
An efficient clash detection method for molecular structures

applications

Miguel M. F. Bugalho ∗ Arlindo L. Oliveira

October 12, 2007

Abstract

Molecular structures applications are usually computationally intensive. Problems
like protein docking, ab-initio protein folding and even some visualization software that
verify structure correctness, need to constantly determine if two atoms in the structure
collide. This problem is usually referred as clash detection. If for the ab-initio and docking
problems the cost of these computations determines the number of configurations that can
be searched, for the visualization program the cost determines the application response
time. Either way, a fast clash detection method can greatly improve the application
effectiveness.

This work focus mainly in the ab-initio protein folding problem. Several protein fold-
ing methods avoid collisions by using energy functions that consider the Van der Walls
forces. For other methods, which apply less expensive scoring functions, a faster clash de-
tection algorithm may greatly increase the overall time efficiency. This will allow for more
structures to be considered and thus improve the chances of finding the right structure.

We propose an efficient data structure with which we can achieve constant time clash
detection, independently of the size of the protein. We compare the proposed data struc-
ture with one of the best known general data structures for this type of problems (range
queries) and with the naive approach. The results show that the proposed data structure
surpasses the other techniques for any protein size. The proposed data structure takes
near half the time of the general data structure and close to a fifth of the time of the
naive approach for the larger proteins.

1 Introduction

Clash detection algorithms can be applied to many molecular structure problems, e.g. protein
docking [26, 17, 21], molecular visualization [25, 10], protein folding[11]. In this work we will
focus in the ab-initio protein folding problem. Ab-initio protein folding consists in determining
the structure of a protein using only the information of its amino acid sequence. It is a very
hard problem that has been proved to be NP-Complete even for extremely simplified versions
[16, 9, 3, 18]. For that reason, ab-initio structure prediction of a protein is a time consuming
task where improvements on the complexity of the base computations can yield a significative
difference in the final results.

The ab-initio algorithms usually generate many conformations and apply an energy or
scoring function to determine if the conformation has protein like properties. Some of those
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properties consist in the propensity for some groups of atoms to be close together or to
form sub-structures. Although these properties provide information on the correction of the
protein structure, many restrictions exist to the conformations: strict bond and angle limits,
less strict dihedral angles limits and the problem of avoiding clashes between atoms. The
structural limits have low computational costs since they can be included in the construction
of the conformations. That leaves us with the clash detection problem. Since this problem
can become the bottleneck for many ab-initio methods, an improvement in its calculation
method can have a great impact on the efficiency of those algorithms.

The clash detection problem is a particular case of the well known problem of range query
in a metric space. Given a position, a range query consists in determining which points
are closer than a predefined distance (range). In the clash detection problem, each point
determines the position of an atom and the range is the distance for which such atom is
considered to be in collision with other atom. Several algorithms have been proposed for the
range query problem (for a comprehensive review see the work of Chavez et al.[6]), especially
for cases where the distance calculations are expensive. However, distance calculations in the
three dimensional Euclidean space are not particulary expensive, and these algorithms only
perform better than the naive approach for very large proteins.

In this work we propose an efficient clash detection data structure that enables the use
of more complex and precise models with a lower cost. We will focus our analysis on all
heavy atoms models. Nevertheless, this technique may be used with less detailed models.
The proposed data structure uses a discrete lattice model of the space where the protein is,
to determine the atom relative positions to each other and efficiently detect clashes. This
approach has some similarities with the LSR techniques (Locality Sensitive Hashing [1]),
although the LSR is a generic range query technique that does not take advantage of the
constrains imposed by this problem.

1.1 Paper Organization

In section 2 we describe the clash detection problem in detail and introduce the main concepts
used in this paper. In section 3 we review the existing data structures that are applicable to
this problem.

Section 4 describes the newly proposed data structure. In section 5 we present and
compare the results obtained for the proposed data structure, the naive method and one of
the best existing range generic data structures.

