferred gene expression, for the negative-2 GRN. 

 

In figure 4.6 there are four curves; the blue curves were given as input, while the green curves 

were obtained after parameter inference. The curves are so similar that they seem juxtaposed. The 

same occurred for the remaining networks. In tables 4.2 – 4.5 we compare original and inferred 

parameters for all networks. It can be seen that the inferred parameters are very close to the true 

ones. Another observation is that the sij parameters, despite being modeled as real variables, tend 

toward the original integer values. 
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Negative-2 

Parameter Original value Inferred value 

a 0.95 0.95 

KA → B 1 1.0004 

KB → A 1 1.0013 

TA → B 0.5 0.5023 

TB → A 0.5 0.5057 

SA → B 1 1 

SB → A -1 -1 

Tab. 4.2 – Original and inferred parameters, in negative-2. 

 

 

Self-inhibitor 

Parameter Original value Inferred value 

a 0.8 0.7999 

KA → A 1 1.0022 

TA → A 0.4 0.4047 

SA → A 1 1 

Tab. 4.3 – Original and inferred parameters, in self-inhibitor. 

 

Positive-2 

Parameter Original value Inferred value 

a 0.95 0.95 

KA → B 1 0.9962 

KB → A 1 0.9962 

TA → B 0.9 0.9003 

TB → A 0.9 0.9003 

SA → B -1 -1 

SB → A -1 -1 

Tab. 4.4 – Original and inferred parameters, in positive-2. 
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Feed-forward loop 

Parameter Original value Inferred value 

a 0.9 0.8998 

KA → B 1 1.0019 

KA → C 0.3 0.2989 

KB → C 0.7 0.6999 
TA → B 0.2 0.1956 

TA → C 0.3 0.2978 

TB → C 0.4 0.4062 

SA → B 1 1 

SA → C 1 1 

SB → C 1 1 

Tab. 4.5 – Original and inferred parameters, in feed-forward loop. 
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5. Conclusion 
 

In this technical report we described two computational approaches to the problem of modeling 

and inferring GRNs. 

We conclude that the Boolean network formalism allows the modeling of qualitative and 

essential aspects of GRN dynamics, even when using general voting functions that, apart from 

distinguishing positive from negative regulations, do not reflect the different degrees of influence 

between genes. Applied to the yeast cell cycle, the Boolean network approach allowed for the 

correct simulation of the wild type and 8 mutant strains. Although these 8 strains correspond to 

only 42% of the total number of experimented mutant strains, we believe that, by extending the 

model network with more genes and using more realistic Boolean functions, the number of 

successful cases would increase. We show that separating mRNA from protein originates a 

semantically less ambiguous model, besides improving the realism of the dynamics. This 

separation is often ignored in GRN modeling literature. We find evidence that the network is 

robust to changes in synchronism. In the future, using a concrete type of asynchronism, as well as 

enriching the cell cycle model with more genes known to participate in the process, will clarify 

these aspects of the Boolean network. 

We show that an improved version of the gradient descent algorithm is capable of inferring 

parameters from artificial expression data, given as input along with a network topology. The 

networks used for testing, although being simple in architecture, display non-trivial dynamics. As 

future research directions, we intend to model a biological stress-response GRN  using the same 

piecewise linear equations formalism, and extend the learning algorithm so that it is capable of 

learning the expression of hidden variables (variables for which their expression is not provided 

as input). 
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