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Abstract

Inductive Learning by Selection

of Minimal Complexity Representations

by

Arlindo Manuel Limede de Oliveira

Doctor of Philosophy in Engineering in Electrical Engineering and

Computer Science

University of California at Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

This dissertation addresses the problem of inferring accurate classification rules

from examples. A formalization of Occam’s razor, the minimum description

length principle, is used to transform the problem of performing accurate in-

duction from examples into the problem of selecting the minimal complexity

rule that fits well the available data. Four different representation schemes are

addressed: two-level threshold gate networks, multi-level Boolean networks, de-

cision graphs and finite state machines. Heuristic algorithms for the inference

of classification rules represented using each one of the first three representa-

tions are presented and their performance evaluated, both in terms of the size

of the solution obtained and the quality of the induction performed. Exact al-

gorithms are also proposed for the selection of minimal complexity classification

rules represented either as decision graphs or as finite state machines. For these

algorithms, proofs of optimality and an evaluation of their limitations are also

presented. The generalization accuracy of the classifiers generated using the

algorithms proposed is compared with the accuracy of alternative approaches

in a variety of problems extracted from the machine learning literature. Fi-

nally, the applicability of the algorithms to real-world tasks is demonstrated



with two large problems: hand-written character recognition and noise removal

from gray scale images.

Professor Alberto Sangiovanni-Vincentelli
Dissertation Committee Chair
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Chapter 1

Introduction

The main objective of the discipline known as artificial intelligence

(AI) is to make computers behave in ways that can be defined as intelligent.

One of the hallmarks of intelligence is the ability to learn from past experience

and to adapt the behavior in accordance with this experience. Machine learning

is the branch of AI that is concerned with the ability of systems to learn and

adapt. In fact, this branch became so important, and the techniques developed

have found applications in such a wide variety of fields that machine learning

is now a very important discipline on its own right.

One of the central topics of research in machine learning is inductive

inference, the study of algorithms that enable systems to learn from examples.

This subject is also the central topic of this dissertation. In particular, this

thesis describes algorithms for the inference of classification rules in discrete

domains. The exposition made in the following sections intends to introduce

the basic concepts and definitions involved in inductive inference but does not

pretend to be exhaustive or even complete. The reader is referred to [43] and [64]

for comprehensive reviews of both the empirical and theoretical issues involved

in inductive inference.



CHAPTER 1. INTRODUCTION 2

1.1 Inductive Inference

Inductive inference problems are characterized by a domain D and a

learner, or learning algorithm. The learner is able to observe some objects (or

instances) in the domain. This set of objects is the training set, T . Given this

information, the learner has to infer an hypothesis, i.e., a theory that can be

used to explain the data observed. The objective is to use the generated hy-

pothesis to predict the characteristics of a set of previously unobserved objects,

the test set. In general, some information is missing from the objects in the test

set. The objective is to predict this information using the generated hypothesis.

Although hypotheses may be used to predict a number of different characteris-

tics, this thesis addresses only a particular family of problems, globally known

as classification problems. In classification problems, each object in the domain

is labeled with one label that defines the class it belongs to. The hypotheses

generated by the learner will be used to recover these labels for the objects in

the test set. A system that uses the hypothesis generated by the learner to

classify objects is called a classifier. In single class problems, the instances are

labeled as either belonging or not belonging to a given class. In multi-class

problems, the instances can belong to one of several classes.

1.1.1 Motivation and Examples

Examples from two concrete domains will be used to motivate the

reader for the wide range of applicability of inductive inference algorithms and

illustrate in a more vivid way some of the concepts involved. The first domain

is related with a particular ending in the game of chess. Consider the chess

endings depicted in figure 1.1. If both players play the best moves available,

the 4 positions on the left side will terminate with a win for white, while the

positions on the right side will terminate with a draw. This is a single-class

classification problem: a position is either a win, or is not. The objective of

the learning algorithm is to infer, from the training set data, a rule that can be

used to decide whether, under perfect play, a given position will be a win or a
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Figure 1.1: Instances of the King+Pawn vs. King chess endings

draw.

In this example, the domain is the set of all King+Pawn vs. King

chess endings that have all chess pieces in the same column and have the Kings

in front of the pawn and in direct opposition, i.e., separated by one single row.

The objective of the learner is to derive a classification rule that can be used

to find whether or not a particular position has a forced win for white. Such

a classification rule will be termed an hypothesis. The hypothesis can also be

viewed as a representation of the set of all positions that are forced wins for

white. This set can be represented implicitly by its characteristic function1.

This view of the hypothesis as subsets of the input space (or the respective

characteristic functions) is very useful and will be defined formally in chapter 2.

Any classification problem can, in principle, be formalized as an induc-

tion problem in discrete spaces by appropriately encoding the instances using

an encoding scheme that maps the problem into a discrete domain. In this

1The characteristic function of a set is a function that takes the value 1 for the elements
on the set and takes the value 0 otherwise.
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case, such an encoding of the problem is easy to obtain. For example, instances

of this problem can be encoded by simply writing down the column where the

pieces are, the row of each piece and an extra bit that describes which side is to

move. If the row coordinates are listed in the order White King, White Pawn,

Black King and both coordinates are between 0 and 7, the training set would

then consist of the following description:

4,5,4,7,1,+

2,4,4,6,0,+

7,3,1,5,0,-

2,4,3,6,1,-

1,5,4,7,1,+

1,4,2,6,1,+

0,5,1,7,0,-

6,2,1,4,1,-

Figure 1.2: An encoding of the King+Pawn vs. King chess endings

The + signal describes positions where White has a forced win. It

must be observed that almost all domain specific information was lost in the

conversion performed using this encoding. If the original problem was solv-

able, at least for someone familiar with the domain, the encoded version of the

problem looks much harder. The learning algorithms described in this thesis

are usually faced with learning the problems without having the possibility of

using any contextual information that is available for humans. Choosing an

encoding scheme that preserves as much contextual information as possible is a

critical step in the solution of any problem. The process by which an appropri-

ate encoding scheme can be chosen is domain dependent and is not addressed

in this dissertation, except in special cases for illustrative purposes. It will be

assumed that a description in a form similar to the one described above was

obtained in some way and will be used as the input to the learning algorithm.

Naturally, the algorithms can be used even if the chosen representation does

not preserve any contextual information, but the quality of the generalization
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obtained will suffer. Given the encoding described above, figure 1.3 shows a

graph that can be used to classify this type of chess endings. It is easy to verify

that a classification procedure that uses this graph classifies correctly all the

positions in figure 1.1. In fact, it will also classify correctly all the possible

positions in this domain.

TIE

TIEWIN

White king row = 5 ?

Pieces in outermost columns ?

YesNo

No Yes

No Yes

YesNo

non adjacent rows ?

White pieces in 

Black to move ?

Figure 1.3: A decision graph for the chess endings problem

This work describes algorithms that can be used to derive representa-

tions like the one depicted in figure 1.3. In this particular case, it is unlikely

that any learning algorithm would be able to infer the exact solution with the

limited amount of information provided in the 8 positions shown. Some of the

algorithms described are, however, remarkably effective in this problem if a

somewhat larger training set is provided. This problem is used as one of the

case studies in chapter 7.

The second domain used to motivate this work is in the field of hand-

written character recognition. Figure 1.4 shows instances of patterns that corre-
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spond to different handwritten digits extracted from the widely available NIST

database [28]. The objective in this case is to infer a classification rule that al-

lows a classifier system to recognize which particular digit the writer intended

to write.

Figure 1.4: Examples of handwritten digits

This problem is an example of a multi-class problem because the num-

ber of different labels is higher than 2. This problem is also used as a case study

in chapter 7, where the strategies used to encode the instances and select the

representation are also described.

1.1.2 The Effect of Noise in Classification Problems

In the chess example, it was assumed that all positions present in

the training set are correctly labeled. This is the noise-free case, where no

corruption of the attribute values or the class labels is assumed to take place.

The character recognition example, on the other hand, is bound to

have some errors present in the data used as the training set. This compli-

cates the task of the learner that has to take into consideration the fact that

some of the labels or attribute values may be wrong and change its hypothesis

accordingly.

Algorithms that can handle problems with classification and/or at-

tribute noise are, in principle, more general and can also handle the noise-free

case. Their performance may, however, be inferior to that of algorithms that
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use the fact that no noise is present in the training set. In real world problems,

some amount of noise is always present. Large databases always have some frac-

tion of the data corrupted by noise or incorrect. Therefore, algorithms that are

designed to be applied to real world problems need to take into consideration

this case. Nonetheless, many formal models are only applicable to the noise

free case. In some cases, this restriction is only present to make the analysis

of learning situations simpler. In others, it may be a fundamental limitation

of the model or the algorithms addressed. Moreover, it may happen that even

algorithms designed for the simple noise-free case turn out to work quite well

in problems with noise, specially if the level of noise is not high.

1.1.3 Mapping Multi-Valued Attributes to Boolean Variables

The majority of the algorithms described in this dissertation assume

that problems defined over discrete spaces with multi-valued attributes are first

mapped into a Boolean space of N variables, {x1, . . . xN}. This implies mapping

attributes that can take k > 2 values into a set of ⌈log2(k)⌉ binary variables.

This solution is by no means unique, since all the algorithms described can be

modified to handle multi-valued attributes. There are two major drawbacks to

this solution:

• Concepts may become harder to represent in the modified Boolean space

than they are in the original multi-valued space. This increase in complex-

ity is, however, limited by a polynomial factor on the number of values

that the original attributes can take and is therefore not a very important

consideration. The quality of the inference performed by the algorithms

may, however, be reduced by this transformation. Comparisons performed

with alternative approaches that use the original multi-valued attributes

did not, however, show any significant degradation in the quality of the

solutions observed.

• If the final solution needs to be presented to a human (instead of simply

used to classify new instances), it may be harder to interpret because of
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the binary coding of multi-valued variables. Since the transformation from

discrete valued attributes to Boolean valued ones is performed internally,

it is completely transparent to the user and this problem is significant

only if an easy human interpretation of the derived hypothesis is critical.

This happens only in a relatively small number of applications. Further-

more, a simple post-processing step can be used to recover an hypothesis

formulated in terms of the original variables if clarity of the derived rule

is a critical factor.

For many problems, these drawbacks are a relatively small inconve-

nience compared with the advantages that come from being able to uniformly

handle all the variables. This approach also provides additional generalization

capability provided by the ability of the algorithm to use the binary represen-

tation of integers to its advantage in the identification of regularities.

1.1.4 Transforming Multi-Class Problems Into Single-Class Prob-

lems

General classification problems can be transformed into single class

problems using a variety of encodings. Assume that the instances in the training

set belong to one of k possible classes. The following alternatives can be used

to encode the value of the label that describes the class of an instance:

• Binary code: Encode the label value using a binary code with ⌈log2 k⌉
bits. This option generates the smallest number of single class problems

from the original classification problem. However, with this encoding, an

error in one of the single class problems usually causes a mis-classification.

• One-hot code: Encode the label value using a one-hot encoding that

uses k bits. This encoding sets to one the bit that corresponds to the

particular class. An error in one of the resulting single class problems will

transform the code into a non-existing one and a class value can not be

attributed to that instance, but will not result in a mis-classification.
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• Error correcting code: Encode the label value using an error correcting

code [23, 73]. This approach preserves most of the compactness of a

binary encoding while being much less sensitive to errors in one of the

single class problems. Additionally, the Hamming distance between the

observed outputs and the closest valid codeword gives a measure of the

certainty of the classification. This can be useful in problems where a

failure to classify is less serious than the output of a wrong classification.

It should be noted that the use of the first or third alternatives creates

single class problems that are, in general, more complex, than the ones gener-

ated by the second alternative. Nonetheless, some classification errors made

using the last encoding are recoverable, given the properties of error correcting

codes.

After both the mappings defined above are performed, the solution of

any classification problem is equivalent to the synthesis of a number of single

output Boolean functions and a discussion on the power of any hypothesis rep-

resentation scheme reduces to a discussion on the power of that representation

scheme to represent Boolean functions.

1.2 Overview of the Approach

The approach described in this dissertation is based on the fact that

simpler hypothesis usually perform better in the training set than complex ones.

The theoretical justifications for this assumption are addressed in chapter 2. In

particular, this work is concerned with the design of algorithms that generate

hypothesis of minimal complexity that are consistent, to some degree, with the

training set labeling. In all cases, the algorithms accept as input a labeled

training set and generate an hypothesis of minimal complexity described using

one of the representation schemes described later in this section.

Although the classification rules (or hypotheses) generated by the

learner can be described using any representation scheme, for problems defined
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over discrete spaces, some representations are particularly natural.

This dissertation addresses 3 different representations for hypotheses

in problems defined by a fixed number of discrete attributes: two-level thresh-

old gate networks, multi-level Boolean networks and reduced ordered decision

graphs. It also describes algorithms for the synthesis of deterministic finite

state machines, a representation appropriate for problems defined by attribute

sequences of variable length. This section provides an informal definition of

these representations. When required, more formal definitions will be intro-

duced in the chapter dedicated to each one of these representations.

1.2.1 Two-Level Threshold Gate Networks

A threshold gate is a gate with k inputs, {x1, x2, . . . , xk} that outputs

the logic value 1 if and only if

n
∑

i=1

wixi ≥ w0 (1.1)

where w1, w2, . . . , wk are (integer) input weights and w0 is the (integer) thresh-

old value of the gate.

A two level threshold gate network consists of two levels of gates,

where the input variables are connected to the inputs of the gates in the first

level and the outputs of these gates are connected to the inputs of the second

level gates.

1.2.2 Multi-Level Boolean Networks

A Boolean network is a directed acyclic graph where each node im-

plements a simple single-output primitive Boolean function, i.e., an and, or or

not operation. In this graph, each node with no incoming edges corresponds to

one of the input variables. Some special nodes in the graph are defined as the

outputs of the network. For a single output Boolean network, there is a single

output node and this node has no outgoing edges.
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1.2.3 Reduced Ordered Decision Graphs

A decision graph is a rooted, directed, acyclic graph where each node

is labeled with the name of one variable. A decision graph has two terminal

nodes nz and no that correspond to the leaves of the graph. Every non-terminal

node ni has one else and one then edge that point to the children nodes, nelse
i

and nthen
i , respectively.

A decision graph is called read-once if each variable occurs at most

once along any computation path. All decision graphs considered in this work

are read-once decision graphs and references to this will be omitted. A decision

graph is called ordered if there is an ordering of the variables such that, for

all paths in the decision graph, the variables are always tested in that order

(possibly skipping some variables). A decision graph is called reduced if no two

nodes are equal (same label and same descendents) and no node has the else

and then edges pointing to the same node [18]. A decision graph that is both

reduced and ordered is called a reduced ordered decision graph (RODG).

Reduced ordered decision graphs are known in the logic synthesis com-

munity as Boolean decision diagrams (BDDs). Both notations are widespread

in the different communities and one of them had to be chosen for the present

text. I choose to use the term RODG to denote this type of representation.

Readers more familiar with the BDD notation should read BDD every time the

term RODG is used.

1.2.4 Deterministic Finite State Machines

Following the standard conventions, a finite state machine (FSM) is

represented by a directed graph where each edge is labeled with the value of

one input and the corresponding output. Each node in this graph corresponds

to one state of the machine. One of the nodes is distinguished as the reset state

and represents the state where the machine is started. In the presence of one

input, the machine outputs the value present in the edge that leaves the current

state and is labeled with that value of the input and the current state changes



CHAPTER 1. INTRODUCTION 12

to the one pointed by that edge. A finite state machine is deterministic if, for

any node in the graph, only one outgoing edge with a given input label exists.

1.3 Expressive Power of Different Representations

The hypotheses generated by the learning algorithms are described

using one of the representations described above. The representation selected

can have a critical impact on the quality of the accuracy of the generalization

obtained.

In particular, if the representation used is not well adapted to the

problem at hand, the complexity of any hypothesis that matches the training

set will be too large and its accuracy poor. The critical point is that the

representation scheme used has to be powerful enough to allow for hypothesis

with small complexity to match the training set data to some degree of accuracy.

Assume, for example, that the family of problems under consideration is the

family of symmetric Boolean functions defined over n variables. A function

is called symmetric if its value doesn’t change when two input variables are

exchanged. This implies that the value of a symmetric function depends only

on the number of bits at 1. Assume now that the learning algorithm represents

the hypotheses using a disjoint normal form2 (DNF) representation. Since

some symmetric functions require a number of terms in the DNF representation

that is exponential3 in the number of input variables the performance of this

algorithm for some problems in this family will be very poor.