Finally, section 6 summarizes the conclusions and discusses repercussions and possible
future work.

2 Clash Detection Problem

As mentioned before the clash detection problem is a particular case of the range query prob-
lem. There are, however, several characteristics in the clash detection problem that can be
explored to obtain better results. First, the clash detection problem has low dimensional-
ity. Many range query data structures focus on problems with greater dimensionality or in
database systems. In both cases the distance calculations computational cost is much higher.
Although every range query algorithm may be used with lower dimensionality, the efficiency
of each data structure will be different for this case. The second characteristic is the dynamic
nature of this problem. In ab-inito protein folding several atom positions will be modified
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each time the structure is changed to improve an energy function or to avoid a collision. There
are also other characteristics, like the fact that we need only to determine whether a collision
exists or not (and not every atom that collides), that may or may not have an impact in the
data structure efficiency.

To determine if two atoms collide we need first to compute the minimum allowed distance
between those two atoms, i.e. determine the range of the query. To compute this distance for
two atoms we use the Lennard-Jones potential (equation 1). For this purpose the Lennard-
Jones potential represents the repulsion of the two atoms. The Lennard-Jones potential
is related to the forces of attraction/repulsion caused by the electrons. Nevertheless the
attraction forces are small, compared with other forces, while the repulsion forces can be very
strong. When two atoms are too close, the repulsion forces are very high and the atoms are
considered to be in collision. Thus the clash detection is used to determine if the structure is
physically possible.

We used the Lennard-Jones parameters from the amber99 force field [28, 8]. By choosing
an energy threshold, we can calculate the distance from the Lennard-Jones potential. Since
the energy grows very rapidly with the approximation of the two atoms we can use a large
energy value as a threshold. We chose a value of 1000 Kcal/mole for the energy threshold,
allowing for some flexibility in the atom positioning that can then be adjusted in the final
refinement steps:

Evdw = ε ∗

( radij

distij

)12

− 2 ∗
(

radij

distij

)12
 (1)

Where ε is a constant, radij is an atom radius parameter that depends on the type of atoms i
and j, and distij is the distance between atoms i and j. As we only consider heavy atoms, we
have to increase the normal radius clash size of the carbon atoms to include the hydrogens. We
only do this for carbon atoms since, for other atoms with hydrogen bonds, the hydrogen clash
sphere is almost completely inside the heavy atoms sphere. Table 1 shows some thresholds
values for pairs of atoms.

Atom Pair Threshold Size
C-C 2,25
C-N 2,02
C-O 1.96
C-S 2,13
N-O 1,7

Table 1: Some examples, in angstrom, of threshold sizes for pair of atoms using the free
energy threshold of 1000 in the Lennard Jones potential equation 1.

We used a further simplification to improve efficiency, that consists in using only some
well positioned atoms for clash detection. In a protein, each atom has a limited range of
positions relatively to the other atoms that is forced by bond lengths, angles and even, in a
limited way, dihedral angles. For bond length and angle values the variation is usually so low
that we will consider those values to be constant.

The example in figure 1 shows that the distance threshold, presented in some atoms as
a circle, is larger than the bonds between the atoms. This would imply that every pair of
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bonded atoms would be considered to be in collision. This will not happen because we only
consider collisions for atoms that are more than three bonds apart. It is possible to do this
because the bonds energy is defined by different potentials. A second observation is related
with the fact that, when scanning the area of each atom for collisions some areas will be
repeated. When placing this structure, we only need to scan the area that it will occupy, but
if we do it atom by atom, we will repeatedly scan some areas. This happens because the scan
area of each atom overlaps with some of the other scan areas. To avoid this we can use only
some of the atoms of the structure. The dark circles present the scanned area of one of the
possible set of atoms. We can see that the covered area of the reduced set is almost equal to
the structure area.

