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Abstract

Mutation in DNA is the principal cause for differences among human beings, and Single

Nucleotide Polymorphisms (SNPs) are the most common mutations. Hence, a fundamental task

is to complete a map of haplotypes (which identify SNPs) in the human population. Associated

with this effort, a key computational problem is the inference of haplotype data from genotype

data. Existing solutions for the haplotype inference by pure parsimony (HIPP) problem include

Integer Linear Programming (ILP) [6, 1, 2] and branch and bound [13]. Recent work has shown

that Boolean Satisfiability (SAT) approaches to the HIPP problem, built on top of modern SAT

solvers [3], are remarkably efficient, yielding most often orders of magnitude speedups with respect

to previous solutions to the HIPP problem. The objectives of this paper are twofold. The first

objective is to provide a brief survey of SHIPs [10, 11], a SAT-based solution to the HIPP problem.

An additional objective of the paper is to propose improvements to the SHIPs approach described

in [10, 11]. One important aspect of SHIPs is the lower bounding procedure, which reduces the

number of iterations of the basic algorithm, but also indirectly simplifies the resulting SAT model.

The paper describes a new, much more effective, lower bounding procedure. This new lower

bounding procedure is guaranteed to always be as tight as the procedure of [10, 11]. In practice,

however, the new lower bounding procedure is in most cases significantly tighter, allowing relevant

performance speedups in challenging problem instances.

1 Introduction

Over the last few years, an emphasis in human genomics has been on identifying genetic variations

among different people. A comprehensive search for genetic influences on disease involves examining

all genetic differences in a large number of affected individuals. This allows to systematically test

common genetic variants for their role in disease; such variants explain much of the genetic diversity in

our species. A particular focus has been put on the identification of Single Nucleotide Polymorphisms

(SNPs), point mutations found with only two possible values in the population, and tracking their

inheritance. However, this process is in practice very difficult due to technological limitations. At

a genomic position for which an individual inherited two different values, it is currently difficult to

identify from which parent each value was inherited. Instead, researchers can only identify whether

the individual is heterozygotic at that position, i.e. whether the values inherited from both parents

are different. This process of going from genotypes (which include the ambiguity at heterozygous

positions) to haplotypes (where we know from which parent each SNP is inherited) is called haplotype

inference.

A well-known approach to the haplotype inference problem is called Haplotype Inference by Pure

Parsimony (HIPP). The problem of finding such solutions is APX-hard (and, therefore, NP-hard) [9].

The Pure-Parsimony problem is to find a solution to the haplotype inference problem that minimizes

the total number of distinct haplotypes used. Recent work [12, 10, 11] has proposed the utilization

of SAT for solving the HIPP problem. Experimental results are significant: on existing well-known

problem instances, the SAT-based HIPP solution (SHIPs) is the most efficient approach to the HIPP

1



problem, being orders of magnitude faster than any other alternative exact approach for the HIPP

problem.

This paper provides a brief description of the most effective SAT-based model proposed in [12,

10, 11]. In addition, the paper introduces an improved clique-based lower bounding technique. The

lower bounding procedure allows reducing the number of iterations of the basic algorithm, and also

indirectly simplifying the resulting SAT model.

The paper is organized as follows. Section 2 reviews the problem of haplotype inference, and

formalizes haplotype inference by pure parsimony. Afterwards, Section 3 provides a description of

the SAT-based approach for the HIPP problem. Section 4 describes the new approach for computing

clique-based lower bounding. Section 5 summarizes related work. In addition, Section 6 provides

experimental results, comparing the performance of SHIPs with and without the new lower bounding

mechanism, and Section 7 concludes the paper.

2 Haplotype Inference

The genome is the whole hereditary information of an organism that is encoded in the DNA.

The DNA is normally packaged in the form of a set of large macromolecules called chromosomes. In

diploid organisms, chromosomes are grouped in sets of two, where one chromosome is inherited from

the father and the other from the mother. In what follows we will only consider diploid organisms.