The relations between the sets of Boolean functions that can be rep-

resented by polynomial sized descriptions for each one of these representations

is represented in figure 1.5.

A particular representation scheme X is more powerful than repre-

sentation scheme Y if any concept that can be represented by a polynomial

sized description using scheme Y can also be represented using a polynomial

2Equivalent to a sum-of-products representation.
3For example, the parity function requires 2n−1 factors in DNF form.
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Multi-level Boolean networks

Two level 

logic networks

Two-level threshold 

gate networks

Reduced ordered decision graphs

Figure 1.5: The expressive power of different representations
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sized description using scheme X. In this sense, multi-level Boolean networks

are more powerful than any one of the other 3 representations and two-level

threshold gate networks are strictly more powerful than two-level Boolean gate

networks. It is also important to note that the class of functions implementable

by polynomial size unbounded level threshold gate networks is equal to the class

of functions implementable by unbounded level Boolean gate networks. This

equality comes from the fact that one can always replace a threshold gate by a

polynomial number of Boolean gates.

Regrettably, the same flexibility that makes multi-level Boolean net-

works so powerful also makes it very hard to design algorithms that are effective

in deriving a compact multi-level network that matches the training set to some

specified degree of accuracy. On the other hand, the properties inherent to the

reduced ordered decision graphs representation makes it possible to design and

implement algorithms that perform this task in a more effective way.

1.4 Alternative Approaches

The representations addressed in this dissertation represent only some

of the possible choices. Many other representations are possible and the follow-

ing two deserve a special reference because of their popularity.

1.4.1 Neural Networks

Neural networks have emerged as one of the representations of choice

not only in the machine learning community but also in many other fields.

Although there are many different types of neural networks, the models most

commonly used can be viewed as interconnected networks of simple processing

elements. Each processing element computes a weighted sum of its inputs and

outputs a continuous function of this sum. Among all algorithms that can be

used to select the node functions, the back-propagation [41] algorithm is the

most popular one. This approach is remarkably effective in a wide variety of

problems and the algorithms used are straightforward. However, there are some
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drawbacks that make the use of neural networks trained using back-propagation

harder to use than alternative techniques, the most relevant being probably the

difficulties inherent to the process of choosing the right architecture. Solutions

proposed to this limitation have not met widespread acceptance. Furthermore,

in some problems, being able to realize an hardware implementation is impor-

tant. Neural networks trained using standard algorithms are hard to implement

because each node in the network implements a soft threshold function with real

weights. Since these weights have to be stored with a relatively high precision,

either analog weight storage or expensive D/A converters have to be used.

In contrast, the three last representations addressed in this dissertation are

straightforward to implement using standard digital technology, an alternative

that is more cost effective than solutions based on analog designs. One of the

representations addressed, two-level networks of threshold gates, can be viewed

as a special case of neural networks, where only two levels are allowed, the

weights are integer valued and the output is a step function. This limitations

make it both easier to implement this type of networks in hardware (although

not as easy as the other three representations) and to design minimal size net-

works. A more detailed comparison between the two approaches is presented

in chapter 3.

1.4.2 Decision Trees

Decision trees [17, 76, 79], on the other hand, do not suffer from these

drawbacks. Little or no extra information is required apart from the data

present in the training set and the resulting tree can be easily implemented

using standard digital technology. Empirical results [6] have shown that the

performance of decision trees is similar to that of trained neural networks for

many problems. There are, however, some domains where the algorithms de-

scribed in this dissertation perform much better than decision trees. In fact,

one of the representations studied, RODGs, can be viewed as a generalization

of decision trees. Decision trees and RODGs are, however, less well adapted
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than neural networks to perform induction in domains that are inherently con-

tinuous.

1.5 Organization of the Dissertation

The remaining of this dissertation is organized as follows:

Chapter 2 describes the theoretical results that support the selection

of minimal complexity hypotheses as the most likely to exhibit high generaliza-

tion accuracy. In particular, it describes how the minimum description length

principle can be applied to transform the induction problem into an optimiza-

tion problem. This chapter also analyzes the computational complexity issues

involved in the process of hypothesis selection and introduces some basic defi-

nitions that are used in the succeeding chapters.

The following four chapters are dedicated to the description of the

algorithms that select the minimal complexity hypothesis for each one of the

representations described in section 1.2.

Chapter 3 describes an algorithm for the selection of minimal two-

level networks of threshold gates. The algorithm is based on extensions of

some of the well known concepts and techniques developed for two-level circuit

minimization and its applicability is restricted to noise-free problems.

Chapter 4 describes and analyzes the algorithms developed for the

synthesis of minimal multi-level networks of Boolean gates. Apart from the

different representation chosen, these algorithms differ from the ones described

in the previous chapter in that they can handle problems that have some level

of noise.

Chapter 5 is dedicated to the study of RODG representations. It

has two major parts that address the same problem with radically different

approaches. The first part describes how an exact solution for the problem can

be formulated as a set covering task. This is the first formulation of an exact

solution to this problem that does not involve an extensive search algorithm.

Since the exact approach is limited to relatively small problems, the second
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part of this chapter is dedicated to the study of an heuristic algorithm that can

be used in much larger problems. The exact solution is restricted to the noise

free case while the heuristic approach can handle the more general problem of

classification in the presence of noise.

Chapter 6 describes an exact implicit algorithm for the inference of

finite state machines from examples of accepted and rejected strings. This

implicit formulation is a radically different approach to this problem and de-

parts completely from the explicit search based methods developed by previous

authors.

The discussion of the previous work developed using each of these

representations has relatively little overlap and is relegated to the beginning of

each of these chapters.

Evaluating such a wide variety of algorithms in a meaningful way is a

complex task and many interesting comparisons had to be left out due to space

and time considerations. Since the inductive inference task is formulated as an

optimization problem using a variety of representations, the solutions have to

be evaluated with respect to two different criteria: how well do the algorithms

solve the optimization problem proposed and how does the inference performed

by the algorithms compare with alternative techniques.

An evaluation of the algorithms with respect to the first criterion is

described immediately after each algorithm is presented. For exact algorithms,

the critical parameter to measure its their speed, or, equivalently, how large

are the problems that they can solve in a fixed amount of time. For heuristic

algorithms, both speed and solution quality (i.e., how close to the optimum

are the solutions obtained) are important. Results listing the data obtained in

problems with known solutions are included at the end of each of these chapters.

Evaluating the algorithms with respect to the second criterion is more

difficult because one has to chose from among the alternative techniques the

ones that should be used as a standard of comparison. In the interest of fair-

ness, the algorithms are compared with the most popular techniques used for
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inference from examples and these comparisons are made in a wide variety of

problems. This is important because an algorithm may perform particularly

well in a particular problem and perform poorly in a different one. In fact,

the ability of an algorithm to handle problems from different domains in a

robust way will ultimately make the difference between popular and unpop-

ular algorithms. From all the algorithms described in this dissertation, the

heuristic algorithms for the inference of RODGs and the heuristic algorithms

for the inference of combinational Boolean networks exhibited a higher degree

of robustness and were more flexible in different domains. For this reason, the

majority of the comparisons with respect to the second criterion, the quality of

the inference performed, are made using these algorithms. These comparisons

are performed in chapter 7 that also contains two examples of the application

of the algorithms to more complex problems. Chapter 7 not only describes the

solutions obtained and analyzes how the algorithms performed, but also shows

how a VLSI implementation of the resulting classifiers is straightforward to

obtain. This is done mainly to illustrate how the use of these representations

makes it easy to implement classifiers using digital VLSI technology.

Finally, chapter 8 summarizes and puts in perspective the results ob-

tained. An analysis of the major strengths and weaknesses of the algorithms is

presented and directions for future research are proposed.
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Chapter 2

Inductive Biases and

Complexity

The problem of selecting the hypothesis that will be more accurate

in the test set is, in general, an ill-posed problem because many hypotheses

that are consistent with the training set exist. A preference, either explicit or

implicit for one hypothesis over an alternative one is called a bias.

No bias is intrisically superior to any other bias for all problems and

an argument for the superiority of a particular bias can only be made in a

particular context. In fact, a conservation law that states in a particularly

simple way the inherent equivalence of all biases in the absence of a context

can be easily derived. It turns out, however, that not all problems are equally

likely to appear and that a very general rule can be used to select an hypothesis

that has good generalization accuracy. This chapter is dedicated to the study

of these arguments.

2.1 Definitions and Conventions

The problem domain D, defines the set of possible input objects, d ∈
D. The training set T = ({d1 . . . dm}, t) is defined by a set of m elements of D

and the corresponding label vector, t.
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Each element of D is defined by a number of discrete attributes,

{a1, . . . , aN ′} . This domain is mapped into a Boolean one defined over a space

of N Boolean variables {x1, . . . , xN} as described in section 1.1.3.

The label vector t contains m components and tj is defined to be 1 if

the object dj is labeled as belonging to the target concept, 0 otherwise.

It will be useful, sometimes, to consider xi not only as the ith input

variable, but also as the vector of values that xi takes for the instances in the

training set. In this case, xj
i represents the value that variable xi takes in the

jth instance in the training set. These binary vectors can also be manipulated

using the common Boolean operators by applying them successively to each

element of the vectors.

An incompletely specified Boolean function f : {0, 1}N → {0, 1,X}
is defined by its off, on and dont-care sets (foff , fon, fdc). If a function has

fdc = ∅ then f is a completely specified function and can be viewed as the

characteristic function of some subset of the input space. The training set

defines an incompletely specified function, where the positively and negatively

labeled examples correspond to the on and off sets respectively.

A minterm z represents an assignment of values z1, z2, ..., zN to the

input variables and corresponds to one vertex in the input space hyper-cube.

Two functions f and g are called compatible iff fon
⋂

goff = ∅ and foff
⋂

gon = ∅.
When describing Boolean functions the conjunction sign will, in gen-

eral, be omitted and the + or ∧ signs will be used to represent disjunction.

2.2 Deterministic vs. Probabilistic Concept Learn-

ing

In deterministic single concept learning, concepts and hypotheses are

subsets of the domain D. Concept will be used to describe the underlying true

rule and hypothesis will be used to describe the approximations generated by

the learner to the target concept. The objects in the training set are labeled
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positive if they are a member of the target concept and negative otherwise.

The objective is to generate an hypothesis that is a good approximation of the

target concept, in a sense that will be defined precisely later.

In some domains, the characteristics of the problem may be such that

the correspondence between the label of an object and the value of its attributes

is not defined in a deterministic way. This means that an object d ∈ D with a

certain combination of attributes will have a certain probability γ(d) of being

labeled as a positive instance of the target concept. The function γ(d) : D →
[0, 1] gives the probability that a given element of D is assigned a positive label.

This corresponds to the problem of classification in the presence of noise, as

defined in section 1.1.2. To formulate this problem as a single concept learning

problem, the target concept can be defined as the set of all objects d such that

γ(d) > 0.5. The hypothesis that coincides with C is the one that minimizes the

error in the test set. In this case, it is important to define the quantity Pm
L (T |γ),

that represents the probability of the observed training set under the condition

that the labeling function is γ(d). For a training set T = ({d1 . . . dm}, t) this

quantity is given by

Pm
L (T |γ) =

m
∏

i

(1 − |ti − γ(di)|) (2.1)

In practice, access to the true concept C is not available and therefore the only

way by which a generated hypothesis can be evaluated is by testing it in unseen

instances. Therefore, whether or not the hypothesis is a good approximation to

the somewhat artificial definition of the true concept above is irrelevant. What

matters is the performance of that hypothesis for the instances in the test set.

This work does not address the more general problem of actually estimating the

value of γ(d) for the points in the domain. In fact, and purely for the effect of

performing classification, the above approach is sufficient if the target concept

can be well approximated by a generated hypothesis. In many problems, all

instances that are likely to appear have γ(d) very close to 0 or very close to 1.

For instance, in the chess endings example discussed before, it may be the case

that there exists a small probability that a given chess ending is mis-labeled.
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If this probability is small, this should not preclude the learner from inferring

the exact rule, something that would be impossible if a deterministic labeling

is assumed. This type of situation is very common in classification problems

and can be handled in an effective way by assuming that a probabilistic label-

ing takes place, although, in fact, a deterministic labeling was made but was

corrupted by some level of noise. In this case, for a given level of noise, there

is a bidirectional correspondence between each choice of γ and each concept C,

and the conditional probability in expression (2.1) can be written Pm
L (T |C),

representing the probability of the labeling observed conditioned on the fact

that the target concept is C.

The deterministic case is simply the special case where the function

γ(d) is 1 for all instances in C and 0 for the remaining ones. In fact, even though

a unified approach can be defined for the more general case it is sometimes useful

to use the knowledge that a given problem is deterministic.

2.3 Formal Learning Models

2.3.1 Identification in the Limit

One of the first formal treatments of the problem addressed here is

due to Gold [30]. He studies the problem of identifying a given language given

a sample of strings in that language. The learner is presented with an infinite

sequence of strings in some language L that is known to belong to a given class

of languages.

In Gold’s model, after each string is presented, the learner makes a

guess of which language the strings belong to. The learner is said to identify in

the limit a given language if, after a finite time, the guesses are all the same,

equal to L and this behavior happens for all possible orders in which the strings

can be presented.

Identification by enumeration is the proposed method to perform iden-

tification in the limit. The method lists all languages in the class in some order.
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At any given time, the learner outputs as a guess the first language that is con-

sistent with the data observed so far. This method can always be used if is it

possible to enumerate the languages and if an effective test for membership in a

language exists. In practice, it is limited to relatively simple problems because,

in general, it requires exponential time.

The main results of Gold’s work on the classes of languages that are

identifiable in the limit are essentially negative. In particular, he proved that

no family of languages that contains all languages of finite cardinality and at

least one of infinite cardinality is identifiable in the limit.

2.3.2 PAC-Learning

Gold’s approach can be too pessimistic because it requires the learning

algorithm to output an hypothesis that is exactly equal to the target concept

for all possible ways of presenting the data. Valiant’s proposed a more useful

definition of learnability, the Probably Approximately Correct (PAC) model.

This model not only allows the learner to output an hypothesis that is only a

close approximation to the target concept, but also opens the possibility that

the learner will output, in some cases, an hypothesis that is completely wrong.

This is necessary because, in the probabilistic setting used by Valiant, there is

a finite chance that the learner will have access to a training set that is totally

non-representative of the target concept. In these conditions, the learner has

no way of generating an hypothesis that is a good approximation to the target

concept.

In the PAC-learning framework, it is assumed that the labeling is

deterministic and the training and testing instances that are presented to the

learner are chosen according to a given probability distribution defined over

the input space, PD(d). This eliminates the hopeless case where the learner is

forced to learn under one probability distribution and is tested under a totally

different distribution. The probability distribution PD(d) is extended to apply



CHAPTER 2. INDUCTIVE BIASES AND COMPLEXITY 24

to subsets of the input space, S ∈ D, in the standard way:

PD(S) =
∑

d∈S

PD(d) (2.2)

PAC-learnability can now be defined formally:

Definition 1 A family of concepts C, is said to be PAC-learnable with sample

complexity m if for all probability distributions PD(d) and all concepts C ∈ C
there exists a learner that for most training sets of size m, outputs an hypothesis

H that is a close approximation to C.

H is called a close approximation to C if

PD(H∆C) ≤ ǫ (2.3)

where H∆C is the symmetric difference of H and C, defined as

H∆C ≡ (H ∩ C) ∪ (H ∩ C) (2.4)

The phrase H is a good approximation to C for most training sets of size m

means that

P{T |PD(H∆C) ≥ ǫ} ≤ δ (2.5)

Expression (2.5) states that the probability of observing a training set ({d1, . . . dm}, t)
that causes the algorithm to generate an hypothesis that is not a close approx-

imation to C is smaller than a given constant, δ. In general, the size of the

training set, m, is a function of the parameters ǫ and δ. Learning is of little

interest if very large training sets are required. Particularly interesting are fam-

ilies of concepts that are polynomial sample PAC-learnable, that is, families of

concepts for which the size of the training set required to satisfy definition 1 is

polynomial in 1/ǫ and 1/δ.

It will be assumed in the rest of this work that the training sets are

generated with a procedure similar to the one defined in the PAC framework.