Figure 1: Image of the electronic cloud formed by the eleven atoms of the phenylalanine amino
acid (without the hydrogens). The dark circles represent the area covered by six chosen atoms
of the amino acid atoms. There is little difference between the two covered areas.

The method for using this reduced set on the clash detection is very simple. First, for
each amino-acid, a set of atoms were chosen to represent the structure. Roughly speaking,
we choose each atom that is two bonds apart of an already chosen atom, but sometimes we
have to correct this set to improve the covered area. Instead of doing a clash detection atom
by atom we do an amino-acid clash detection. During clash detection for that amino-acid we
use only the reduced set. Each area from the reduced set of atoms is scanned to see if an
previous added atom is already at that position. Since the area covered by the represented
atoms overlaps almost all the area covered by the non represented atoms, we can be confident
that no collision would be found by scanning also the non represented atoms. Any collision in
the non represented atoms would also collide with the represented ones, except for some few
cases in the outer shell of the structure covered area, where the covered area of the two set
of atoms do not overlap. This cases have little impact since they would never imply serious
errors, like overlapping entire structures, and also because they can be easily corrected in
refinement steps. After the clash detection, if no clash occurs, all the atoms of the amino-acid
are added to the structure.
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3 Range Query Data Structures

The naive solution to detect an atom clash is to measure the distance of that atom to every
other atom and verify if it is below a given threshold. More efficient methods use data
structures that efficiently calculate the nearest neighbors. There are various data structures
that address the problem of finding a nearest neighbor given a distance measure. Many of
these data structures consider that there is little or no variation on the set of points used
to calculate the range queries. Without insertions and deletions they focus only on the
improvement of the nearest neighbor query. In this problem, however, the set of points varies
each time we try a different backbone or side chain conformation.

Table 2 shows some common data structures for the computation of nearest neighbors.
For an overview of these data structures see the work of Chavez et al.[6]. From this work we
can see that the FQ family, the LAESA/AESA, and the M Tree type data structures support
dynamic capabilities.

Another data structure that also supports dynamic capabilities is the Dynamic Spatial Ap-
proximation Tree[23] (DSAT or Dynamic SAT), based on the Spatial Approximation Tree[22]
(SAT) data structure. The SAT is one of the most efficient Range Query data structures
and it was shown by Navarro et al. ([23]) that the Dynamic SAT can incorporate dynamic
capabilities with little deterioration of this efficiency.

We have therefore chosen the Dynamic SAT data structure for comparing with the one
proposed in this work for the following reasons:

• The FQ family is for discrete distances only. Since there are specific data structures for
continuous problems we saw no need to add a discretization step.

• The M Tree type data structures were developed for data base queries and consider that
the cost of making one distance calculation is much higher than other computations,
which is not the case. These data structures usually need expensive methods for keeping
the tree balanced.

• Since in this problem the number of queries is proportional to the number of inser-
tions and deletions (clash detection is only performed when one amino-acid is added or
changed in the structure), the AESA data structure has no advantages, because it needs
to have all the distances between atoms pre-computed. The LAESA data structure only
needs a fixed number of distance calculations. However the problem of choosing the piv-
ots is hard in this application. If we choose the first atoms, they would be clustered in
one place. Any other set would need a dynamic way of changing the pivots that would
probably degrade the efficiency.

• The Dynamic SAT was initially created to allow an incremental construction which is
adequate to this problem. Additionally, the deletion needs for this problem are mainly
for atoms that were set last, which reduces the need of re-insertions (see the work of
Navarro et al. [23] for a description of the technique used for deleting elements).