The DNA is a double-stranded molecule held together by weak bonds between base pairs of

nucleotides. The position of a specific nucleotide is called a site or locus. There are four different

types of nucleotides in DNA, which can be distinguished by the bases they contain. These bases are

adenine (A), guanine (G), cytosine (C), and thymine (T). Base pairs are formed only between A and

T and between G and C; thus the base sequence of each single strand can be deduced from that of

the other strand in the DNA.

Replication is performed by first splitting the DNA double strand, and afterwards recreating each

one of the two new strands with the corresponding bases. Since each of the bases can only combine

with one other base, the bases on the old strand dictate which bases will be on the new strand. Each

of the two double strands obtained at the end will end up as a complete replica of the original DNA,

unless a mutation occurs.

A mutation is an imperfection in the replication process, leading to DNA sequence variations: a

base is accidentally skipped, inserted, or incorrectly copied. Once propagated to the next generation,

a mutation may lead to variations within a population.

A gene is an ordered sequence of nucleotides located in a particular position that encodes a specific

function. The variants of a single gene are named alleles. Different alleles give rise to differences in

traits.

A Single Nucleotide Polymorphism or SNP is a DNA sequence variation, occurring when a single

nucleotide is altered. For example, a SNP might change the nucleotide sequence AAGCCTA to
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AAGCTTA. Different alleles may be explained in terms of SNPs. Depending on the number of

possible alleles, a SNP site can be biallelic (two different alleles) or multiallelic (more than two

different alleles). Almost always, there are only two possible alleles for a SNP site among the

individuals in a population. In what follows we will only consider biallelic SNPs.

A haplotype is the genetic constitution of an individual chromosome. The underlying data that

forms a haplotype can be the full DNA sequence in the region, or more commonly the SNPs in

that region. Diploid organisms pair homologous chromosomes, and thus contain two haplotypes, one

inherited from each parent. The genotype describes the conflated data of the two haplotypes. In

other words, an explanation for a genotype is a pair of haplotypes. Conversely, this pair of haplotypes

explains the genotype. If for a given site both copies of the haplotype have the same value, then the

genotype is said to be homozygous at that site; otherwise is said to be heterozygous.

Given a set G of n genotypes, each of length m, the haplotype inference problem consists in

finding a set H of 2 · n haplotypes, such that for each genotype gi ∈ G there is at least one pair

of haplotypes (hj , hk), with hj and hk ∈ H such that the pair (hj , hk) explains gi. The variable n

denotes the number of individuals in the sample, and m denotes the number of SNP sites. gi denotes

a specific genotype, with 1 ≤ i ≤ n. (Furthermore, gij denotes a specific site j in genotype gi, with

1 ≤ j ≤ m.)

Without loss of generality, we may assume that the values of the two possible alleles of each SNP

are always 0 or 1. Value 0 represents the wild type and value 1 represents the mutant. A haplotype

is then a string over the alphabet {0,1}. Moreover, genotypes may be represented by extending the

alphabet used for representing haplotypes to {0,1,2}. Homozygous sites are represented by values 0

or 1, depending on whether both haplotypes have value 0 or 1 at that site, respectively. Heterozygous

sites are represented by value 2.

3 SAT-Based Haplotype Inference

This section surveys the SAT-based approach for the HIPP problem originally proposed in [10]

and further developed in [11]. The section is organized in three main parts. First the top-level SHIPs

algorithm is described. Afterwards, Section 3.2 presents the core model, which contains the key ideas

of the SAT-based model for the HIPP problem. The core model is ineffective in practice. Hence, a

number of key optimizations are detailed in Section 3.3. The resulting (complete) SHIPs model is

remarkbly effective in practice.

3.1 The SHIPs Algorithm

The top-level SHIPs algorithm accepts a set of genotypes G and a lower bound on the number

of haplotypes lb necessary to explain the set of genotypes. A trivial value of lb is 1. The algorithm

searches for the least value r such that there exists a set H of haplotypes, with r = |H|, which explain

all genotypes in G. Observe that the the value of r is guaranteed to be such that lb ≤ r ≤ 2n. A
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solution with 2n haplotypes is guaranteed to exist. For each value of r considered, a CNF (Conjuntive

Normal Form) formula ϕr is created, and a SAT solver is invoked (identified by the function call

SAT(ϕr)).