More precisely, instances in T are generated according to an underlying proba-

bility distribution PD(d). However, the labeling of the examples in the training

set will, in general, be obtained using the probabilistic labeling defined by the

function γ(d) described in section 2.2.
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2.4 Equivalence of all Biases

The equivalence of all biases (and consequently, of all learning algo-

rithms) in the absence of a context is well known [35, 60]. Schaffer [88] presented

a very general argument for this equivalence in the form of a conservation prin-

ciple.

He restricts the analysis to single concept learning problems in discrete

domains. Since the domain is discrete, there will be a finite number of possible

attribute combinations, or objects in D. A learning situation in a particular

domain is defined by a triple (PD, γ,m), where PD is the probability distribution

according to which the training sets are generated (as in section (2.3.2)), γ

defines the probability distribution that defines the way the labels are assigned

to instances in the domain (as in section (2.2)) and m is, as before, the size of

the training sets.

The generalization performance of a learner L in learning situation S,

GPL(S) is defined as the average accuracy of the generated hypothesis when

applied to examples not present in the training sets minus the constant 0.5.

The subtraction of this constant takes into account the fact that a classification

scheme that randomly guesses the class obtains an average generalization ac-

curacy of 0.5. A generalization performance of 0.1 signifies, therefore, that the

generated hypothesis will correctly classify, in the average, 60% of the unseen

instances, sampled according to the probability distribution P (d). Given this

definitions, Schaffer shows that

∫

γ
GPL(PD, γ,m) = 0 (2.6)

for any learning algorithm L where the integral is computed over all possible

choices for γ. Since γ defines the target concept, this result states that the

sum over all concepts of the generalization performance is 0 for any learner L.

If the labeling is deterministic then there are only 2|D| possible choices for γ

(each defining a different concept) and the integral in expression (2.6) becomes
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a summation over all possible concepts

∑

γ

GPL(PD, γ,m) = 0 (2.7)

The fact that this sum equals 0 means that it is impossible for a learning

algorithm to improve its performance in a particular set of concepts without

showing decreased performance in another set. Some interesting examples of

possible and impossible learners are given in [88].

However, not all possible concepts are equally likely to appear in the

real world. In fact, if there were no regularities, learning would be fundamen-

tally impossible because, no matter how large the training sets, there would

be no basis to infer any particular rule. The statement that not all concepts

are equally likely is equivalent to the assumption that there exists a probability

distribution PC(C) that selects the target concepts from the total universe of

possible ones. In this case, expressions (2.6) and (2.7) do not apply because the

learner can perform well in concepts that are very likely to appear and badly

in concepts that are unlikely to be the target. If PC(C) exists the learner can

use Bayes rule to select the hypothesis that is more likely to perform well in

unseen instances.

2.5 The Application of Bayes Law to Hypothesis Se-

lection

Assume that the target concept is chosen according to some probability

distribution PC(C), defined over some family of concepts, C. Bayes law states

that the probability that a given hypothesis H is equal to C, the target concept,

is given by

PP (H|T ) =
Pm

L (T |H)PC (H)
∑

H Pm
L (T |H)PC (H)

(2.8)

where Pm
L (T |H) is, as before, the probability of the observed training set con-

ditioned on the fact that the target concept is equal to H. The maximum a

posteriori (MAP) rule says that the learner should select the hypothesis that
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maximizes the posteriori probability PP (H|T ). The MAP rule maximizes the

probability that the learner will pick the correct hypothesis and is the best that

can be done if the learner has to output a single hypothesis in H.1 If the labeling

is deterministic, then Pm
L (T |H) is either 1 for hypotheses that are consistent

with the training set or 0 for hypotheses that are inconsistent. In this case, the

selection of the best hypothesis is made based only on the value of PC(H).

Expression (2.8) can only can be used if the a priori probability dis-

tribution for the concepts in C, PC(C) exists and is known. This is usually not

the case. A variety of different but closely related approaches justifies the at-

tribution of probabilities to the concepts in C (and therefore to the hypotheses

in H) in different ways. The selection of these prior probabilities is the main

subject of section 2.6.

2.6 Searching for Simple Representations

The problem with the application of expression (2.8) is that the prob-

ability distribution that generates the target concepts is usually not known or

not accessible and has to be approximated using general rules that are as uni-

versal as possible. How Occam’s razor can be used to perform this function is

the subject of this section.

2.6.1 Occam’s Razor

William of Occam’s2 famous principle non sunt multiplicanda entia

praeter necessitatem literally means entities should not be multiplied unneces-

sarily. However, it is usually interpreted as stating that the simplest theory

that fits the available data is the one more likely to predict correctly the future.

This statement can be viewed as a general rule for the selection of a probability

1The Bayes optimal algorithm uses the probabilities computed for each hypothesis in H

using expression (2.8) to perform a weighted vote. However, the classification obtained may
not correspond to any hypothesis in H and, therefore, the Bayes optimal algorithm does not
fit in the current framework.

2William of Ockham (1285-1349), usually spelled Occam.
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distribution that approximates PC(C).

Occam’s razor is eminently reasonable and, at first sight, hardly needs

a justification. Both statements “the Sun rises every morning” and “the Sun has

risen every morning until today but will not rise tomorrow” fit all the available

data. In the absence of further information, they would predict equally well

the future. However, even in the absence of other knowledge, one is more

tempted to accept the former than the later, if nothing else because the later

is unnecessary complex. Physicists have long aimed for the most simple and

elegant theories and have, to a remarkable degree, succeeded in making good

predictions using these theories.

The problem lies in the fact that, in general, the complexity measures

used are not unique and depend on the particular approach that is used to

describe the hypotheses. What is simple under one representation scheme may

be very complex under another and the complexity of an hypothesis depends

heavily on the primitives used to express it. It is a remarkable fact that there

exists a complexity measure that is, in a sense, universal.

2.6.2 A Universal Complexity Measure

Kolmogorov, Solomonoff and Chaitin arrived, in an independent way,

at the definition of what is usually known as Kolmogorov complexity.3 A full

discussion of the concepts involved in the definition of this complexity measure

is outside the scope of this introduction. The reader is referred to one of the

existing reviews of the subject [56] for a more complete treatment. The Kol-

mogorov complexity theory defines a universal complexity measure for finite

binary strings. Since any hypothesis in a given domain can be encoded as a

finite binary string, the existence of a universal complexity measure together

with the application of Occam’s razor seems to solve the problem of defining

the prior probabilities for the concepts in C. This is not the case because a

direct use of the Kolmogorov complexity as the guiding principle is not possible

3Some authors have proposed the use of the somewhat awkward but precise Kolmogorov-

Solomonoff-Chaitin complexity, but this is the most commonly accepted terminology.
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since it is a non-computable function. Nonetheless, the theory opens the way

to approaches that approximate this universal probability distribution.

Let M be a Turing machine with a one way output tape, a one way

input tape and a two-way work-tape and let the input alphabet for this machine

contain only zeros and ones (no blanks). These are the self-delimiting Turing

machines, because the set of inputs for which each machine stops if prefix-free,

no string being a prefix of any other string. A string p is called a program

for M if M stops exactly after scanning the last bit of p. The self-delimiting

Kolmogorov complexity, (hereby abbreviated to Kolmogorov complexity4) of a

binary string s with respect to machine M , KM (s) is given by the length of

the smallest input string that will cause M to write string s in the output

tape. Now, if M is chosen to be a universal Turing machine the Kolmogorov

complexity with respect to M is called simply the Kolmogorov complexity and

is defined as K(s). Kolmogorov [51], Solomonoff [95] and Chaitin [20] proved

that, for any Turing machine M

K(s) ≤ KM (s) + k for all finite strings s (2.9)

where k is a constant that depends only on M . This result is important be-

cause it shows that each finite string has a complexity that does not depend

(except for the constant factor) on the particular approach used to describe

it. Using the above definitions, it is possible to define a probability distribu-

tion that attributes a certain probability to any string s, the (non-computable)

Solomonoff-Levin distribution:

PSL(s) =
∑

p:M(p)=s

2−|p| (2.10)

where the sum is over all programs p that are an encoding for the string s and

|p| is the length of program p. It can be shown that this expression properly

defines a probability distribution5 over the set of all finite strings. Further-

4There are two Kolmogorov complexity measures that differ by a logarithmic factor. The
one used here has some properties that are required in the sequence.

5More precisely, PSL(s) defines a semi-measure over the space of strings and can be used
to define a probability distribution after appropriate normalization. However, it can used
directly in (2.8) because all hypotheses are discounted by the same factor.
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more, this probability distribution is universal in the sense that, for any com-

putable probability distribution µ(s), there exists a positive constant c such that

PSL(s) ≥ cµ(s). This means that, given enough data, the application of Bayes

law using the Solomonoff-Levin distribution as the prior distribution is guar-

anteed to converge to the right solution. Naturally, a larger training set may

be needed than in the case where the exact distribution is available. However,

the fact that PSL(s) is off by, at most, a constant factor, guarantees that the

extra amount of data required is not large. In fact, not only is this approach

guaranteed to converge to the true solution, but it will converge faster than any

other method up to a constant multiplicative factor. Levin has shown that the

Solomonoff-Levin distribution and the Kolmogorov complexity are related by

PSL(s) = e−K(s)+O(1) (2.11)

Therefore, using the Solomonoff-Levin distribution as the prior probability is

equivalent to the assumption that more complex hypothesis (as measured by

the Kolmogorov complexity of the corresponding encodings) are less likely to be

the right answer. This is a very general and elegant justification of the Occam’s

razor approach. Regrettably, using directly this probability distribution as the

prior distribution is not a feasible approach because of several problems. First

and foremost, the Solomonoff-Levin distribution is non-computable, because its

computation implies the solution of the halting problem which is undecidable.

It can be approximated from below, but there is no way to know how close

the approximation is. Furthermore, even though the convergence results are

extremely important in the limit of long strings, for simpler problems the con-

stant factors involved may make it a sub-optimal solution if there is any other

way to better approximate the true probability distribution, PC(H).

The underlying ideas can, however, be applied in more restricted con-

texts, with very good results. The Minimum Description Length Principle can

be viewed as a way to choose between alternative hypotheses using an approx-

imation to the Solomonoff-Levin distribution.
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2.7 The Minimum Description Length Principle

Rissanen’s Minimum Description Length (MDL) Principle [80, 81] can

be viewed as a way to select hypotheses in a way that approximates the results

obtained using Bayes law and the Solomonoff-Levin distribution. If we take the

negative logarithms of expression (2.8) we get

− log2 PP (H|T ) = − log2 Pm
L (T |H) − log2PC(H) + log2

∑

H

Pm
L (T |H)PC (H)

(2.12)

Since T , the training set, is fixed, and the last term does not depend on H, the

maximum of PP (H|T ) is obtained by minimizing log2 Pm
L (T |H) + log2 PC(H).

Now, if the hypotheses are encoded using an efficient self-delimiting code, the

Kolmogorov complexity can be approximated by the length, in bits, of the string

that describes the encoded hypothesis, Khyp(s). The Solomonoff-Levin distri-

bution is now approximated (up to an irrelevant constant factor) by choosing

PC(H) = 2−Khyp(H) and the term − log2 PC(H) is simply the length of the

description of H using this encoding scheme.

In general, a given hypothesis will not match exactly the training set

data. Let E(T,H) be a string that describes the exceptions to this hypothesis

present in the training set. E(T,H) can also be encoded using some efficient

self-delimiting encoding scheme. If this is the case, the same reasoning can be

applied and Pm
L (T |H) will be given by 2−Kexc(E(T |H)). The maximum value of

PP (H|T ) is therefore obtained by selecting the hypothesis H that minimizes

Khyp(H) + Kexc(E(T,H)) (2.13)

This is the minimum description length (MDL) principle of Rissanen. The

MDL principle can be viewed as a way to replace the need to estimate the a

priori probability of an hypothesis by the somewhat more tractable problem

of selecting the hypothesis that minimizes the total code length of expression

(2.13). Naturally, one has to provide algorithms to encode both hypotheses

and strings that describe exceptions. To keep expression (2.13) computable,
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the encoding schemes cannot be based on Turing machines but on techniques

that are well adapted to the particular representations used. In any case, for

the approach to be justifiable by the arguments described above, the algorithms

have to generate codes that are compact, and, in some sense, close to the

optimal.

If the labeling is deterministic, Pm
L (T |H) is either 1 or 0 and the

maximization of (2.8) is equivalent to the selection of the consistent hypothesis

with higher a-priori probability, i.e., the hypothesis H that minimizes

Khyp(H) (2.14)

In practice, it turns out that in many problems the labeling is almost deter-

ministic but not exactly. Furthermore, even in deterministic problems, the

representation scheme used may not be powerful enough to represent the ex-

act hypothesis that maximizes (2.8). In these cases, it may happen that an

expression that is somewhere between expressions (2.13) and (2.14) will actu-

ally give the best results. The most flexible algorithms will therefore select the

hypothesis that minimizes

αKhyp(H) + Kexc(E(H)) (2.15)

where α is a parameter between 0 and 1 that can be adjusted to maximize the

performance. Believers in the MDL principle may find that the introduction of

this extra parameter goes against the philosophy underlying the MDL principle

but, in practice, this can be viewed as a way to compensate for inefficiencies of

the coding scheme. It can also be viewed as a way to customize the algorithm

for a particular application where considerations other than overall performance

may be at play. For instance, if accurate performance in the training set is highly

desirable, even at the expense of some deterioration in the overall accuracy, then

α should be chosen smaller than 1. In the limit, when 1 >> α the hypotheses

chosen will perform perfectly in the training set (because of the high relative

weight of the second term) but may be overly complex to perform well in the

test set.
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2.7.1 A Prefix Free Encoding Scheme for Graphs

The computation of Khyp(H) depends on the representation selected

and the encoding scheme used. However, even though different representations

will use different encoding schemes, most of them share the need to describe

a graph. The encoding proposed here for graphs is inspired on the encoding

techniques proposed by Quinlan and Rivest [79] to encode decision trees.

The simple version presented here assumes that each node has a known

number of outgoing edges. A variation that can handle the more general case

will be presented in the chapters that require it.

Let G be a directed graph with one distinguished node. Assume that

the outgoing edges of each node are ordered in some arbitrary, but fixed, way.

For example, if each node has two outgoing edges, one labeled with a 0 and the

other labeled with a 1, the edge labeled with 0 will always be considered before

the edge labeled with 1. The structure of the connected part of this graph (i.e.,

the set of nodes that can be reached from this special node) can be encoded

using the following encoding scheme:

• A node that was never visited before is encoded starting with 1 followed

by an encoding of the nodes reached by following each of the outgoing

edges.

• A node that was visited before is encoded starting with 0 followed by a

reference to the (already described, at least partially) node.

Following Quinlan and Rivest, the issues related with the use of non-

integral numbers of bits are ignored in the computation of encoding length

because only a measure of complexity is desired and an actual transmission of

the code does not have to be accomplished. As an example, the graph of figure

2.1 is encoded using the following encoding:

(1 (1 (1 (1 0 00 0 11) 0 00) 0 01) 0 10)

The total length of this encoding is 19 bits. Parentheses and spaces were used

only to increase readability and do not belong to the actual encoding. A simple
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Figure 2.1: A 4 node graph with two outgoing edges for each node

binary code was used to make references to nodes described previously. The

number of bits required for each reference is known in advance because the

number of nodes already visited is known at each point in time.

2.7.2 A Prefix Free Encoding Scheme for Exceptions

The computation of Kexc(E) where E is a string that describes the

exceptions is, on the other hand, essentially independent of the representation

used.

The exceptions will be encoded using strings of 0’s and 1’s. The en-

coding of this type of strings follows closely the encoding used by Quinlan and

Rivest [79] where the 1’s will indicate the location of the exceptions. In general,

these strings will have many more 0’s than 1’s. Assume that the strings are of

length m, known and that there are k ≤ m 1’s in the strings.

The string can be encoded by first describing the value of k, which re-

quires log2(m) bits and then describing which of the strings with k 1’s describes

the exceptions. Since there are





m

k



 such strings, the description length of
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the description will be given by

Kexc(E) = log2(m) + log2





m

k



 (2.16)

Using Stirling’s formula to approximate the second term in (2.16)

Kexc(E) = mH(
k

m
)+

log2(m)

2
− log2(k)

2
− log2(m − k)

2
− log2(2π)

2
+log2(m)+O(

1

m
)

(2.17)

where H(p) is the usual entropy function

H(p) = −p log2(p) − (1 − p) log2(1 − p) (2.18)

2.8 Computational Complexity of Hypothesis Selec-

tion

The previous section described the theoretical results that support the

selection of the hypothesis of minimal complexity as the most promising one.