3.1 Dynamic Spatial Approximation Trees

The SAT uses a tree representation of the points and spatial approximation to organize the
tree structure. Each root of a tree or sub-tree is connected to a set of neighbors, its children,
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Name Description
BKT, FQT, FHQT, FQA Trees for discrete distance functions

VPT, MVPT, VPF, Continuous distance trees
BST, GHT, GNAT, VT that use a pivoting technique

M Tree [7], Slim Tree [27], Tree structures created for data base
R* Tree [2] queries with dynamic capabilities

SAT[22], Dynamic SAT [23] Spatial approximation tree, each child in
the tree represents a neighbor

AESA, LAESA Elimination algorithms
LSH [1] Locally sensitive hashing

Table 2: Range queries and nearest neighbors data structures. For an overview of these data
structures see the work of Chavez et al. [6]. For the data structures not present in this work
a specific reference is presented in the table.

where each of them is closer to the root than to each other. Also, an element only becomes a
child of a node if it is closer to that particular sub-tree root than to any previous element. That
means that no limit is imposed to the tree arity. A range query is done by descending this tree
and searching for nodes that are closer than the given range. With this tree representation
the search can be pruned using the triangle inequality:

d(A,C) ≤ d(A,B) + d(B,C) (2)

One of the pruning conditions for the search uses the maximum distance to the descendent
nodes that we will refer as radius. Consider Radius as this distance, Range as the range of the
query and d(r, q) as the distance between the root of the sub-tree to the query. Now consider
that we have d(r, q) > Radius+Range, this means that for any node a in the sub-tree where
r is root we have:

d(r, q) > Radius + Range (3)
Using the triangle inequality 2 ⇒ d(a, r) + d(a, q) > Radius + Range

Since d(a, r) ≤ Radius ⇒ d(a, q) > Range

In conclusion, using the maximum distance to the descendent nodes Radius, if d(r, q) >
Radius + Range the sub-tree can pruned since no node will be in the query range.

Another pruning condition is given by the restrictions that an element only becomes a
child of a node if it is closer to that particular sub-tree root than to any previous element.
This means that for every element x of the sub-tree rooted by a, d(a, x) < d(b, x) for every
other node that does not belong to that sub-tree. Consider that during the range query, we
have r has a root of the sub-tree and Child(r) as its children. Consider also that c is the
closest node to the query of all those nodes. If for some node a ∈ Child(r) we have that
d(a, q) > d(c, q) + 2 ∗Range, then, for every node x in the sub-tree rooted by a, we have:

d(a, q) > d(c, q) + 2×Range (4)
by equation 2: d(a, q) ≤ d(a, x) + d(x, q) so
d(a, x) + d(x, q) > d(c, q) + 2×Range
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Since c does not belong to the sub-tree rooted bya we have d(a, x) < d(c, x) so
d(c, x) + d(x, q) > d(c, q) + 2×Range ⇔ d(c, x)− d(c, q) + d(x, q) > 2×Range

by equation 2: d(c, x) ≤ d(c, q) + d(x, q) ⇔ d(c, x)− d(c, q) ≤ d(x, q) so
d(x, q) + d(x, q) > 2×Range ⇔ d(x, q) > Range

This means that we can prune every sub-tree with root a where d(a, q) > d(c, q)+2∗Range,
since no node in that sub-tree will be in the query range. Figure 2 shows a image from the
original paper of Gonzalo et al.[23] that exemplifies a range query.

Figure 2: Example of a range query in the sa-tree (original figure from the work of Navarro
et al. [23]). The search descends trough the tree until it finds element p9, elements p11 and
p4 are searched because the inequality 4 holds.

For the Dynamic implementation two new concepts were used. First, a limit on the arity,
and second, the usage of a timestamp. Although the limit is not required for the tree to work,
for low dimensional spaces, like in this problem, it improves the performance [23].

In the insertion, the same decisions are made with the exception of forcing the element
to choose the nearest child to descend if the maximum arity is reached, even if the root is
closer. Additionally a timestamp is saved for each node. During the range search the biggest
difference between the two data structures is related to the fact that, when a element x
was inserted, the elements with higher values of the timestamp did not exist and were not
considered.