The search for minimum number of haplotypes proceeds through increasing values of r, starting

with r = lb and terminating when the resulting instance of SAT is satisfiable. The last value of r is

returned.

Other organizations of the top-level SHIPs algorithm could be considered. Examples include

searching down from an upper bound or performing a binary search between a lower and an upper

bound. The motivation for searching up from a lower bound is to ensure that the generated CNF

formulas are the most compact. With the proposed approach, the largest generated CNF formula is

obtained for the number of haplotypes corresponding to the target solution. Alternative approaches

would generate larger CNF formulas.

Similarly to [2], genotype and site reduction techniques are applied before generating the CNF

formulas.

3.2 The Core Model

In what follows we assume n genotypes each with m sites. The same indexes will be used

throughout: i ranges over the genotypes and j over the sites, with 1 ≤ i ≤ n and 1 ≤ j ≤ m. In

addition r candidate haplotypes are considered, each with m sites. An additional index k is associated

with haplotypes, 1 ≤ k ≤ r. As a result, hkj ∈ {0, 1} denotes the jth site of haplotype k. Moreover,

a haplotype hk, is viewed as a m-bit word, hk 1 . . . hk m. A valuation v : {hk 1, . . . , hk m} → {0, 1} to

the bits of hk is denoted by hv
k. Observe that valuations can be extended to other sets of variables.

For a given value of r, the model considers r haplotypes and seeks to associate two haplotypes

(which can possibly represent the same haplotype) with each genotype gi, 1 ≤ i ≤ n. For each

genotype gi, the model uses selector variables for selecting which haplotypes are used for explaining

gi. Since the genotype is to be explained by two haplotypes, the model uses two sets, a and b, of

r selector variables, respectively sa
ki and sb

ki, with k = 1, . . . , r. Hence, genotype gi is explained by

haplotypes hk1
and hk2

if sa
k1i = 1 and sb

k2i = 1. Clearly, gi is also explained by the same haplotypes

if sa
k2i = 1 and sb

k1i = 1.

If a site gij of a genotype gi is either 0 or 1, then this is the value required at this site and so this

information is used by the model.

If a site gij is 0, then the model requires, for k = 1, . . . , r:

(¬hkj ∨ ¬sa
ki) ∧ (¬hkj ∨ ¬sb

ki) (1)

Hence, if haplotype k is selected for explaining genotype i, either by the a or b representatives, then

the value of haplotype k at site j must be 0.

If a site gij is 1, then the model requires, for k = 1, . . . , r:

(hkj ∨ ¬sa
ki) ∧ (hkj ∨ ¬sb

ki) (2)
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Hence, if haplotype k is selected for explaining genotype i, either by the a or b representatives, then

the value of haplotype k at site j must be 1.

Otherwise, one requires that the haplotypes explaining the genotype gi have opposing values at

site i. This is done by creating one variable tij ∈ {0, 1}, such that site j of the haplotype selected by

the a representative selector assumes the same value as tij , and site j of the haplotype selected by

the b representative selector assumes the complemented value of tij. As a result, the model requires,

for k = 1, . . . , r:

(hkj ∨ ¬tij ∨ ¬sa
ki) ∧ (¬hkj ∨ tij ∨ ¬sa

ki)∧

(hkj ∨ tij ∨ ¬sb
ki) ∧ (¬hkj ∨ ¬tij ∨ ¬sb

ki)
(3)

Observe that hkj equals ¬tij if sa
ki = 1 and hkj equals tij if sb

ki = 1.