However, these results do not address the problem of how the learner actual

selects such an hypothesis. So, even if the learner is using the MDL principle

as the guiding criterion for selecting one of the possible hypotheses, the task of

designing an algorithm that actually performs the selection of the hypothesis

that has minimal total encoding length is still open.

For many problems of interest, this procedure is of high computational

complexity. In fact, for almost all the representation schemes addressed in this

work, the problem of selecting an hypothesis of minimum complexity belongs

to a class of problems that are believed to be very difficult to solve efficiently,

the NP-complete class. A complete explanation of the concepts involved in

the definition of this complexity class is outside the scope of this work and the

reader is referred to [27] for an excellent review of the subject.

The following lemmas show that the computational complexity of the

problems addressed in this dissertation is high. Since these results are not

critical for the exposition that follows, only brief references are made to the

respective proofs.
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Lemma 1 It is NP-complete to determine if a two-level threshold gate network

consistent with a given training set and with less than k gates exists.

Proof: this problem is one of the versions of the loading problem proved NP-

complete in [45] and [11].

Lemma 2 For a fixed ordering of the variables, it is NP-complete to determine

if a reduced ordered decision graph that is consistent with a given training set

and has less than k nodes exists.

Proof: obtained by a reduction from graph K-colorability in [97].

Lemma 3 It is NP-complete to determine if a finite state machine that has

less than k states and is consistent with a given training set6 exists.

Proof: made by a reduction from the satisfiability problem with 3 variable

clauses (3-SAT) in [32].

The problem of selecting the minimum multi-level Boolean network

that is consistent with a given training set is also of high complexity. It is

known to be in NP, because a solution can easily be checked for correctness

in polynomial time. However, no published proof that it is NP-hard is known

to the author, although it looks unlikely that a deterministic polynomial time

algorithm exists for this problem unless P=NP.

6In this case, the training set consists of input/output sequences
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Chapter 3

Two-Level Threshold Gate

Networks

3.1 Related Work

Threshold gate networks have been the focus of an increasing interest

in the research community in the last few years. In part, this interest is due to

theoretical work that shows that threshold gates are more powerful than simple

Boolean gates, in the sense that polynomial size, bounded level, networks of

threshold gates can implement functions (and therefore represent concepts) that

require unbounded level networks of purely logic gates. For example, it has been

shown that functions like multiple-addition, multiplication, division and sorting

can be implemented by polynomial-size threshold circuits of small constant

depth [93, 94]. In particular, compact two-level threshold gate networks can

represent many interesting concepts that require exponentially large two-level

Boolean networks.

Extensive research in the field of neural networks has also created inter-

est in algorithms for the synthesis and optimization of threshold gate networks.

The more popular neural network architectures use threshold gate models that

differ substantially from the ones studied here. In the first place, they assume
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the weights and the threshold value for each gate are defined by real numbers of

arbitrary precision. In the second place, the most commonly used neural net-

work learning algorithms assume that the function implemented by a threshold

gate is continuous and differentiable. In the most commonly used models, the

output of each gate is given by

fact

(

∑

i

(wixi) − w0

)

(3.1)

where fact, the activation function, is continuous and differentiable. A com-

monly used activation function is given by

fact(x) =
1

1 + e−x
(3.2)

plotted in figure 3.1 The most popular leaning algorithms derive the input (or

0.25

0.5

0.75

-5 -4 -3 -2 -1 0 1 2 3 4 5

1/(1+exp(-x))

Figure 3.1: A typical activation function

connection) weights for each of the gates in the network by minimizing, with

respect to the connection weights, an error function defined over the weight

space. For a single output network a typical error function is given by

ǫ =
∑

j

(tj − oj)
2 (3.3)

where tj is the desired value for the output when instance j is presented (given

by the j label in the training set) and oj is the value computed by the net-

work. The partial derivatives of expression (3.3) with respect to each one of

the weights in the network can be easily obtained and gradient descent tech-

niques can be used to obtain a local minimum of the error in weight space.
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Many algorithms based on this technique have been proposed [8, 41, 52, 84]

and used with varying degrees of success in a variety of problems. These al-

gorithms, however, do not derive the architecture of the network, but only the

connection weights. Constructive algorithms like the cascade-correlation [24]

and others [25, 5] derive the architecture by modifying the error minimization

strategy [39] and allowing for new units to be created if the current solution

is not satisfactory. Another possibility is to prune the network obtained in an

effort to minimize the overall complexity of the classifier [55]. In all these ap-

proaches, the selection of a minimal complexity network remains secondary to

the minimization of (3.3).

All these algorithms use standard optimization techniques to select

a connection weights combination that is a local minimum of (3.3). In many

cases, these techniques are unable to find a solution that performs adequately

in the training set, specially if the number of gates in the network is close to the

minimum. This is a serious limitation of neural network training algorithms and

limits the accuracy of the generalization performed by neural network classifiers

in some problems.

This chapter describes a new formulation for the problem of selecting

a minimal two-level network of threshold gates that matches exactly the data

in the training set. The threshold gate model used is more restrictive than the

one used in neural networks, in that both the weights and the threshold value

in expression (3.1) are forced to be integer valued and the activation function

is given by:

fact(x) =







0 if x < 0

1 if x ≥ 0
(3.4)

Expression (3.4) is equivalent to (1.1) and defines the function implement by

a threshold gate in this model. The algorithm described here assumes that

the labeling of the examples is deterministic, i.e., that no classification noise is

present. The class of networks generated by the algorithms is much more re-

stricted than what can be obtained by using neural network training algorithms.

However, by using this restricted representation and a different approach, the
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solution is guaranteed to match the training set data, a problem that is, in

itself, NP-complete to solve using neural network type algorithms [11, 45].

The selection of the minimal complexity solution is still an NP-complete

problem, but any solution generated by the algorithm classifies correctly, by

construction, all the instances in the training set. The networks generated are,

in many cases, much smaller than the ones that can be obtained using any of

the neural network algorithms described above. This approach is therefore an

interesting alternative in problems that do not require real valued weights and

map, in a natural way, into a two-level threshold gate network representation.

Previous work closely related to the approach described here is limited.

Muroga [61] makes a good exposition of the properties of functions implemented

by threshold gate networks and proposes algorithms for their synthesis but his

approach is limited to functions of a very small number of variables and is

heavily based on the use of pre-computed tables for this type of functions.

3.2 Problem Formulation

The formulation developed for the problem of selecting a minimal com-

plexity two-level threshold gate network is inspired on concepts and techniques

developed for the synthesis of minimal two-level Boolean networks. Concepts

like cubes and covers are generalized to reflect the function implemented by

threshold gates. For the benefit of the reader unfamiliar with these concepts,

these definitions and concepts are introduced before the corresponding gener-

alizations. For clarity, the concepts and algorithms involved are first defined

for the case where the threshold gates are restricted to have weights in the set

{−1,+1}. Section 3.3.3 describes how the formulation can also be applied to

the general case by applying a simple problem transformation.

3.2.1 Cubes and Pyramids

A literal is defined to be either a variable or its negation. A cube is a

conjunction of k literals (1 ≤ k ≤ N), where no two literals corresponding to
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the same variable appear. A cube with N literals corresponds to a minterm,

a point in the input space. A cube c1 is said to contain another cube c2 if

c2 ⇒ c1, i.e., if the truth values defined in c2 make c1 true. This is equivalent

to stating that all points in the input space contained in c2 are also contained

in c1. If c1 6= c2 such a containment is proper. The dimension of a cube c is

the number of variables not present in c. The distance between two cubes, c1

and c2, δ(c1, c2) is the number of variables that appear negated in one cube and

non-negated in the other. For example, x1x3x4 is at distance 2 from x1x2x4.

A cube is identified with the boolean function implemented by an and

gate. Consider now a threshold gate with a function defined by (3.1) and (3.4),

with weights in the set {−1,+1}. Assume, without loss of generality, that the

gate implements a function of the first k variables in an N -dimensional input

space. Let Vmax be the maximum value that the sum
∑

i wixi can take for a fixed

value of the weights and cube c be defined by the literals c1 . . . ck where ci = xi

if wi = +1 and ci = xi if wi = −1. Consider now a minterm z = z1 . . . zk . . . zN .

This minterm will turn the gate on iff no more that Vmax −w0 literals in z are

different from the corresponding literals in c, i.e., if δ(c,m) ≤ Vmax − w0. Let

h = Vmax − w0. A pyramid is defined as a pair (c : h), where c is a the apex

cube and h is a non-negative integer value, the height. The minterms contained

by a pyramid are at distance h or less from the apex cube. Figure 3.2 shows a

graphical representation of the minterms covered by a cube and a pyramid.

x

x

x

3

2

1

Figure 3.2: Cube x1x2 and pyramid (x1x2x3 : 1)
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3.2.2 Properties of Pyramids

The distance between a cube c and a pyramid p = (cp : h) is given by

max(δ(c, cp)−h, 0). This distance measure corresponds to the intuitive notion of

distance in Boolean spaces and is equivalent to the minimum distance between

a minterm in p and cube c. For example, cube x1x2 and pyramid (x1x2x3 : 1)

in figure 3.2 are at distance 1.

A pyramid p is a prime pyramid, relatively to some boolean function

f , iff there is no other pyramid contained in the fon
⋃

fdc set that properly

contains pyramid p. Formally, p = (c : h) ⊆ (fon ∪ fdc) is prime with respect to

f iff

∀(c′ : h′), (c′ : h′) ⊃ (c : h) ⇒ (c′ : h′) 6⊆ (fon ∪ fdc) (3.5)

Any pyramid p = (c : h) has a complement pyramid, p = (c̃ : k −
h − 1), where k is the number of literals in c and c̃ is the cube obtained by

complementing all such literals. For any pyramid p, pp = ∅ and p∪p = {0, 1}N .

3.2.3 Covers and M-covers

A set of cubes S is a cover for a Boolean function f if all points in

fon are covered by at least one cube in S and no point in foff is covered by a

cube in S. A two-level Boolean network that implements a function compatible

with f can be obtained directly from a cube cover. Each cube corresponds to

an and gate and the outputs of the and gate feed the second level or gate. The

concept of cube cover of a boolean function can be generalized in a way that

preserves the relation between a cover and a two-level implementation of f but

allows for the use of general threshold gates in both the first and second levels.

A set of pyramids is a pyramid cover for a function f if every minterm

in fon is contained in at least one pyramid and no minterm in the foff set is

contained in any pyramid. This concept of cover can be further extended to a

more general one that leads to implementations where the second level gate is

also a general threshold gate instead of an or gate. A bag of pyramids, B, is

an M-cover (M ≥ 1) for a function f iff all minterms in the fon set are covered
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by at least M pyramids and all minterms in the foff set are covered by at most

M − 1 pyramids in B.

Figure 3.3 shows how pyramids p1 = (x1 x2 x3 : 2) and p2 = (x1x2x3 :

1) are a 2-cover for the function f defined by fon = {x1x2x3, x1x2x3, x1x2x3},
foff = {0, 1}3\fon and fdc = ∅.

f p p1 2on

Figure 3.3: 2-cover for function f .

A two-level network of threshold gates that implements f can be ob-

tained directly from an M-cover by simply allocating one threshold gate for

every pyramid in B and connecting them to a gate in the second level with all

weights equal to 1 and a threshold value of M .

3.2.4 Expanding and Reducing Pyramids

Algorithms for the synthesis of two-level Boolean networks make ex-

tensive use of the ability to incrementally change a cube c into a cube c′ in such

a way that c′ properly contains c. This operation, the expand operation, is per-

formed by simply dropping one of the literals present in cube c. The opposite

operation, the reduce operation, is also important and is performed by adding

one new literal to the set of literals in the original cube.

The definition of operations with similar properties but that manip-

ulate pyramids instead of cubes is important because it facilitates the use of

approaches based on Boolean networks minimization techniques. The expand

operation, applied to pyramids, can be performed by applying one of the two

following changes to the pyramid p = (c : h):



CHAPTER 3. TWO-LEVEL THRESHOLD GATE NETWORKS 44

1. Expand the apex cube, by dropping one literal from c. For example, the

pyramid (x1x2x3 : 1) can be expanded to pyramid (x1x3 : 1):

(x1x2x3 : 1)
Operation 1

(x1x3 : 1)

Figure 3.4: Expansion of a pyramid by expansion of the apex cube

2. Reduce the apex cube, by adding one literal to c and increase the pyramid

height, h. For example, pyramid (x1x3 : 1) can be expanded to pyramid

(x1x2x3 : 2):

(x1x3 : 1)
Operation 2

(x1x2x3 : 2)

Figure 3.5: Expansion of a pyramid by increasing the pyramid height

The reduction operation can be performed by either applying the reverse oper-

ations or by expanding its complement pyramid and complementing the result.
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The reader may easily verify that the expand (reduce) operation does indeed

generate a pyramid that properly contains (is contained) in the original one.

The expand operation can be used to obtain a prime pyramid (with

respect to some function f) by expanding a pyramid until no further expansion

operations can be applied without causing some minterm in foff to be covered

by the pyramid.

3.3 The Search Algorithm

3.3.1 The Encoding Scheme

Given the correspondence between M-covers and the two-level net-

works with unit weights discussed above, it is natural to chose an encoding

scheme that simply lists the pyramids contained in a given M-cover. An M-

cover is therefore encoded in the following way:

• List each pyramid in the M-cover by encoding the value of h followed by

a bit string with N⌈log23⌉ bits that describes the apex cube.

• Terminate the list with the encoding of an integer that is an impossible

value for h (e.g., N) followed by an encoding of the value of M .

A description of an M-cover with k pyramids using this encoding scheme takes

k(log2 N + N⌈log23⌉) + log2 N + log2 k bits. Furthermore, this encoding has

the characteristic that its length increases linearly with the number of pyra-

mids in the cover. The minimization of expression (2.14) using this encoding

scheme is equivalent to the selection of an M-cover of minimal cardinality for

the incompletely specified function f defined by the training set.

3.3.2 A Local Search Algorithm

Algorithms for the minimization of two-level Boolean gate networks

like, for instance, espresso [14], perform the search for a cover of minimal car-

dinality by expanding the cubes in a solution and then solving a set covering
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problem using standard techniques. A similar approach could be used here if

the objective was to select a pyramid cover (i.e., a 1-cover) for a given function.

In fact, the expand operations described above can be used to first expand

maximally all pyramids in a given cover. Such an approach was actually imple-

mented [65] but is restricted to the selection of 1-covers. When the objective

is to select an M-cover, M > 1, these techniques are no longer useful, because

the solution does not, in general, consist of prime pyramids.

The algorithm proposed here to perform this selection is, instead,

based on a tree search algorithm that searches for a better solution by per-

forming incremental changes in an existing one. The algorithm is started with

a 1-cover that is obtained by simply listing all the minterms that correspond to

the positive instances in the training set, the fon set. The algorithm described

in figure 3.6 then searches for an M-cover of minimal description length. The

FindCover()

M = 1

Msaved = 1

RemovePyramidFromCover()

repeat

if ChangeCover(M) = False Didn’t find solution

if Msaved 6= M

return No solution found for this value of M

M := M + 1

else

SaveSolution() Best solution found so far

RemovePyramidFromCover()

Msaved := M

until False

Figure 3.6: Searching for a small M-cover.
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ChangeCover procedure in figure 3.7 changes the pyramids in S in such a

way that the reduced bag of pyramids represents a new M-cover. This is ac-

complished using a search tree. To each node ni in this tree corresponds one

bag of pyramids, bi. Each node in the search tree is obtained by changing one

pyramid from the bag that corresponds to the parent node. Nodes that have

a smaller number of fon points covered less than M times are explored first by

the ChangeCover procedure until the maximum tree size is reached or a bag

of pyramids that is an M-cover for f is obtained.

ChangeCover(M)

n0 := BuildTreeRoot() Create root with existing bag

ExpandTreeNode(M,n0)

for j := 1 to MaxTreeSize

ni := PickBestNode() Select node with smaller number of

non-covered minterms

if UncoveredMinterms(ni) = 0 An M-cover was found

return TRUE

ExpandTreeNode(M,ni)

return FALSE

Figure 3.7: Transforming a bag of pyramids into an M-cover

The expansion of a node in the search tree is performed by the algo-

rithm described in figure 3.8. After selecting one of the fon minterms covered

less than M times, the algorithm selects the kmax pyramids closer to it as the

candidates, where kmax is a parameter that controls the branching factor of the

search tree. Function BuildSets creates the son set by adding minterm z to

the list of fon minterms covered by p and not covered more than M times. The

soff set consists of all the minterms in the foff set that are already covered by

M − 1 pyramids but not by p.