The Fully Dynamic implementation of the SAT also permits deletion of elements. However
this feature requires some elements to be re-inserted in the tree. In some applications we might
want to remove an element in the middle of the tree. For instance, we may need to use these
deletions if we want to correct a side chain to avoid a clash without changing every atom
added afterwards. However, in most cases, the deletions happen with the last elements that
were inserted.

For the purpose of comparing with our data structure we only allowed deletions of the last
elements. This corresponds to deletions of the leafs of the tree which are easily implemented.
However, the radius information cannot be fully corrected.

We tried a simple technique for the radius correction based on the M-trees [7]. We first
verify if the element affects the radius by checking if the radius plus the distance to the root
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is higher than the father radius. If it is not, then this is not the node that defines the father
radius and no change must be made. Otherwise we calculate the maximum of radius +
distance to root and if the value is less than the actual radius, the radius is decremented.
Each time we modify a radius we repeat the process on the parent node of the changed node.

We also tried an optimization using a different distance metric. Instead of calculating the
distance as

√
(x0− x1)2 + (y0− y1)2 + (z0− z1)2, we used max{|x0−x1|, |y0−y1|, |z0−z1|}.

This avoids multiplications and the square root. However, using this distance, we make an
approximation by excess, since instead of verifying a sphere of radius r we are verifying a
cube of side 2 · r. Nevertheless, an hybrid measure can be created by using the optimized
measure as a first limit and a the exact measure only to confirm a clash. This way we can
still have some optimization and no error is made.

Figure 3: Performance comparison of the Dynamic SAT implementations. The values show
the time improvement over the base data structure. The blue line represents the base data
structure, therefore has always a value of 1.

Figure 3 shows the performance of Dynamic SAT implementations with proteins of in-
creasing size. We use Opt to refer to the implementations that use the optimized distance
measure, Opt Exact for those that use the hybrid distance measure and Rad for those that
use the radius correction. For a better description of the data and the testing process see the
results section (section 5).

We can see some improvement from the usage of the optimized distance function. In
the inexact version a mean improvement of 13,7% is achieved, while in the exact version the
improvement decreases to less than half (6.5%). For the radius correction the improvements
were negligible (14,9% mean for the inexact version and 7.2% mean for the exact version).
Since this is not the subject of this work we chose not to pursue further improvements and
analysis of the data structure.

4 Geometric Hashing Method

In this section we propose a data structure that has constant time for setting an element and
also for querying for a clash. All placed atoms are saved in a three dimensional array, where
each slot corresponds to a three dimensional position (figure 4). Using this structure, placing
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an atom corresponds to setting the array slot and determining a clash is made by iterating
through the nearest slots.

Each slot of the array corresponds to a small cube in the space. The smaller this cube,
the more precise is the distance approximation. We tested cubes with an edge side of 0.7
and 0.5 angstroms. This not only permits a good precision but also ensures the impossibility
of two atoms being in the same slot. The maximum cube diagonal will be 0.73 = 1.221 and
the minimum bond length between two atoms is 1.229 (between Carbon and Oxygen atoms).
Having only one atom in each slot permits some implementation optimizations.

Figure 4: Example of setting an atom in the three dimensional array. The left figure shows
the fragment that was already saved. The two other figures represent two planes in the three
dimensional array with some of the slots already occupied by atoms of the fragment. The
gray area is an example of the area that would be scanned to check if any clash would occur
when the new atom (atom 27) is inserted in the array.

The first information required to detect a clash is the maximum distance to scan when
checking for clashes on an atom insertion. Using the distance thresholds presented in table
1 we calculate, for each atom, the maximum distance threshold. Searching as far as this
distance during an insertion will assure that no clash occurs. However a clash does not occur
every time an atom is found in the search. There may be atoms where the pair threshold
is smaller than the maximum threshold. When an atom is found in the search, the distance
between that atom and the atom being inserted must be checked against the pair threshold
of those atoms.

A simple way of detecting the clash in the three dimensional array is to scan a cube
centered in the position of the atom. The size of the cube will be two times the maximum
threshold. The problem with this simple approach is that the vertices of the cube are much
further away than the center of its faces. In this work we used an approximation to a sphere.