Clearly, for each i, and for a or b, it is necessary that exactly one haplotype is used, and so exactly

one selector variable can be assigned value 1. This can be captured with the following cardinality

constraints:
(

r
∑

k=1

sa
ki = 1

)

∧

(

r
∑

k=1

sb
ki = 1

)

(4)

Since the proposed model is purely SAT-based, a simple alternative solution is used, which consists

of the CNF representation of a simplified adder circuit and requiring the output of the adder to be

equal to 1. The encoding in CNF of the adder circuit requires the utilization of additional variables

va
ki and vb

ki. The CNF clauses for the adder circuit are straightforward.

Moreover, the space complexity of the model is analyzed in [10] and is asymptotically equivalent

to the Poly model of [1]. In practice, the SAT-based model yields significantly more compact repre-

sentations than the models of [1, 2], since the number of haplotypes considered is bounded by the

solution to the HIPP problem.

3.3 The Complete Model

As mentioned before, the core SHIPs model is ineffective in practice. As a result, a number of key

improvements have been developed, which are essential for obtaining significant performance gains

over existing approaches.

3.3.1 Breaking symmetries on the h variables.

A key technique for pruning the search space is motivated by observing the existence of symmetry

in the problem formulation. Consider two haplotypes hk1
and hk2

, and the selector variables sa
k1i,

sa
k2i, sb

k1i and sb
k2i. Furthermore, consider Boolean valuations vx and vy to the sites of haplotypes

hk1
and hk2

. Then, hvx

k1
and h

vy

k2
, with sa

k1is
a
k2is

b
k1is

b
k2i = 1001, corresponds to h

vy

k1
and hvx

k2
, with

sa
k1is

a
k2is

b
k1is

b
k2i = 0110, and one of the assignments can be eliminated. Elimination of redundant

assignments can be achieved by enforcing an ordering of the Boolean valuations to the haplotypes 1.

1See for example [4] for a survey of work on the utilization of lexicographic orderings for symmetry breaking.
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Hence, for any valuation v to the problem variables we require:

hv
1 < hv

2 < . . . < hv
r (5)

It is straightforward to enforce each sorting constraint between two haplotypes in linear size on

the number of sites. This is done by representing in CNF a Boolean comparator circuit between hk

and hk+1, with 1 ≤ k < r, and requiring hk < hk+1. The representation of a comparator circuit in

CNF is straightforward.

3.3.2 Breaking symmetries on the s variables.

Besides the the symmetries associated with the h variables, it is also possible to eliminate sym-

metries on the s variables. Observe that the model consists of selecting a candidate haplotype for

the a representative and another haplotype for the b representative, such that each genotype is ex-

plained by the a and b representatives. Given a set of r candidate haplotypes, let hk1
and hk2

, with

k1, k2 ≤ r, be two haplotypes which explain a genotype gi. This means that gi can be explained by

the assignments sa
k1is

a
k2is

b
k1is

b
k2i = 1001, but also by the assignments sa

k1is
a
k2is

b
k1is

b
k2i = 0110.

This symmetry can be eliminated by requiring that only one arrangement of the s variables can

be used to explain each genotype gi. One solution is to require that the haplotype selected by the

sa
ki variables always has an index smaller than the haplotype selected by the sb

ki variables. This

requirement is captured by the following conditions:



sa
ki →

k−1
∧

k2=1

¬sb
k2i



 ,



sb
ki →

r
∧

k1=k+1

¬sa
k1i



 (6)

Clearly, each condition above can be represented by a single clause, for each k1 (or k2) and i.

Moreover, observe that for genotypes without homozygous sites, the upper limit of the first constraint

can be set to k and the lower limit of the second condition can be set to k.

3.4 Computing Lower Bounds

As mentioned earlier, trivial lower and upper bounds on the number of haplotypes are 1 and

2n, respectively. This section describes an approach for computing lower bounds on the number of

haplotypes. Lower bounds allow reducing the number of iterations of the top-level SHIPs algorithm,

but also allow reducing the number of variables and constraints in the model.