Function FindCoveringPyr derives a pyramid covering all minterms
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ExpandTreeNode(M,ni)

z := PickOneUncoveredMinterm(ni)

while k < kmax

pold := ChooseNextPyr(z) Select closest pyramid

(son, soff) := BuildSets(M,ni, pold) Build on and off sets

p :=FindCoveringPyr(son, soff , pold)

if p 6= ∅ Pyramid exists

nj := CreateChildOfNode(ni, bi ∪ {p} \ {pold}) Create child with

modified bag

Figure 3.8: Expanding a node in the search tree.

in the son set and none in the soff set. This function uses the expand and

reduce operations described in section 3.2.4 to select the pyramid that satisfies

this definition. The algorithm starts by identifying sred, the set of minterms in

son already covered by the pyramid. The pyramid is first reduced with respect

to this set, i.e., it is reduced as much as possible while still covering all the

minterms in sred. It is then expanded until either all minterms in the son set

are covered or a prime is obtained. If the second condition holds and the first

doesn’t, it reports failure. Otherwise, it returns the expanded pyramid.

Figure 3.9 illustrates, in an hypothetical two-dimensional projection

of the space, how a search for a 1-cover takes place. The ChangeCover

procedure receives a bag of pyramids that does not cover some of the minterms

in fon. At each node in the search tree, one of these minterms is selected and

the nearest pyramids are expanded in such a way that the selected minterm is

now covered.
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1
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A

B

Select minterm 1

Select pyramid A

Select pyramid B

A

A A

B

B

B

Select 

pyramid A

Select minterm 2

2
No solution

Solution

f     minterms

f     mintermson

off

pyramids

Select minterm 2

Figure 3.9: A schematic view of the ChangeCover procedure

3.3.3 Threshold Gates With Larger Weights

All the concepts, encodings and algorithms described in the previous

sections assume that the input weights for the threshold gates in the solution

are either +1 or -1. This section describes how the search for a solution with

larger integer weights is equivalent to a search for a pyramid in a space of

higher dimensionality. Consider a function f of N variables, {x1, x2..., xN}
defined by its fon and foff sets. Let v be an integer and f v be a function of

vN variables defined by its f v
on and f v

off sets. Every minterm in f v
on (f v

off) is

obtained by replicating v times every literal in the corresponding minterm of

fon (foff). For example, if v = 2 and N = 3 the minterm x1x2x3 is converted

to x11x12x21x22x31 x32 . Now, let f be a boolean function of N variables such

that f is implementable by a single threshold gate with integer input weights

{w1, w2...wk}. Let v be the maximum value of | w1 |, | w2 | ... | wn |. Then there

exists a pyramid in the space of vN dimensions that covers all the minterms

in the f v
on set and none in the f v

off . This fact implies that a restriction of the
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input weights of the first level threshold gates to the range [−v,+v] in a space

of N variables, can be obtained by applying the algorithms described above to

the problem defined in a new space obtained by replicating v times each input

variable.

The encoding scheme described in section 3.3.1 can be changed to

encode this type of solutions. The description of the literals in each cube will

now require N⌈log2(2v + 1)⌉ bits. Clearly, this approach is not economical for

large values of the weights. However, large values of the weights also make for

expensive implementations of the solutions obtained and for hypotheses with

higher complexity.

3.4 Experimental results

3.4.1 Problems Requiring a Known Minimum Number of Thresh-

old Gates

The results obtained by the algorithm were compared with the the-

oretical minimum cost realizations. All the problems require the use of non-

degenerate threshold gates (i.e., threshold gates different from either and and

or gates) to achieve the minimum realization. The asymmetry problems also

require weights larger than 1, and this is reflected in the number of variables

(N) for each problem. A detailed description of the functions used for these

tests can be found in appendix B. The results are shown in table 3.1. As be-

fore, m is the size of the training set. These results show that the minimum

size realization was obtained for all but the two larger parity problems. The

sharp increase in CPU time for the larger asymmetry problems is due, in part,

to the large weights needed. This represents a serious limitation if networks

with large weights represent the optimum solutions. All the results presented

were obtained in a DEC-station 3100 and all CPU times are in seconds.
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Problem m N Theoretical Experimental Tcpu

6-parity 64 6 6 6 4.3
7-parity 128 7 7 7 10.7
8-parity 256 8 8 8 61.9
9-parity 512 9 9 11 878.1
10-parity 1024 10 10 24 1759.8
6-asymmetry 64 24 2 2 1.5
8-asymmetry 256 64 2 2 23.2
10-asymmetry 1024 160 2 2 408.6
12-asymmetry 4096 384 2 2 11752.9

Table 3.1: Experiments using threshold gates.

3.4.2 Comparison With Standard Two-Level Minimizers

In the second set of problems, the performance of the algorithm was

compared with the performance of a popular two-level minimizer, espresso

[14]. This comparison was performed by constraining lsat to use only and

gates in the first level and or gates in the second level. This can be easily

done by not allowing the second type of expand operations to be performed.

For each function, two randomly generated training sets of sizes 200 and 600

were generated. According to the generation procedure, all instances of the

problems should accept a solution with no more cubes than the upper bound

shown in table 3.2. This upper bound is given by the size of the two-level

realization of the original concept. This table shows that although no specific

code optimization was performed for the special case when a cube cover is to be

found, the performance of the algorithm still compares well with a classic two-

level optimizer. In particular, it obtains results that are either similar or better

than espresso and much faster. Moreover, the speed gain increases with the

size of the problem. This is due, in part, to the fact that lsat does not require

an explicit cover for the fdc set while espresso does. It is also clear from these

results that both programs obtain results very far from the minimum in a large

number of cases.
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Problem espresso lsat

Name m N Upper bound Experimental Tcpu Experimental Tcpu

dnf1 200 80 6 6 144 6 87
600 80 6 14 840 15 173

dnf2 200 40 8 8 84 9 21
600 40 8 10 236 8 161

dnf3 200 32 6 7 19 6 15
600 32 6 6 110 6 54

dnf4 200 64 10 13 183 9 80
600 64 10 25 1997 10 506

mux11 200 32 8 14 39 8 33
600 32 8 20 208 8 99

par5 32 200 32 16 15 49 15 21
600 32 16 40 363 41 111

Table 3.2: Experiments using logic gates.



53

Chapter 4

Multi-Level Boolean Networks

4.1 Related Work

Although the use of threshold gates instead of basic Boolean gates

extends the number of concepts that can be efficiently represented by com-

pact two-level networks, many concepts of interest remain unrepresentable in

compact form. Many of these concepts can be represented by polynomial size

multi-level Boolean networks.

The choice of multi-level Boolean networks instead of threshold gate

networks as the hypothesis representation scheme has other advantages. Al-

though threshold gate networks can be implemented using standard digital

technologies, for many applications this approach is expensive and inefficient.

Pulse stream modulation [63] is one possible alternative, but is limited to a rel-

atively small number of neurons and becomes slow if high precision is required.

Dedicated boards based on DSP processors can achieve very high performance

and are very flexible but may be too expensive for some applications. Ap-

plications that require high speed and/or compact hardware implementations

can benefit from an approach based on Boolean networks because the speed
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and compactness of digital implementations is still unmatched by its analog

counterparts [12, 86]. Additionally, many alternatives are available to designers

that want to implement Boolean networks, from full-custom design to field pro-

grammable gate arrays. This makes the digital alternative more cost effective

than solutions based on analog designs.

The number of practical algorithms that can be used to perform syn-

thesis of multi-level Boolean networks from examples is limited. Conceptually,

gradient-descent neural network algorithms like the ones described in the pre-

vious chapter could be adapted for this task by including penalty terms that

would force the functions implemented by each gate to be simple Boolean func-

tions. In practice, such an approach is of limited interest because the additional

penalty terms make the optimization problem more difficult and the utility of

these algorithms would still be restricted to the selection of node functions in

a fixed architecture.

On the other hand, extensive work has been done on logic synthesis

algorithms for multi-level Boolean networks [16]. This algorithms can be used,

in principle, to select a multi-level Boolean network that is of minimal size and

is consistent with the incompletely specified function defined by the training

set. However, many of the techniques developed for multi-level logic synthesis

make little use of the extra degrees of freedom allowed by the presence of very

large don’t care sets and are therefore not applicable to this problem. In fact,

in inductive inference, the value assigned by the minimum realization to points

in the don’t care set of the target function is the most important result of the

algorithm. Techniques that allow multi-level logic synthesis systems to make a

better use of the don’t care set were studied and implemented in systems like

SIS [7, 87] but they require too much computation time for this application and

are not always effective. The results and computation times obtained using

these algorithms are shown in section 4.5 and compared with the ones obtained

using the greedy approach described in this chapter.

The algorithms for the adaption of decision trees by Armstrong and
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Gecsei [4] are also very limited in the type of transformations they can perform

in the structure of the network and will work only if the structure is well tuned

to the problem at hand.

The algorithms described in this chapter derive both the architecture

of the network and the functions implemented by each node. Furthermore, they

can be applied to the minimization of (2.15) and can therefore handle problems

where the labeling of the instances is made in a non-deterministic way.

4.2 Encoding Multi-Level Boolean Networks

Recall that a single output Boolean network can be represented by a

directed acyclic graph where each node implements a simple Boolean function.

The node with zero out-degree is the output node and the nodes with zero

in-degree are the input nodes.

Given these constraints, it is possible to use the general graph encoding

scheme described in section 2.7.1 to encode a general Boolean network. How-

ever, this encoding has to be modified to take into account the three following

particular characteristics of these graphs.

1. The graph has to be traversed in the reverse direction of that used in the

encoding scheme of section 2.7.1 because otherwise not all nodes will be

reached.

2. The description of each node needs to include the number of input vari-

ables to that node.

3. The description of each node needs to include the function implemented

by that node.

The encoding scheme used assumes that a maximum value of the sup-

port of the functions is known. This is known in advance because it is an input

parameter for the algorithm and can therefore be considered common knowl-

edge. The encoding scheme for Boolean networks is, therefore, the following:
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• A node that was never visited before is encoded starting with 1 followed

by an encoding of k, the number of inputs to the node, followed by 2k

bits that describe the function implemented by the node, followed by the

encodings of the k input nodes.

• A node that was visited before is encoded starting with 0 followed by a

reference to the already described node. The N input nodes are assigned

the first N binary codes and are considered visited from the start.

4.3 Global Optimization Using Local Modifications

The algorithm used belongs to a class of algorithms that use local

transformations to change the Boolean network in such a way that a minimum

of the cost function is reached. Algorithms like the metropolis algorithm [58] or

simulated annealing [49] use such an approach. In this case, evaluating moves

by computing directly the net change that a move causes on expression (2.15)

does not work well and a related variable, the mutual information between

network output and the label vector is used as a proxy for the total description

length. Before a discussion of why this approach is required, a definition of

the local changes that can be applied is needed. Such local changes are usually

called moves, as they move the solution to a neighbor point in solution space.

4.3.1 Applying Incremental Changes to a Boolean Network

A list of nodes in the Boolean network is identified as the active list,

Lact = (na1 , . . . nal
). The l nodes in Lact can (potentially) assume any one of the

2l possible input combinations and each one of these combinations corresponds

to one possible value of a multi-valued variable. The objective is to obtain a

network with a single output that minimizes (2.15).

Given an active list Lact, and a maximum value for the number of

variables in the support of newly created functions, Msup, the following three

types of local modifications (or moves) can be applied to the Boolean network.
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In the following illustrations, nodes in the active list are marked with an arrow:

1. Replace k nodes in the active list, na1 , . . . , nak
by k − 1 new nodes that

correspond to k − 1 new functions of k variables, n′
ai

= f ′
i(na1 , . . . , nak

).

This move decreases the number of nodes in the active list by one.

n′

a1
= f ′

1
(na1

, na2
)

na1

na2

Figure 4.1: Merging two nodes in the active list

2. Replace one node in the active list, nai
, by a new node that corresponds

to a function of s variables n′
ai

= f(nai
, nj1 , . . . njs−1). This move does

not change the number of nodes in the active list.

na2

na2

na1

n′

a1
= f(na1

, nj1)

nj1

Figure 4.2: Replacing an existing node by a new function
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3. Add one node to the active list increasing the number of nodes in the

active list.

na2

na3

na2

na1

na1

Figure 4.3: Adding a new node to the active list

Before an algorithm that uses these local changes to obtain a Boolean

network that minimizes (2.15) is described, a detour is needed to introduce the

concept of mutual information between two variables.

4.3.2 Entropy and Mutual Information

Let variable V take the values {v1, v2, ..., vn} with probabilities p(v1), p(v2), ..., p(vn).

The entropy of V is given by

H(X) = −
∑

j

p(vj) log p(vj) (4.1)

and is a measure of the uncertainty about the value of V . The uncertainty

about the value of V when the value of another variable Y is known is given by

H(V |Y ) = −
∑

i

p(yi)
∑

j

p(vj |yi) log p(vj |yi) (4.2)

The amount by which the uncertainty of V is reduced when the value of variable

Y is known,

I(Y, V ) = H(V ) − H(V |Y ) (4.3)
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is called the mutual information between Y and V .

In this case, the objective is to compute I(Lact, t), the mutual infor-

mation between the nodes in Lact, viewed as a multi-valued variable, and the

value of the labels in the training set t. Each combination of the values of the

nodes in Lact defines a subset of the instances in the training set. For each of

these subsets, the rightmost sum in (4.2) is given by:

n

n + p
log(

n

n + p
) +

p

n + p
log(

p

n + p
) (4.4)

where n and p are the numbers of negative and positive instances observed in

each of these sets. The weighted sum of these quantities is then easily computed

to obtain the conditional entropy and the corresponding mutual information.

4.3.3 Hill Climbing on Mutual Information

It is now possible to analyze why direct hill climbing1 on the value

of (2.15) cannot be performed using the set of moves defined in section 4.3.1.

Suppose the target concept is defined by the function f = x1x2x3x4, the train-

ing set is generated in accordance with the uniform probability distribution in

{0, 1}4 and assume that the active list consists of only one node, Lact = {x1}.
Replacing the active node x1 by n5 = x1x2 (using operation 2) is a move in

the right direction. Clearly, one of the effects of this move is to increase the

first term in (2.15), the hypothesis complexity. However, even though n5 im-

plements a function that is more similar to the target function, it does not

reduce the number of exceptions, and therefore the second term in (2.15) does

not decrease. This happens because even if an instance causes the value of

n5 to be 1, it is still more likely to be a negative instance than a positive one

and the additional information cannot be used to reduce the complexity of the

description of the exceptions.

For this reason, the algorithm performs hill-climbing on the value of

the function I(Lact, t). The algorithm incrementally changes the network in a

1This designation is somewhat misleading since a minimum of the function is desired.
However, the term hill climbing is commonly used independently of whether a maximum or a
minimum of the function is desired.
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greedy way, trying, at each iteration, to decrease the number of nodes in Lact

and to increase the value of I(Lact, t). Every time a network with a single

output is obtained, it is checked to see if it corresponds to a smaller value of

(2.15) than the previous solution. The function I(Fact, t) is therefore used only

as a proxy for the actual function that is to be minimized because it represents

a finer estimate in the space of solutions defined by the moves used.

4.4 An Algorithm for Hill-Climbing on Mutual In-

formation

4.4.1 Selecting the Best Move

The objective is to obtain a network with a single output that min-

imizes (2.15) by performing hill-climbing on the mutual information. These

two objectives are conflicting because changes of type 3 increase I(Lact, t) but

also increase the number of nodes in Lact while changes of type 1 decrease the

number of nodes in Lact but also decrease I(Lact, t).

The solution adopted is to apply changes of type 1 only if the decrease

in I(Lact, t) is not statistically significant, to apply changes of type 2 if any

increase in I(Lact, t) takes place and, finally, to apply changes of type 3 if these

two options fail.

These operations are all performed for a fixed value of Msup, the num-

ber of variables in the support of newly created functions. At some point,

however, the number of variables in Lact may be to large to obtain statistically

significant tests. In these case, the only solution is to increase the value of

Msup, the maximum number of variables in newly created functions and restart

the process. The pseudo-code in figure 4.4 describes the algorithm. The al-

gorithm takes as input two constants, ML and Mmax that define respectively

the maximum number of nodes allowed in the active list and an upper limit

on the maximum number of nodes allowed in the support of a newly created

function. The choice of these constants is based only on runtime considerations.
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Typically, no more than 4 nodes are required in the active list and the search

for functions with more than 3 variables is too expensive to perform.