To avoid repeating calculations, two data structures are saved:

• The sphere limits data structure. A set of three tables with the x, y, and z coordinates
limits for the sphere approximation. This is used to determine the limits during the
scan.

• The cell distances table. A table with the distances of each cell to the center. Each
time an atom is found during the scan, its distance to the atom in the center can be
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retrieved from this table and checked against the pair thresholds. Instead of calculating
the distance between the two atoms a pre-calculated approximation for this distance is
used.

The sphere limits data structure gives us, for each possible threshold value, the number
of the neighboring cells to be scanned in the three dimensional table. The tables save the
limit values for all possible values of the distance threshold in increments of 0.1 angstroms.
The maximum value in the table corresponds to the maximum threshold value for any pair
of atoms.

The x coordinate range is given by the table that converts the threshold values to the
0.5-0.7 angstroms discretization of the three dimensional array. This gives us how many cells
must be covered by the scan for that particular threshold. The y and z coordinate range
can be calculated using equation 5 for y and equation 6 for z. Notice that r is presented
in 0.1 angstroms increments and x and y correspond to the number of cells that have a size
of 0.5 or 0.7 angstroms. The values of x,y and r must be converted to the same unit of
measurement(e.g. angstrom). Figure 5 shows some examples of the saved values.

x2 + y2 + z2 = r2

y =
√

r2 − x2 When z = 0 (5)

z =
√

r2 − x2 − y2 (6)

Figure 5: Examples of the tables with limits to the clash scan for 0.7 angstrom cell size. The
top table shows the limits for the x coordinate range given the threshold r. The left table
shows the y limits given x and r, and the right table the z limits given x, r, and y. While x,
y and z correspond to the number of cells to be scanned, r corresponds to the distance in 0.1
angstrom units.

The cell distances table is used to determine the distance of two atoms without the need
of actually doing the calculations. Of course this value will be an approximation since we
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consider that both the atoms will be in the center of their cells. This information is then used
to check if an atom is closer than the corresponding pair threshold (since the pair threshold
might be different from the maximum threshold used as the scan radius). Figure 6 shows
an example of the table with the distances of each cell to the center. The distances are also
presented in 0.1 angstrom units.

Outer Shell Center

Figure 6: Example of the three dimensional distance matrix (maximum threshold of 2
angstrom). Considering that the atom to be set is in the middle of the cube, the table gives
us a distance approximation of every other atom in the vicinity. The distance is presented in
0.1 angstrom units.

When a non empty slot is found during the scan, the distance in the three dimensional
distance matrix (figure 6) is compared with the pair threshold (table 1). If the distance is
smaller than the threshold, a clash has been detected.

This method is approximate since we consider that each atom is in the center of the cube.
In the worst case, an error equal to the diagonal of the cube may occur. In practice this error
does not occur often in decisive areas. Since the atoms are connected in a rigid structure, only
some atoms on the outside of that rigid structures may be disregarded or wrongly considered
as clashing atoms. Nevertheless, we can always modify the algorithm so that there is no
error. First we enlarge the radius of the search to contain every possible clash atom. Since
the maximum error is the cell size we need to increase the radius by one cell. We then confirm
each clash by calculating the atoms distance and verifying the pair threshold. The first step
will assure us completion and the second correction. Algorithm 1 presents the pseudo-code
for the presented method. Comments are also presented for the exact version modifications.

Figure 7 compares the performance of exact and approximate implementations for a cell
size of 0.5 and 0.7 angstrom. As for the previous data structure the results are presented as
an improvement over the base implementation. We considered the inexact implementation
with 0.5 cell size as the base algorithm. We use Exact to refer to the exact implementations
i.e. the implementations that use the extended radius and distance calculation.