The techniques for computing lower bounds rely on information regarding incompatible geno-

types. The approach proposed uses a maximal clique for computing a lower bound on the number of

required haplotypes. Clearly, for two incompatible genotypes, gi and gl, the haplotypes that explain

gi must be distinct from the haplotypes that explain gl. Given the incompatibility relation we can

create an incompatibility graph I, where each vertex is a genotype, and two vertices have an edge if

they are incompatible. Suppose I has a clique of size k. Then the number of required haplotypes is
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at least 2 · k − σ, where σ is the number of genotypes in the clique which do not have heterozygous

sites.

In order to maximize the computed lower bound, the objective is to identify the maximum clique

in I. Since this problem is NP-hard [5], we use the size of a maximal clique in the incompatibility

graph, computed using a simple greedy heuristic. The genotype with the highest number of incom-

patible genotypes is first selected. At each step, the genotype selected is one that is still incompatible

with all the already selected genotypes, and preference is given to the haplotype with the (statically

computed) highest number of incompatible genotypes.

Moreover, we note that the information regarding the lower bound can be used for reducing the

size of the model, and so it can also potentially reduce the search space. If a genotype gi is part

of the clique and has at least one heterozygous site, then we can associate two dedicated haplotypes

with gi. If a genotype gi is part of the clique and all its sites are homozygous, then we associate

only one dedicated haplotype with gi. In addition, when considering the candidate haplotypes for a

genotype gl, which is incompatible with genotype gi included in the clique, the haplotypes associated

with gi need not be considered as candidates for gl. This eliminates s variables and the corresponding

clauses.

Furthermore, it is possible to increase the lower bound obtained with a maximal clique. Suppose

a genotype gi is heterozygous at site j, and further assume that all other genotypes assume the same

homozygous value (either 0 or 1) at site j. Then, it is straightforward to conclude that explaining

genotype gi requires one haplotype which cannot be used to explain any of the other genotypes.

Hence, gi can be used to increase the lower bound by 1.

4 Improving Clique-Based Lower Bounding

The HIPP problem is APX-hard [9]. As a result, the computed lower bounds are not guaranteed

to be tight. Hence, for ILP-based approaches for the HIPP problem, the usefulness of non-tight

lower bounds is not clear. In contrast, the iterative SHIPs algorithm can gain by using non-trivial

lower bounds, even if the lower bounds are not tight. First, the number of iterations of the SHIPs

algorithm is reduced. Second, and more importantly, tighter lower bounds allow simplifying the

generated instances of SAT (see Section 3).

This section describes a new approach for computing lower bounds for SHIPs. Similar to the

procedure outlined in the previous section, a maximal clique is computed. In addition, analysis of

the structure of the genotypes allows further increases to the lower bound. The objective of the

new procedure is to identify heterozygotic sites which necessarily require at least one additional

haplotype given a set of previously chosen genotypes. The procedure starts from the clique-based

lower bound (see previous section) and grows the lower bound by searching for these heterozygotic

sites among genotypes not yet considered for lower bounding purposes. Since the algorithm starts

from the clique-based lower bound, it is guaranteed never to yield a bound less than the clique-based

7



Algorithm 1 Improving the clique-based LB

ImproveLB(GC)

1 lb← |GC |

2 Sort genotypes by increasing number of heterozygotic sites

3 Create set Gset with genotypes in clique GC

4 for each g ∈ set of non-clique genotypes

5 do Let S be the subset of genotypes in Gset compatible with g

6 if g has heterozygous site and every s ∈ S has the same homozygous site

7 then

8 lb← lb + 1

9 ng ←MergeGenotypes(S ∪ {g})

10 Gset← (Gset− S) ∪ {ng}

11 return lb

lower bound.

Algorithm 1 summarizes the new lower bound procedure. The procedure MergeGenotypes

creates a new genotype from a set of genotypes such that any heterozygous site or a site with

genotypes having both 0 and 1 becomes heterozygous. If all genotypes have the same homozygous

site, then the merged site keeps the same value. For each genotype g not in the clique, if the genotype

has a heterozygous site and all compatible genotypes have the same value at that size (either 0 or

1), then g is guaranteed to require one additional haplotype to be explained. Hence the lower bound

can be increased by 1.