MinNetwork(ML, Mmax)

Msup := 2

repeat

L′
act := ApplyChangeType1(Lact, Msup)

if LossIsNotSignificant(L′
act, Lact) Information loss is not

statistically significant

Lact := L′
act Accept move

Msup := 2

continue

L′
act := ApplyChangeType2(Lact, Msup)

if I(L′
act, t) > I(Lact, t) There is an increase in mutual information

Lact := L′
act Accept move

Msup := 2

continue

if |Lact| < ML The number of variables in Lact does not exceed

maximum

L′
act := ApplyChangeType3(Lact, Msup)

Lact := L′
act Accept move

Msup := 2

continue

Msup := Msup + 1

until Msup = Mmax ∨ |Lact| = 1

Figure 4.4: Minimal network search algorithm.
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4.4.2 Selecting a Discriminating Function

Moves of type 3 require only the addition of a new variable to the

active list and this search can be performed in a relatively efficient way. On the

other hand, the application of a type 1 or type 2 move require the search for

a new function. This procedure can be time consuming. In fact, not only all

combinations of existing variables need to be examined but the best function

of a given combination of variables needs to be selected as the candidate one.

More specifically, the application of moves of type 1 and type 2 re-

quires the solution of the following problem: given two sets of nodes, S1 =

{ni1 , · · · , nis} and S2 = {nj1, · · · , njr}, select a set of functions {f1 . . . fs−1}
that takes as inputs the variables in S1 and maximizes

I({f1 . . . fs−1} ∪ S2, t) (4.5)

Any Boolean function f can be viewed as a partition of the input space. In this

case, the function should depend only on the variables {ni1 , · · · , nis}. Further-

more, the value of this function is important only for the points in the input

space present in the training set. To obtain this function, the points in the

training set that share the same values of the variables in S1 are joined into

the same cluster. There will be 2s such clusters, although some of them may

be empty. Any partition of these clusters into 2s−1 sets corresponds to a given

value of (4.5) and to a specific choice of (f1, · · · , fs−1). The computation of the

value of expression (4.5) is fast because there are only 2s such clusters and s is

limited to be no larger than a user imposed constant, Msup. A partition of these

clusters that maximizes locally (4.5) is then obtained using the Kerninghan-Lin

partitioning algorithm [48]. This algorithm selects a good partition with respect

to some cost function by swapping objects (in this case by swapping clusters)

between the two sides of the partition and evaluating the net effect of such

swaps in the target cost function. This procedure will be illustrated with a

concrete example.

Assume that the training set defined over a set of variables {x1, x2, x3 . . .}
has the distribution of positive and negative examples shown in table 4.1 when
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the training set is projected on the subspace {x1, x2}. This projection is ob-

tained by simply ignoring the values of the remaining variables. The original

Table 4.1: Distribution of positive and negative examples

x1 x2 Pos Neg

0 0 1 4
0 1 0 5
1 0 2 5
1 1 8 1

entropy of t, the variable that defines the label in the training set is obtained

applying expression (4.1) and is equal, for this example, to 0.983. Now, assume

that the active variables are Lact = {x1, x2}. The mutual information between

Lact = {x1, x2} and t, I(Lact, t) = 0.438. Now a move of type 1 is to be per-

formed and the possibility under consideration is to replace x1 and x2 for the

best function f(x1, x2). This corresponds to the selection of sets S1 and S2 as

S1 = {x1, x2} and S2 = ∅. This is equivalent to the selection of a partition

of the 4 clusters in figure 4.5 into 2 classes. Figure 4.5 shows two possible

partitions and the corresponding values of mutual information. Clearly, the

selection of the function f2 = x1x2 provides the solution that maximizes (4.5).

The selection of such a partition when the set S2 is non void is similar, although

the computation of the value of (4.5) for each possible partition is slightly more

elaborate. When S1 has k > 2 variables the computation of k − 1 functions

needed to perform local changes of type 1 is equivalent to the selection of a

2k−1-way partition of the clusters.

4.4.3 Evaluating the Statistical Significance of Information Loss

The algorithm in figure 4.4 only applies moves of type 1 like the one

used in the previous example if the loss in mutual information is not statistically

significant. This is necessary because every time k variables in the active list

are merged into k − 1 variables, it is likely that there will be an information
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f1 = x1 ⊕ x2

I(f2, t) = 0.369I(f1, t) = 0.177

f2 = x1 ∧ x2

Figure 4.5: Partitions and corresponding values of mutual information

loss. This will only be false if the proportions of positive to negative instances

in each of the merged bins are exactly the same.

This information loss may not be statistically significant because it

may be caused by fluctuations introduced by the sampling process that gener-

ated the training set. In the example in table 4.1 the characteristic function

of the target concept may be equal to f = x1x2 but the presence of noise may

have corrupted some labels. Alternatively, the target function may have a weak

dependence on other variables (e.g., f = (x1x2) ⊕ g(x7x8x9x10)).

In both cases, a practical approach is to perform the merging by apply-

ing the move of type 1 only if the proportions of positive and negative instances

in the merged bins are not significantly different. This condition is tested using

a chi-squared test.

The application of the chi-squared test is also illustrated using the

example presented in the previous section. Assume that the merging selected
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by the function f2 in figure 4.5 is to be tested for statistical significance. If

the real function is given by f = x1x2, (possibly with other dependences on

other variables) then the different proportions of negative and positive examples

observed in the bins labeled 00, 01 and 10 are only due to random fluctuations.

If this is the case, the expected proportion of positive and negative instances

in each of these bins is the same and is possible to compute the deviations

o+
i − e+

i on the number of positive instances observed for each bin, where o+
i is

the observed number of positive instances and e+
i is the expected value. The

same is true for the negative instances. The statistic

χ2 =
∑

i

(o+
i − e+

i )2

e+
i

+
(o−i − e−i )2

e−i
(4.6)

has, under reasonable assumptions, a chi-squared distribution with k = 2 de-

grees of freedom. (The number of degrees of freedom is given by the number of

clusters merged minus 1).

The probability of the deviations observed observed under the assump-

tion that they are due only to random fluctuations can then be extracted from

the tables of the chi-squared distribution or computed directly by evaluating

Γ(k/2, χ2/2) where Γ(x, y) is the gamma function.

Table 4.2: Computation of the chi-squared statistic

Bins 1 2 3 Total

Observed
o+
i 1.00 0.00 2.00 3.00

o−i 4.00 5.00 5.00 14.00

Total 5.00 5.00 7.00 17.00

Expected
e+
i 0.88 0.88 1.24

e−i 4.12 4.12 5.76

The computation of the values required for the evaluation of the chi-

squared statistic given by expression (4.6) is exemplified in table 4.2. The

computed value, χ = 1.67 means that the merging should be accepted at a
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significance level β of 0.05 because it is smaller than the tabulated value for

χ2,1−0.05, 5.991.

4.4.4 The Hill-Climbing Algorithm Illustrated

Figures 4.6 and 4.7 exemplify how the algorithm works when learning

the simple Boolean function f = x1x2 + x3x4x5 assuming that a complete

training set is given. In this example, the value of Msup is always at 2 and,

x3

x2

x1 n6

n3

x1 n1

I({n6, n3}, t) = 0.63

Apply type 2 move

x2

I({n6}, t) = 0.52

x1

n6

Fails to apply moves of type 1 or 2

I({n1}, t) = 0.16

Apply type 3 move

Figure 4.6: Example of a run of the algorithm, part 1

therefore, only 2 input Boolean functions are generated. In figure 4.6, the

algorithm generates the partial function g1 = x1x2 and reaches a point where it

cannot improve the mutual information by applying changes of type 2. It then

adds a new node to the active list and builds an auxiliary function, g2 = x3x4x5.

It is implicit that many moves of other type (like, for instance, merging nodes n7

and n6) were considered but did not pass the chi-squared test described above.

An operation of type 1 can only be performed with success when the function

g3 = x3x4x5 is obtained. The mergings implied by a move of type 1 now pass

the statistical significance test and are applied to yield the final result. It is

important to note that, in general, the algorithm will not aim straight for the
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Apply move of type 2

I({n6, n8}, t) = 0.93

x3

x2

n8

x1

x4

n6

n7

x5

Apply move of type 2

x3

I({n6, n7}, t) = 0.74

x2

x1

x4

n6

n7 x3

x2

x5

Apply move of type 1

x1

x4

n6

n7

n8

n9

I({n9}, t) = 0.93

Figure 4.7: Example of a run of the algorithm, part 2
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right solution. Instead, it will build functions that are closer and closer to the

target function and are increasingly more complex. In particular, the statistical

significance test is bound to fail in both directions, once in a while. This means

that good mergings will be sometimes rejected and bad ones accepted. This,

however, does not block the algorithm from selecting a solution that is a local

minimum, under the set of moves selected, to expression 2.15.

4.5 Experimental Evaluation

An objective evaluation of the merits of this algorithm is hard to

accomplish because no other algorithms developed specifically for this purpose

have been proposed to date.

However, if the algorithm is run with the restriction that it should

minimize expression (2.15) with a very small value of α, then it will obtain a

network with an output that will always coincide with the labels present in the

training set. The implementation made of these algorithms in the form of a

C++ program, muesli, can be used in this exact mode and was used in the

comparisons described in this section.

In these conditions, it is possible to compare the performance of the

algorithm with standard logic synthesis techniques, and, in particular, multi-

level logic synthesis algorithms. The two algorithms selected are both based on

the SIS system [15] developed at Berkeley but use two different scripts that give

very different results. The rugged script uses the computation of local don’t care

sets for each node to achieve a simpler final network. This script takes usually

longer than the other script used, the algebraic script because the computation

of the local don’t care sets is computationally intensive. The algebraic script,

on the other hand, uses mostly faster algebraic manipulations to minimize the

resulting network and sacrifices, in general, solution quality for speed.
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4.5.1 Experimental Setup

To evaluate the relative performance of the algorithms, a set of 12

functions was selected, all of them known to accept compact multi-level imple-

mentations. These functions are described in appendix B.

The first 4 functions were designed to be specially simple and are

defined over Boolean spaces with a small number of variables. The last 8

functions have been proposed in the machine learning literature [69] and are

relatively more complex. For each of these functions, training sets of increasing

sizes were randomly generated and labeled in accordance with the function

being learned.

The three algorithms were run on each problem for a maximum of one

hour of CPU time in a DEC/Alpha machine and a memory usage limited to

140 Megabytes.

4.5.2 Results Analysis

Tables 4.3, 4.4 and 4.5 describe the results obtained for each of the

functions and training set sizes.

There are some points worth noting in these results. First, the muesli

algorithm obtained results that were always competitive with the best alterna-

tives but using an amount of CPU time much smaller. In fact, for the larger

problems, the algorithms based on the use of logic synthesis techniques were

unable to complete in the time and memory allocated for the task while the al-

gorithms described in this chapter faced no serious problems deriving relatively

compact representations. The rugged script always gave better results than the

algebraic script, both in terms of the number of literals in the final result and

the total amount of CPU time. However, even this script is unable to solve the

larger problems listed in tables 4.4 and 4.5. The superior speed of the rugged

script in these problems came as a surprise and deserves further study.

These results show that logic synthesis algorithms that are highly ef-

fective in the type of problems commonly encountered in the logic synthesis
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field are not well adapted to the case where the target functions are specified

by a sample of the on and off sets. This is probably due to the fact that the

computation of the don’t care sets for each node becomes too expensive to

perform and this don’t care set is hard to use effectively.

The amount of CPU time used by the logic synthesis algorithms makes

them unusable for all but the simplest learning problems. On the other hand,

the algorithms described in this chapter were applied with success to problems

much larger than the ones studied here. For example, in chapter 7 they were

used to learn several functions of 256 variables with training set sizes with more

than 50000 instances. Even if the logic synthesis approach could be modified by

careful tuning of the scripts to handle the problems studied in this chapter, it

is unlikely that they can be applied with any success to problems of that order

of magnitude.
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Concept Training Set # literals Cpu time

# inputs Size muesli rugged algebraic muesli rugged algebraic

heel9 9 50 26 43 64 0.8 0.7 0.5
100 23 14 80 0.5 1.2 0.8
150 18 13 110 0.6 1.9 1.3
200 18 14 106 0.5 2.0 1.2
250 13 13 116 0.4 1.7 1.5
300 13 13 121 0.3 2.2 1.4
350 13 13 122 0.3 2.4 1.3
400 13 14 131 0.3 2.2 1.2
450 13 13 120 0.4 2.4 1.2
500 13 14 117 0.3 2.3 1.2

sm12 12 100 75 86 175 3.1 6.2 4.2
200 114 139 301 6.3 24.5 23.8
300 90 79 401 5.5 59.6 75.2
400 41 76 458 1.5 66.4 199.9
500 57 38 505 2.1 71.2 269.0
600 41 37 537 1.6 66.9 435.6
700 43 36 600 2.3 88.8 696.3
800 40 35 655 1.6 167.3 1006.2
900 51 43 653 3.0 185.1 1174.6

1000 70 38 681 2.5 193.5 1128.4

heel18 18 100 50 91 - 3.3 53.6 -
200 92 134 - 6.4 185.4 -
300 25 164 - 1.3 494.0 -
400 25 80 - 1.3 1429.2 -
500 25 47 - 1.5 1092.7 -
600 25 119 - 1.8 2725.7 -
700 25 62 - 1.5 3343.8 -
800 25 - - 1.5 - -
900 25 - - 1.8 - -

1000 25 - - 1.8 - -

str18 18 100 23 34 86 1.1 9.3 0.9
200 65 84 165 6.6 42.7 4.5
300 130 104 245 12.4 1082.4 14.6
400 119 - 314 11.6 - 34.0
500 157 117 - 12.9 2602.9 -
600 137 187 - 14.8 544.4 -
700 29 150 - 2.6 779.7 -
800 58 234 - 4.5 1003.8 -
900 90 115 - 8.0 1263.4 -

1000 126 236 - 11.5 1898.1 -

Table 4.3: Minimal Boolean networks obtained by different techniques, part 1
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Concept Training Set # literals Cpu time

# inputs Size muesli rugged algebraic muesli rugged algebraic

mux6 16 100 43 42 350 2.5 14.9 31.4
200 28 19 - 1.4 90.4 -
300 61 31 - 2.3 181.7 -
400 38 44 - 1.6 370.4 -
500 35 23 - 1.4 964.3 -
600 32 30 - 1.7 813.4 -
700 42 77 - 2.5 2765.6 -
800 34 15 - 1.8 2185.6 -
900 50 21 - 2.4 2931.3 -

1000 51 - - 3.4 - -

mux11 32 100 65 91 - 4.8 135.2 -
200 149 243 - 15.5 1070.2 -
300 303 420 - 50.6 2407.5 -
400 227 - - 43.2 - -
500 482 - - 109.8 - -
600 522 - - 203.5 - -
700 162 - - 24.1 - -
800 111 - - 16.8 - -
900 114 - - 12.6 - -

1000 194 - - 34.7 - -

par4 16 16 100 107 106 371 13.5 366.3 44.5
200 242 171 - 45.3 89.9 -
300 431 39 - 96.4 219.4 -
400 662 463 - 263.4 531.5 -
500 12 316 - 17.2 1153.3 -
600 121 71 - 31.9 1137.1 -
700 12 24 - 14.0 1782.6 -
800 12 29 - 1.2 2761.6 -
900 - 36 - - 3342.4 -

1000 12 - - 5.9 - -

par5 32 32 100 85 121 - 11.1 119.5 -
200 168 248 - 34.6 1260.2 -
300 313 439 - 68.9 3168.7 -
400 - - - - - -
500 610 - - 197.8 - -
600 712 - - 269.4 - -
700 847 - - 453.1 - -
800 - - - - - -
900 - - - - - -

1000 - - - - - -

Table 4.4: Minimal Boolean networks obtained by different techniques, part 2
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Concept Training Set # literals Cpu time

# inputs Size muesli rugged algebraic muesli rugged algebraic

dnf1 80 100 27 - - 3.4 - -
200 64 - - 6.8 - -
300 94 - - 13.8 - -
400 156 - - 24.4 - -
500 235 - - 42.5 - -
600 198 - - 41.1 - -
700 342 - - 87.1 - -
800 389 - - 98.6 - -
900 413 - - 145.0 - -

1000 415 - - 138.1 - -

dnf2 40 100 34 - - 2.7 - -
200 120 154 - 9.0 1410.8 -
300 109 - - 7.0 - -
400 140 - - 12.4 - -
500 101 - - 9.4 - -
600 73 - - 6.3 - -
700 125 - - 10.3 - -
800 107 - - 7.6 - -
900 111 - - 8.7 - -

1000 79 - - 7.6 - -

dnf3 32 100 67 52 320 2.8 139.9 40.3
200 81 124 - 5.9 399.2 -
300 44 111 - 2.9 1352.6 -
400 100 - - 7.6 - -
500 142 - - 15.8 - -
600 57 - - 3.4 - -
700 53 - - 2.8 - -
800 73 - - 6.0 - -
900 85 - - 6.6 - -

1000 76 - - 4.8 - -

dnf4 64 100 55 122 - 5.4 1307.4 -
200 120 - - 19.1 - -
300 156 - - 28.1 - -
400 165 - - 28.9 - -
500 429 - - 91.5 - -
600 129 - - 18.3 - -
700 148 - - 23.5 - -
800 87 - - 16.5 - -
900 87 - - 12.6 - -

1000 52 - - 7.1 - -

Table 4.5: Minimal Boolean networks obtained by different techniques, part 3
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Chapter 5

Reduced Ordered Decision

Graphs

5.1 Introduction

This chapter describes both exact and heuristic algorithms for the

induction of minimal complexity reduced ordered decision graphs from training

set data. Decision graphs can be viewed as a generalization of decision trees,

a very successful approach for the inference of classification rules [17, 76, 79].