As we can see in the results, the usage of a larger cell improves the time efficiency (8.2%
improvement). However, it also decreases the precision of the method. It is also possible to
see that there is no advantage in using an exact solution with smaller cell size, since both
methods are exact and the larger cell has best time performance. In fact, the time results of
the best precise solution are comparable with the inexact solution with 0.5 angstrom cell size.

We can also observe a decrease on the differences between each implementation, when
the protein size increases. The results start from a difference to the base algorithm of more
than 10% and end near the 5% value. Although we present no proof, we believe that the
occupancy of the hash table might explain this fact. When no clash is found, the time spent
in setting the atoms on the hash table is much smaller than the time spent in searching for
neighbors. However, if more nearby atoms are set in the table, the neighbors search becomes
faster since the algorithm stops as soon as a clash is found. Since the setting time is equal
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Algorithm 1 Pseudo code for the proposed clash detection method.
Require: geom (hash table), dist (distances to the center slot), sphereX, sphereY,

sphereZ (scan sphere limits), maxthresh, pairthresh
1: procedure ClashTest(atom)
2: for x = -sphereX(maxthresh(atom)) to sphereX(maxthresh(atom)) do . Exact

version → All sphere limits are increased by one
3: for y = -sphereY(maxthresh(atom),x) to sphereY(maxthresh(atom),x) do
4: for z = -sphereZ(maxthresh(atom),z) to sphereY(maxthresh(atom),z) do
5: atom2 = geom(x + posX,y + posY,z + posZ) . posX,posY,posZ →

coordinates in geom where the atom will be added
6: if Exists(atom2) then
7: if dist(x,y,z) < pairthresh(atom,atom2) then . Exact version →

Instead of dist we have the distance calculation between atoms
8: A clash was detected
1: procedure AddAminoAcid(AminoAcid)
2: noclash = true
3: for atom in reducedAtomSet(AminoAcid) do . Test only the reduced set of atoms

described in section 2
4: if ClahsTest(atom) then
5: noclash = false
6: if noclash then
7: Add all AminoAcid atoms to geom
8: else
9: Clash found, the structure is not physically possible
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Figure 7: Performance comparison of the Geometric Hashing implementations

for every implementation, this increase in the number of clashes may explain the decrease in
the overall time differences.

5 Results

To test the clash detection data structures we compiled a set of protein structures of increas-
ing size (number of amino-acids). The proteins also differ in terms of secondary structure
composition (Alpha Beta, Mainly Alpha and Mainly Beta proteins). We have chosen the
proteins from a list compiled by the What If database [20](official site [29]). This database
uses a filter similar to the PDB SELECT program [5, 19] to select a set of proteins from the
PDB database [4] (official site [30]). The filter uses a similarity threshold and a minimum
resolution. Table 3 shows the set of chosen proteins.

Each data structure is tested by executing a search in a discrete state search space. In
a discrete state model the atom bonds and angles are fixed, and the phi and psi dihedral
angles are chosen from a limited set of values. We use the best discrete state model of four
states (phi and psi values of {(-63,-63),(-132,115),(-42,-41),(-44,127)}) from the work of Park
et al. [24]. For the side chains we use the Dunbrack Backbone-Dependent Rotamer Library
[12, 13, 14, 15].

The search used in this test emulates a normal ab-initio protein folding algorithm. The
difference is that instead of using a scoring function we use the actual root mean square
distance to the native protein. We use a best first search and backtrack each time the root
mean square distance exceeds 5 angstroms. When a structure is found we restart to a previous
choice until 100 searches are completed.