The new lower bound procedure runs in polynomial time. A straightforward analysis yields a

run time complexity in O(n2 m), by observing that each call to the MergeGenotypes function can

involve at most O(n) genotypes and each pairwise merge runs in time O(m). Finally, observe that

the asymptotic complexity of the new lower bound procedure is the same as the asymptotic run time

complexity for generating the SHIPs model. Hence, the practical impact of the new lower bound

procedure is expected to be negligible, as illustrated by the experimental results in the next section.

5 Related Work

Over the last few years, a number of authors have proposed optimization models for the HIPP

problem, most of which based on ILP [7]. With a few notable exceptions [13], the majority of the

proposed models utilize Integer Linear Programming (ILP) [6, 1, 2].

The original ILP model, RTIP, has linear space complexity on the number of possible haplo-

types [6], and so exponential on the number of given genotypes. A Boolean variable yr is associated

with each pair of haplotypes that can explain a given genotype gi, and denotes whether these pair
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of haplotypes is used for explaining gi. A cardinality constraint requires that exactly one pair of

haplotypes must be used for explaining each genotype, among all pairs that can explain the geno-

type. Each candidate haplotype is associated with a dedicated variable xs, which denotes whether

the haplotype is used. The utilization of a specific pair of haplotypes for explaining a genotype

implies the respective xs variable. The cost function consists of minimizing the number of xs vari-

ables assigned value 1. Several optimizations have been developed to reduce the size of the problem

formulation [6, 7].

In [13], the RTIP model was adapted to a branch and bound algorithm, Hapar. In addition, key

reductions on the size of the model are achieved by identifying haplotypes that may only explain one

or two genotypes.

A more recent ILP model, Poly, is polynomial in the number of sites and population size [1], with

space complexity in Θ(n2m). More recently, Brown and Harrower [2] introduced a new polynomial-

size formulation, Hybrid, that is a hybrid of the two ILP formulations above and inherits the strengths

of both.

A key technique for tackling the HIPP problem consists of using the structural properties of

genotypes with the purpose of reducing the search space. Standard techniques include elimination

of duplicate genotypes and duplicate and complemented sites [2].

6 Experimental Results

The experimental results provided in [10, 11] demonstrate that the SHIPs approach is far more

efficient that existing approaches to the HIPP problem. Table 1 was obtained from [10] and compares

the performance of RTIP [6], Poly [1], Hybrid [2], Hapar [13] and SHIPs on solving 229 problem

instances, including uniform and non-uniform instances generated using Hudson’s program ms [8], as

well as problem instances obtained from the hapmap project (www.hapmap.org) 2. The table gives

the number of problem instances solved within 1000 seconds. Clearly, Hapar and SHIPs are the most

effective solvers. All others abort on many more problem instances. Moreover, SHIPs aborts 1 single

instance out of 229, in contrast with Hapar which aborts 39 out of 229.

In what follows we concentrate on the improvements obtained with the new lower bounding

procedure. We start by analyzing the improvements to the computed lower bound. Afterwards, we

analyze the effect of the new lower bound on the run times of SHIPs. All results shown were obtained

on a 1.9 GHz AMD Athlon XP with 1GB of RAM running RedHat Linux.

For this purpose we use problem instances generated using Hudson’s program ms [8]. This pro-

gram generates haplotypes following a standard coalescent approach. Given the haplotypes, the

genotypes are generated by pairing haplotypes either uniformly (repeated haplotypes are removed)

or non-uniformly (repeated haplotypes are not removed and so have a higher probability of being

paired).

2These instances were provided by D. Brown and I. Harrower.
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Table 1: Results for RTIP, Poly and Hybrid, Hapar and SHIPs.