The selection of decision graphs instead of decision trees as the hypothesis

representation scheme is important because, even though decision trees can

represent any concept, they are not concise representations for some concepts

of interest. In particular, the quality of the generalization performed by a

decision tree induced from data suffers because of two well known problems:

the replication of subtrees required to represent some concepts and the rapid

fragmentation of the training set data when attributes that can take a high

number of values are tested at a node. Oliver [67] describes in some detail

these limitations.

Decision graphs have been proposed as one way to alleviate these prob-

lems, but the algorithms proposed to date for the construction of these graphs
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suffer from serious limitations. Mahoney and Mooney [57] proposed to iden-

tify related subtrees in a decision tree obtained using standard methods but

reported limited success in the sense that they observed no improvement in the

quality of the generalization performed. They used a non-canonical representa-

tion of Boolean functions (DNF expressions) to represent the functions imple-

mented by these subtrees. The non-canonicity of this representation makes is a

non-trivial process to identify identical subtrees and that renders this approach

impracticable for large decision trees. Oliver [67] proposed a greedy algorithm

that performs either a join or a split operation, depending on which one re-

duces more the description length. He reported improvements over the use of

decision trees in relatively simple problems but our experiments using a similar

approach failed in more complex test cases because of the greedy nature of the

algorithm.

This chapter describes two different approaches for the problem of

selecting the RODG of minimal description length. Since the problem is NP-

complete [97] both an exact and an heuristic approach are described for this

problem.

The exact approach described in section 5.3 works only in the noise

free case and selects the RODG that minimizes (2.14) under a fixed ordering

of the variables. Although the domain of applicability of the exact solver is

limited, this approach is interesting because it is the first formulation of this

optimization problem that does not require an explicit search of the solution

space as previous approaches do [91].

Section 5.4 describes an heuristic approach that obtains an RODG

that minimizes (2.15) and is much faster than the exact one for large exam-

ples. Furthermore, it derives a good ordering of the variables together with the

RODG structure. The approach differs from the one proposed by Kohavi [50]

that also uses RODGs. Although his approach performs well for small prob-

lems, it requires far too much computation to be applicable to any problems of

reasonable size. Other heuristic algorithms that can be used for the selection of
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compact RODGs compatible with the training set have been proposed before in

the logic synthesis literature [92] but the quality of the results obtained makes

them ineffective for the type of problems found in machine learning. They are,

however, useful as a generator of the initial RODG, as described in section 5.4.1.

This work draws heavily on techniques developed by other authors in

the machine learning and logic synthesis fields. From machine learning, I use

many of the techniques developed for the induction of decision trees described

in [76] and [79]. Also used are the constructive induction algorithms proposed

by Pagallo and Haussler [69] and further developed in [70] and [101]. From

the logic synthesis field, the use of the vast array of techniques developed for

the manipulation of RODGs as canonical representations for Boolean functions

[18, 13] and the variable reordering algorithms studied in [26] and [83] are

critically important. For the benefit of readers not familiar with the use of

RODGs as a tool for the manipulation of Boolean functions, appendix A gives

an overview of the techniques available and their relation to this work.

5.2 Definitions

5.2.1 Decision Graph Nodes and Functions

Recall that an decision graph is a rooted, directed, acyclic graph where

each node is labeled with the name of one variable. and every non-terminal node

ni has one else and one then edge that point to the children nodes, nelse
i and

nthen
i , respectively.

Any minterm z in the input space induces a unique path in an RODG

defined in the following way: start at the root and take, at each node, the else or

the then edge according to the value assigned by minterm z to the variable that

is the label of the current node until a terminal node is reached. An RODG

corresponds to the completely specified Boolean function f that has all the

minterms in fon (and only these) inducing paths in the RODG that terminate

in no. For a fixed ordering of the variables, the RODG for a given Boolean
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function is unique. This implies that RODGs are a canonical representation of

Boolean functions and the notation ni will be used to denote both the node in

the RODG and the Boolean function it corresponds to.

The level of a node ni, L(ni) is the index of the variable tested at that

node under the specific ordering used. The level of the terminal nodes is defined

as N + 1, where N is, as before, the number of input variables. The maximum

level of a set s of nodes, Lmax(s) is the maximum level of all the nodes in s.

A decision graph is called complete if all edges starting at level i terminate in

a node at level i + 1 or in a terminal node.1 The level of a function h, L(h),

is defined as the level of a RODG node that implements h. If ni is a node in

the RODG and z a minterm, ni(z) will be used to denote both the value of

function ni for minterm z and the terminal node that z reaches when starting

at ni. This notation is consistent because the two terminal nodes stand for the

constant functions 0 and 1.

A 3 Terminal RODG (3TRODG) is defined in the same way as an

RODG in all respects except that it has three terminal nodes : nz, no and nx.

A 3TRODG F corresponds to the incompletely specified function f that has

all minterms in foff ,fdc and fon terminate in nz, nx and no, respectively.

5.2.2 Decision Trees

A decision tree is a special case of an unordered decision graph where

the underlying graph structure is restricted to be a tree, i.e., has no re-converging

paths, and there are more than two terminal nodes. The terminal nodes in a

decision tree belong two one of two sets: Sz or So. A decision tree corresponds

to the completely specified Boolean function f that has all the minterms in fon

(and only these) inducing paths in the RODG that terminate in terminal nodes

that belong to So.
2

Consider now a decision tree or a decision graphs defined over the

1A complete decision graph will not, in general, be reduced.
2Equivalently, a decision tree can be defined has having only two terminal nodes and have

no re-converging paths except at these two terminal nodes.
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domain D. Let n0, n1, ..., ns be the nodes in the graph or tree, vi denote the

variable tested in node ni of the graph (or tree) , nthen
i (the then node) denote

the node pointed to by the arc leaving node ni when attribute vi is 1 and nelse
i

(the else node) denote the node pointed to by the arc leaving node ni when

attribute vi is 0. Finally, let node n0 be the root of the graph.

5.2.3 Encoding Decision Graphs

The encoding scheme used is again a variation of the generic graph

encoding scheme described in section 2.7.1. That scheme has to be modified

only slightly to take into account the fact that, for each node, the index of the

variable tested at that node also has to be described. The encoding scheme is,

therefore, the following:

• A node that was never visited before is encoded starting with 1 followed by

an encoding of the variable tested at that node, followed by the encoding

of the node pointed to by the else edge, followed by an encoding of the

node pointed to by the then edge.

• A node that was visited before is encoded starting with 0 followed by a

reference to the already described node.

The first node to be described is the root of the graph, and the two terminal

nodes are considered visited from the beginning and assigned reference numbers

0 and 1.

For the exact algorithm, it is assumed that each reference uses a fixed

number of bits, no matter how many nodes were described at the point that

reference is used. This makes the encoding length monotonic in the number of

nodes in the graph and makes the minimization of expression (2.14) equivalent

to the minimization of the number of nodes in the graph.

For the heuristic algorithm, the slightly more efficient encoding that

only uses log2(r) bits for each reference where r is the number of nodes described

up to that point is used. This is important because the heuristic algorithm
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minimizes expression (2.15) and it is more critical to use encodings that are

close to the optimum.

5.3 An Exact Minimization Algorithm

Given a fixed ordering, the objective is to derive an RODG that is

consistent with the incompletely specified function f defined by the training set

and minimizes (2.14) using the encoding scheme described in above. Assume,

without loss of generality, that the ordering selected is (x1, x2, ..., xn). Any other

ordering can easily be handled by performing a simple variable transformation.

From the 3TRODG that is obtained from the incompletely specified

function defined by the (noiseless) training set, a compatibility graph is ex-

tracted that describes which nodes in this 3TRODG can be merged. The de-

sired result is obtained by selecting a minimum cardinality closed clique cover

for the compatibility graph. This approach is inspired in the standard algo-

rithms used for the minimization of incompletely specified state machines and

uses some of the concepts developed for that purpose.

5.3.1 The Compatibility Graph

Previous algorithms [91] for this problem used directly the RODG

representation of fon and foff . The exact approach described in this paper works

with the 3TRODG F that corresponds to f . F is assumed to be complete. If

necessary, F is made complete by adding extra nodes that have the then and else

edges pointing to the same node. The resulting 3TRODG is no longer reduced,

but this transformation is required to warrant that the minimum solution is

found. Obtaining F from the training set is a simple procedure [18] that can be

performed using a standard RODG package like, for instance, the one described

in [13].

Definition 2 Two nodes ni and nj in F are compatible3 (ni ∼ nj) iff no

3This is simply a restatement of the compatibility between functions as defined in section
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minterm z exists that satisfies ni(z) = nz ∧ nj(z) = no or ni(z) = no ∧ nj(z) =

nz.

Definition 3 Two nodes ni and nj in F are common support compatible (ni ≈
nj) iff there exists a function h such that h ∼ ni and h ∼ nj and L(h) ≥
max(L(ni),L(nj)).

By definition nz 6∼ no and nx ≈ ni, for any node ni.

The compatibility graph, G, is an undirected graph that contains the

information about which nodes in F can be merged. Except for the terminal

node nx, each node in F will correspond to one node in G with the same index.

The level of a node in G is the same as the level of the corresponding node in

F . Similarly, gelse
i and gthen

i are the nodes that correspond to nelse
i and nthen

i .

Graph G is built in such a way that if nodes ni and nj are common

support compatible then there exists an edge between gi and gj . An edge may

have labels. A label is a set of nodes that expresses the following requirement:

if nodes gi and gj are to be merged, then the nodes in the label also need to be

merged. There are three types of labels: e, t and l labels. The following two

lemmas justify the algorithm by which graph G is built:

Lemma 4 If L(ni) = L(nj) then ni ≈ nj ⇒ nelse
i ≈ nelse

j ∧ nthen
i ≈ nthen

j .

Proof : Since F is complete, either the successors are at the same level or at

least one of them is a terminal. Therefore, nelse
i 6≈ nelse

j ⇒ nelse
i 6∼ nelse

j and a

minterm z can be selected in such a way that nelse
i (z) 6∼ nelse

j (z) and zL(ni) = 0.

The existence of this minterm shows that ni 6≈ nj. A similar argument is true

for the then branch. Therefore, nelse
i 6≈ nelse

j ∨ nthen
i 6≈ nthen

j ⇒ ni 6≈ nj.

Lemma 5 If L(ni) < L(nj) then ni ≈ nj ⇒ nelse
i ≈ nj ∧ nthen

i ≈ nj ∧ nelse
i ≈

nthen
i

Proof : If nelse
i 6≈ nj then, for any functions h at level L(nj) or higher a

minterm z can be selected in such a way that nelse
i (z) 6∼ h(z) and zL(ni) = 0.

5.2.
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This minterm shows that ni 6∼ h, thereby showing that ni 6≈ nj. Identically for

the then branch. If nelse
i 6≈ nthen

i then there are minterms w and z such that

nelse
i (w) 6∼ nthen

i (w) ∧ wL(ni) = 0 and nelse
i (z) 6∼ nthen

i (z) ∧ zL(ni) = 1. This

minterms can be chosen to differ only in the value of the variable xL(ni) and

lead to incompatible terminal nodes. Therefore, ni cannot be equivalent to any

function h such that L(h) >= L(nj). These two lemmas justify the creation of

G as follows:

1. Initialize G with a complete graph except for edge (gz,go) that is removed.

2. If L(gi) = L(gj) then the edge between gi and gj has two labels: an e

label with {gelse
i , gelse

j } and a t label with {gthen
i , gthen

j }. (By lemma 4.)

3. If L(gi) 6= L(gj) edge (gi,gj) has an l label with {gelse
k , gthen

k , gm} where

L(gk) = min(L(gi),L(gj)) and L(gm) = max(L(gi),L(gj)). (By lemma

5.)

4. For all pairs of nodes (gi, gj) check if the edge between nodes gi and gj

has a label that contains {ga, gb} and there is no edge between ga and gb.

If so, remove the edge between gi and gj. Repeat this step until no more

changes take place.

Figure 5.1 shows an example of the 3TRODG F obtained from f

defined by the following sets: fon = {011, 111}, foff = {010, 110, 101} and the

corresponding compatibility graph.

Lemma 6 If ni and nj are common support compatible then G has an edge

between nodes gi and gj .

Proof : Follows directly from lemmas 4 and 5 and the algorithm definition.

5.3.2 Closed Clique Covers

To any set s of nodes that is a clique of G there are associated class

sets. If the nodes in s are to be merged into one, the nodes in its class sets are
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Figure 5.1: The 3TRODG F and the compatibility graph G.

also required to be in the same set. Let si = {gi1 , gi2 ...giw} be a set of nodes

that form a clique in G. The following are the definitions of the e, t and l classes

of si.

Definition 4 The e class of si, Ce(si) is the set of nodes that are in some e

label of an edge between a node gj and gk in si with L(nk) = L(nj) = Lmax(si).

Definition 5 The t class of si, Ct(si) is the set of nodes that are in some t

label of an edge between a node gj and gk in si with L(nk) = L(nj) = Lmax(si).

Definition 6 The l class of si, Cl(si) is the set of nodes that are in some l

label of an edge between a node gj and gk in si with L(gj) 6= L(gk)

The algorithm that selects the minimum RODG compatible with the

original function works by selecting nodes of G that can be merged into one

node in the final RODG. If a set s of nodes in G is to be merged into one, they

have to be pairwise common support compatible. Therefore, they have to be

a clique of G. The objective is to find a set of cliques such that every node in

G is covered by at least one clique. However, given the properties of a valid

solution, some extra conditions need to be imposed.

Definition 7 A set S = {s1, s2...sn} of sets of nodes in G is called a closed

clique cover for G if the following conditions are satisfied:
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1. S covers G : ∀gi ∈ G∃sj ∈ S : gi ∈ sj

2. All sk are cliques of G : ∀gi, gj ∈ sk : (gi, gj) ∈ edges(G)

3. S is closed wrt the e and t labels :

∀si ∈ S ∃sj ∈ S : Ce(si) ⊆ sj

∧ ∀si ∈ S ∃sj ∈ S : Ct(si) ⊆ sj

4. All sets in S are closed wrt the l labels : ∀si ∈ S : Cl(si) ⊆ si

5.3.3 Generating the Minimum RODG

From a closed clique cover for G, a reduced RODG R is obtained by

the following algorithm:

1. For each si in S, create an RODG node in R, ri, at level Lmax(si).

2. Let the nodes in R that correspond to sets si containing nodes that cor-

respond to terminal nodes in F be the new corresponding terminal nodes

of R.

3. Let the else edge of the node ri go to the node rj that corresponds to a

set sj such that Ce(si) ⊆ sj.

4. Let the then edge of the node ri go to the node rj that corresponds to a

set sj such that Ct(si) ⊆ sj.

Lemma 7 R is an Ordered RODG compatible with F .