In the majority of the ab-initio algorithms several structures are generated until a final
structure is reached. These algorithms normally use atomic contact information as the scoring
function. Although for this test we do not need the contact information, we will also focus
more on the part of the search that has more atoms and therefore more information. Since
a search tree structure grows exponentially, this is also the part of the search that has more
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Name Size Type
1r69 63 Mainly Alpha
1ctf 69 Alpha Beta
1poh 85 Alpha Beta
1o5u 88 All Beta (beta helix)
1e9m 106 Alpha Beta
1co6 107 Mainly Alpha
1vhh 157 Alpha Beta
1kao 167 Alpha Beta
1pt6 192 Alpha Beta
1vec 206 Alpha Beta
1tjy 316 Alpha Beta
1pot 322 Alpha Beta
1jak 499 Alpha Beta
1f0x 502 Alpha Beta
1kmo 661 Mainly Beta
1qfm 705 Alpha Beta

Table 3: Protein data set

possible conformations. Therefore, the backtracks are made in increments of 10%. The first
backtrack will be to an amino acid at 90% of the chain, the second to 80%, until 10% and
then again to 90%.

Each time an amino acid is set, the clash detection data structure is used, but no backtrack
is made. Since we want for each data structure to have the same number of tests, and not
every method used in those data structures is exact or does the same approximation, we
cannot use the clash detection to influence the search.

Figures 8 and 9 show the results for the two data structures using the approximate and
exact versions.

From the logarithmic scale graphic on figure 8 we can see the execution time differences
for different proteins. The results show that the test algorithm running time for each method
does not depend only on the size of the protein but also on the protein structures. For
instance, for beta type proteins (1o5u and 1kmo) the time increases more than the expected
for the size variation, whereas for alpha proteins (1r69 and 1co6) the time decreases slightly.
These results are consistent and can be explained from the results obtained by Park et al.
[24] for the discrete state model used in this work. In that work the alpha structures where
shown to be easier to model than the beta structures. The time values presented on the table
show that the test algorithm run time grows rapidly with the size of the protein.

From figure 9 we can see that the geometric hashing data structure outperforms the
Dynamic SAT data structure and the naive approach. For the bigger proteins the search
performed using geometric hashing is four to five times faster than that of the naive approach
and roughly two times faster than the search performed by the Dynamic SAT. Additionally
it can be observed that the proposed data structure has improvements for every protein size.
The Dynamic SAT only outperforms the naive algorithm for bigger proteins, when the lower
number of distance calculations compensates the cost of maintaining the tree structure.

We can also see that there is a small increase in the cost of using an exact method.
However this cost does not increase with the size of the protein.
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Figure 8: Results for the clash detection algorithms in logarithmic scale

Figure 9: Results for the best clash detection methods for each data structure compared to
the naive approach. The values correspond to the improvements over the naive approach.

6 Discussion and future work

The Dynamic SAT results show that the low dimensionality and the heavy dynamic nature
of this problem create a difficult task for commonly used range query data structure.

The results also show that the geometric hash data structure takes good advantage of the
low dimensionality of the problem. It creates a solution that is not greatly affected by the
dynamic nature of the problem. The presented solution not only achieves better results for
the biggest proteins, but also shows improvements over the other solutions for the smallest
proteins.

We tested this work on the protein folding problem, which is known to be very difficult
and with a high computational cost. However, without any constraints, the protein folding
algorithms are normally used only for small proteins. Although the improvements described
in this work can have a positive impact in this problem, even for small proteins, there are
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also other problems where the impact may be even greater. Problems like protein docking or
protein visualization can take advantage of the large improvements in bigger proteins. In the
protein docking problem more than one protein is considered. Therefore, a large number of
atoms must be tested for clashes during the proteins rotations and translations. The visual
tools, although usually having a smaller computational cost, require a fast response time to
be user friendly. These tools also may have to consider more than one structure of various
sizes.

In future work we will analyze the application of this method to other problems. Further
time and space improvements may also be found for this type of problems.

We have chosen to test well known range query algorithms. However, these algorithms
may be surpassed by others in this low dimensional problem. Although other algorithms
were analyzed in this work, we presented only the ones we considered more efficient and best
suited for this problem. Future work may include other algorithms that were not considered
in this one, specially when applying this method to other problems like protein docking or
visualization.
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