Benchmarks Sites Recomb Genotypes RTIP Poly Hybrid Hapar SHIPs

Uniform 10 – 50 15/15 15/15 15/15 15/15 15/15

10 4 50 15/15 14/15 14/15 15/15 15/15

10 16 50 15/15 6/15 6/15 15/15 15/15

30 – 50 6/15 4/15 3/15 15/15 15/15

50 – 30 0/50 12/50 13/50 50/50 50/50

75 – 30 0/10 2/10 2/10 8/10 10/10

100 – 30 0/10 0/10 1/10 9/10 10/10

Non-Uniform 10 – 50 15/15 14/15 14/15 15/15 15/15

30 – 50 11/15 1/15 2/15 15/15 15/15

50 – 30 3/15 0/15 1/15 12/15 15/15

75 – 30 2/15 0/15 0/15 4/15 15/15

100 – 30 1/15 0/15 0/15 4/15 15/15

Hapmap 30:75 – 7:68 0/24 12/24 12/24 13/24 23/24

TOTAL 10:100 0:16 7:68 83/229 80/229 83/229 190/229 228/229

The instances are generated as in [2] but are significantly more complex, since all instances

considered have 100 genotypes and 100 sites, and are generated non-uniformly and uniformly. For

the purpose of this paper, 15 instances were generated uniformly and 15 instances were generated

non-uniformly.

6.1 Quality of the Lower Bound

The first experiment consisted in comparing the quality of the lower bounds, either computed

with the procedure outlined in Section 3, and referred to as the clique LB, or with the new proce-

dure, referred to as the new LB. The results are conclusive. The new procedure yields in all cases

substantially larger lower bounds. The difference in the value of computed lower bounds can reach

a factor close to 2 for a few test cases.

6.2 Effect on the Run Times

Figure 2 shows a scatter plot comparing the run times (in seconds) of SHIPs with the original

lower bound procedure and with the new lower bound procedure. Each dot represents a problem

instance. A log-scale is used.

As can be concluded, the run times for SHIPs with the new lower bound are in general significantly

smaller. The speedup of SHIPs with the new lower bound procedure can reach 2 orders of magnitude.

Observe that these results are significant. The version of SHIPs reported in [10, 11] is the only
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Figure 1: Quality of the computed lower bounds

approach to the HIPP problem capable of solving these problem instances in less than 10000 seconds.

Even will all structural simplifications enabled, the ILP models of [6, 1, 2] are unable to solve any of

these instances in less that 10000 seconds. In addition, Hapar isonly able to solve 5 of these instances

in less than 10000 seconds. As can be observed, SHIPs with the new lower bound solves more than

two thirds of these instances in less than 10 seconds, and only in one case it requires more than 100

seconds. With three exceptions, the SHIPs with the new lower bound is faster than the previous

version. For the three remaining problem instances, the SHIPs with the new lower bound is slower,

in part because of the time taken by the new lower bound procedure.

7 Conclusions

This paper surveys SHIPs [10, 11], a Boolean Satisfiability (SAT)-based approach for the problem

of haplotype inference by pure parsimony (HIPP), and proposes a new procedure for computing the

lower bounds used by SHIPs. Experimental results obtained on challenging problem instances confirm

that the proposed lower bound procedure is very effective in practice. Not only are the new lower

bounds tighter, but also the new version of SHIPs outperforms significantly the previous version.

The work on SAT-based haplotype inference is fairly recent, and the results already very promis-

ing. Further research on SAT-based approaches to the HIPP problem is expected to additional

improvements with practical significance are to be expected, as this paper illustrates.

11



10−1

100

101

102

103

104

10−1 100 101 102 103 104

S
H

IP
s

w
/

cl
iq

u
e

L
B

SHIPs w/ new LB

Figure 2: Effect of new lower bound on hard uniform and non-uniform instances

References

[1] D. Brown and I. Harrower. A new integer programming formulation for the pure parsimony

problem in haplotype analysis. In Workshop on Algorithms in Bioinformatics (WABI’04), 2004.

[2] D. Brown and I. Harrower. Integer programming approaches to haplotype inference by pure

parsimony. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3(2):141–

154, April-June 2006.
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