Proof : Since the cover is closed, steps 3 and 4 four are always feasible. Any

path in F that leads to a 1 or a 0 will lead to the corresponding terminal node

in R. Finally, there will never be edges going upward in R because the node

that results from a set si is at the lowest level of all the nodes in si.

Now, the main result follows. Let B be the set of all RODGs that rep-

resent functions compatible with the incompletely specified function f . Then,

the following result applies:
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Theorem 1 The RODG induced by a minimum closed cover for G is the

RODG in B with minimum number of nodes.

Proof : Given the result in lemma 7 it is sufficient to prove that there exists at

least one closed cover of cardinality equal to the size of the minimum RODG

in B.

Let U be an RODG in B with minimum number of nodes k. For each

node in U , ui, create a set si such that gj is in ui iff nj ∼ ui and L(nj) ≤
L(ui). Let S = {s1, s2...sk}. We will show that S satisfies all the conditions in

definition 7:

1. (S covers G) We show that the assumption that some gi at level l is not in

some set of S leads to a contradiction: let z be one minterm that defines a

path in F that goes through ni and terminates in no or nz. Let Z be the

set of all minterms that have the same values as z for x1...xl−1. Either one

of these minterms will define a path in U that goes through some node uj

in U at a level equal or higher than l or all minterms in Z terminate in

some terminal node before reaching any node at level l. In the first case,

since ni 6∼ uj (by the hypothesis) there exists a minterm in M that will

lead to incompatible terminal nodes in U and F , thereby contradicting

the assumption that U is consistent with F . In the second case, all such

minterms lead to the same terminal node in U . Since gi is not equivalent

to neither terminal node (by the hypothesis), this also implies that U and

F are not compatible.

2. (All si ∈ S are cliques) Since each node in si is compatible with a com-

pletely specified function (ri) they are all pairwise common support com-

patible between them and therefore the nodes in si are a clique of G.

3. (S is closed wrt the e and t labels) Let ui be a node in U , ua = uelse
i and

ub = uthen
i . Let bi = {gj ∈ si : L(gj) = Lmax(si)}. For each node gj ∈ bi

nj ∼ ui implies ua ∼ nelse
j and ub ∼ nthen

j . Therefore, Ce(si) ⊆ sa and

Ct(si) ⊆ sb.
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4. (S is closed wrt the l labels) Suppose Cl(si) 6⊂ si. Then, there must be a

node nw such that gw ∈ si at level l < L(ri) such that nelse
w 6≈ ui or nthen

w 6≈
ui. Assume the first is true and let nelse

w = na. na is not compatible with

ui (or else it would be in si) and depends only in {xl+1...xn}. Therefore,

there exists a minterm m such that ui(m) 6≈ na(m) and ml = 0. This

minterm shows that nw 6∼ ui which contradicts the hypothesis that gw is

in si.

Therefore, S is a closed clique cover for G and it has cardinality k 2.

As an example, S = {{n0, n1, n2}, {g4}, {g3, gz}, {go}} is a closed cover

for the example depicted in figure 5.1 and induces the RODG R shown on the

right side of figure 5.2.
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Figure 5.2: The 3TRODG F , the compatibility graph G and a solution R.

Given the result in theorem 1, a minimum RODG can be found by

selecting a minimum closed clique cover. This problem is very similar to other

problems that have been extensively studied in the logic synthesis community.

For example, minimization of incompletely specified finite state machines leads

to a similar optimization problem where the selection of a minimum closed cover

yields the desired solution.
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5.3.4 Direct Solution of the Covering Problem Using Compat-

ibles

Definition 8 A set s of nodes in G is a compatible set iff s is a clique of G

and Cl(s) ∈ s.

Only compatible sets may be present in a solution to the covering

problem. However, one does not need to consider all the compatible sets since

a solution consisting only of prime compatible sets is bound to exist.

Definition 9 A set si of nodes in G is a prime compatible set iff si is a compat-

ible set of G and there is no other sj that is a compatible set of G and satisfies:

si ⊂ sj ∧ Ce(sj) ⊆ Ce(si) ∧ Ct(sj) ⊆ Ct(si)

Since there exists one minimum solution that consists entirely of prime

compatible sets (see [36]) an exact algorithm for solving the minimum closed

cover is the following:

1. Generate all prime compatible sets of G.

2. Formulate the closed covering problem as the satisfiability of a Boolean

expression and solve it.

The satisfiability problem is NP-complete and can be solved, for some

problems, using one the methods presented in the literature. A detailed analysis

of these algorithms is outside the scope of this work. The implementation of

this algorithm uses the routines described in [38] to solve the minimum covering

problem.

5.4 An Heuristic Minimization Algorithm

The heuristic minimization algorithm described in this section derives

an RODG that corresponds to a local minimum of (2.15) under the encoding

scheme described in section 5.2.3.
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The algorithm initializes the RODG using the techniques described

in section 5.4.1 and then applies local changes to obtain an RODG of smaller

description length.

5.4.1 Generating the Initial RODG

There are several possible ways to generate an RODG that can be

used as the starting point for the local optimization algorithm. Experiments

have shown that three of them are particularly effective. The RODG selected

as the initial solution is the smaller one of the following three:

• The RODG that realizes the function implemented by a decision tree

derived from the training set data using standard decision tree algorithms.

• The RODG that realizes the function implemented by a decision tree

defined over a new set of variables obtained using constructive induction

techniques.

• The RODG obtained by applying the restrict heuristic to the function

obtained by listing all positive instances in the training set.

Each of these three approaches can and do generate sometimes RODGs

that are several orders of magnitude larger than the minimum possible. How-

ever, by selecting the smaller of the three, it is possible, in many of the problems

tried, to obtain a final solution that is reasonably close to the minimum possi-

ble. How these three techniques can be used to generate the original RODG is

the subject of the next three subsections.

5.4.1.1 Initialization Using Decision Trees

One possible way to initialize the RODG is to obtain a decision tree

from the data and to convert the function obtained by the decision tree to

RODG form. Several efficient algorithms for the induction of decision trees

from data have been proposed in the literature. Since all the attributes are
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Boolean and we are not concerned with algorithms for pruning4 the tree, a

relatively straightforward algorithm can be used to generate the decision tree.

The algorithm used is the same as the one proposed in [76] and uses the concepts

of entropy and mutual information as defined in section 4.3.2.

At each point, the decision tree algorithm has to select one variable

to be tested at a given node. The variable selected is the one that provides the

maximum amount of information about the target class for the examples that

reached that node.

After a decision tree is derived, the transformation to a decision graph

representation is trivially performed using the facilities provided by the RODG

package. Consider a particular node ni of a decision tree and the subtree rooted

at that node (see figure 5.3).

ni

nthen

i
nelse

i

Figure 5.3: A subtree rooted at node ni

The function implemented by non-terminal node ni is given by

ni =







nthen
i if vi = 1

nelse
i if vi = 0

(5.1)

Expression (5.1) is a recursive definition of the function implemented

by any node in the decision tree. The recursion stops when nelse
i (or nthen

i )

is a terminal node. In this case nelse
i (or nthen

i ) corresponds to the constant

4The graph minimization algorithm takes care of the trade-off between training set fit and
model complexity.
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0 function or the constant 1 function, depending on the type of the terminal

node.

It must be pointed out that the decision graph that corresponds to a

particular decision tree is not isomorphic to the tree that served as the starting

point. Figure 5.4 shows a decision tree for the function f = x1x2+x3x4 and the

graph that results from applying the above definition, assuming the ordering

used is (x1, x2, x3, x4).
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Figure 5.4: A decision tree and the corresponding decision graph

5.4.1.2 Initialization Using a Constructive Induction Algorithm

Constructive induction algorithms create new complex attributes by

combining existing attributes in ways that make the description of the concept

easier. The algorithm used in fulfringe [66], identifies patterns near the fringes

of the decision tree and uses them to build new attributes. The idea was first

proposed in [69] and further developed in [70]. Another algorithm of this family,

dcfringe [101] identifies the patterns shown in the first two rows of figure 5.5.

These patterns correspond to 8 Boolean functions of 2 variables. Since there are

only 10 distinct Boolean functions that depend on two variables5, it is natural

to add the patterns in the third row and identify all possible functions of 2

5The remaining 6 functions of 2 variables depend on only one or none of the variables.
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variables. As in dcfringe and fringe, these new composite attributes are added

(if they have not yet been generated) to the list of existing attributes and a

new decision tree is built. The process is iterated until no further reduction in

the decision tree size takes place or a decision tree with only one decision node

is built.6

The composite attributes are Boolean combinations of existing at-

tributes and, therefore, the RODGs for them are created in a straightforward

way using the Boolean operators between existing functions provided by the

RODG package. Expression (5.1) can still be used to derive the RODG imple-

mented by a decision tree defined over this extended set of variables. However,

the control variable vi in expression (5.1) is no longer a primitive variable but

a composite function. This is not a problem for the Boolean function manip-

ulation routines that treat a primitive and a composite variable in an uniform

way.

It is important to note here that even though the successive decision

trees are defined using composite attributes, the RODG that corresponds to

any one of these trees is still defined over the original set of variables. The

constructive induction algorithm is simply used to derive a simpler Boolean

function to initialize the RODG reduction algorithm.

Figure 5.6 shows the successive decision trees obtained using this al-

gorithm for the function used in figure 5.4. The first decision tree created is

the same as before. Using the patterns listed in figure 5.5 the algorithm creates

the two following attributes: x5 = x1 ∧x2 and x6 = x3 ∧x4. A smaller decision

tree is then built using these attributes (together with the primitive ones, in

general) and the new attribute x7 = x5 ∨ x6 is then created. The final decision

tree has a single node that tests attribute x7. The RODG is then created by

computing f = Ite(x7, 1, 0). In this case, the final RODG is the same as the

one obtained using the initial decision tree although this is not always the case.

6The first condition is only necessary to ensure the algorithm will terminate in a reasonable
time. In normal usage, a decision tree with a single node will always be obtained.



CHAPTER 5. REDUCED ORDERED DECISION GRAPHS 92

X
4

X
3

X
1

X
2

X
4

X
1

X
3

X
3

X
2

X4

6
X

X
7

X
5

Figure 5.6: Decision trees created by fulfringe, after creating the composite
attributes x5 = x1 ∧ x2, x6 = x3 ∧ x4 and x7 = x5 ∨ x6. The rightmost figure
represents the resulting decision graph.

5.4.1.3 Initialization Using the Restrict Operator

The third way to initialize the algorithm is to use the restrict operator

[21]. This RODG operator can be used to obtain a more compact RODG

representation for a function defined by its on and off sets.

The restrict operator belongs to a family of heuristics [92] that gen-

erate a small RODG by merging, in a bottom up fashion, nodes in an RODG.

The merging of nodes is performed in a way that keeps the function that cor-

responds to the generated RODG contained in the union of fdc and fon. The

restrict heuristic is remarkably fast and obtains, in some cases, RODGs that

are much better solutions that the ones obtained by the much slower decision

tree algorithms. However, in many other cases, the solutions are much worst

and totally useless for inductive inference applications. For this reason, this

heuristic is valuable as a way to initialize the local optimization procedure but

cannot be used to generate the final RODG.

The restrict operator also has the problem that it tends to generate

RODGs that depend only on the variables that come first in the ordering se-

lected, even if this is not the best choice. For problems with a large number of

variables, the RODG initialized using this approach may not be a good starting

point.
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5.4.2 Reducing an RODG by Applying Local Transformations

Further reductions in the size of the RODG obtained using one of the

initialization procedures described above are performed in steps. At each step,

one or more nodes are removed from the RODG. To each node ni in the RODG

is associated a vector wi that contains a 1 for the positions that correspond to

instances in the training set that define paths in the RODG that go through

node ni and 0 otherwise. The j position of vector wi is denoted by wj
i and these

vectors wi can be computed recursively by applying the following expressions:

wj
0 = 1 (5.2)

wi =
(

∨

nj :nelse
j

=ni

vj ∧ wj

)

∨
(

∨

nj :nthen
j

=ni

vj ∧ wj

)

(5.3)

The RemoveNode procedure, described below, reduces the description length

by making one of the nodes in the RODG redundant. This is done by redirecting

all its incoming edges. When node ni is under consideration, the algorithm goes

through all incoming edges and tries to select, for each one of them, a different

node nk that implements a function as close to the target as possible (see figure

5.7).

i

n n

nj1 nj2

k2k1

nin

nk1 nk2

nj1 nj2

Figure 5.7: Removing one node from the RODG

The value of this function is only important for the examples that

reach ni through the edge that is being redirected. The pseudo-code in figure
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5.4.2 describes how this modification is accomplished. This algorithm takes as

input one copy of the current RODG and tries to redirect the incoming edges

for each of this nodes. If the RODG that results from redirecting each one of

these edges has a cost function smaller than the original one, the procedure

returns the modified RODG.

RemoveNode(R)

foreach ni

foreach nj s.t. nelse
j = ni For all nodes that have the else edge pointing

to ni

Select nk such that |(nk ⊕ t) ∧ wj ∧ vj| is minimal

Modify RODG such that nelse
j = nk

foreach nj s.t. nthen
j = ni For all nodes that have the then edge pointing

to ni

Select nk such that |(nk ⊕ t) ∧ wj ∧ vj| is minimal

Modify RODG such that nthen
j = nk

if Modified RODG has smaller description length

return (Modified RODG)

else

Undo changes

return (Failure)

Figure 5.8: The RemoveNode procedure.

If the above procedure fails to make one node redundant, procedure

ReplacePair is called. ReplacePair removes a pair of nodes by creating

another node that implements a function as close as possible to the functions

implemented by the pair of nodes under consideration (see figure 5.9). The

value of the new function is only relevant for the examples that reach these
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nodes.

i

k

i

jn

n n

jn

n New node

Figure 5.9: Replacing a pair of nodes by a new node.

ReplacePair(R)

foreach ni

foreach nj For each pair of nodes

w := wi ∨ wj w is 1 for all objects that reach nodes ni or nj

Create nk = ITE(vk, na, nb) such that |(nk ⊕ t) ∧ w| is minimal

Modify RODG such that incoming edges into ni and nj point to nk

if Modified RODG has smaller cost function

return (Modified RODG)

else

Undo changes

return (Failure)

Figure 5.10: The ReplacePair procedure
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5.4.3 Selecting the Best Ordering

The selection of a good ordering for the variables is of critical impor-

tance if the target is to obtain a compact RODG. Regrettably, selecting the

optimal ordering for a given function is NP-complete [85] and cannot be solved

exactly in many cases. However, many heuristic algorithms have been proposed

for this problem [26, 83].

In this setting, the problem is even more complex because the objec-

tive is to select an ordering that minimizes the final RODG and this ordering

may not be the same as the one that minimizes the RODG obtained after the

initialization step. The solution found is to use the sift algorithm for dynamic

RODG ordering [83] after each local modification is performed.

The sift algorithm is based on the fact that swapping the order of two

variables in the RODG ordering can be done very efficiently [13, 44] because only

the nodes in these two levels are affected. The algorithm selects the best position

in the ordering for a given variable by moving that variable up and down (using

the inexpensive swap operation) and recording the smaller size observed. This

procedure is applied once to all variables and can be, optionally, iterated to

convergence. This algorithm is extremely efficient since it was designed to

be applied to very large RODGs. Therefore, its repeated application to the

relatively small RODG encountered in this problems is not a major limitation

in the overall speed of the approach.

5.4.4 Efficiency Issues

The complexity of these algorithms depends strongly on the approach

used to evaluate the complexity reduction achieved by each operation. Because

the effect of each change can be estimated locally the overall description length

of the RODG or the number of exceptions created by a local modification

doesn’t need to be recomputed after each step.

With careful coding, the RemoveNode procedure requires O(s2m)

operations, where, as before, s is the number of nodes in the current RODG
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and m is the size of the training set. The ReplacePair procedure is more

expensive and requires O(s3m) operations. By using bit packing techniques

[82], the algorithm can be applied to reduce large RODGs in reasonable times.

For large problems, the decision graph obtained from the initialization

phase may be too large. In this case, the local optimization algorithm may take

a large amount of time to reduce this graph. For these problems, the algorithm

can be run on a fast mode that initializes the graph with a decision tree that

is not fully consistent with the training set data. This is obtained by stopping

the growth of the decision tree when the entropy of the samples that reach a

particular node is inferior to a given value. The larger this value, the smaller

the decision tree obtained and the simpler the initial graph. However, if this

threshold is set to high, the local optimization algorithm will not be able to

improve the solution and the generalization accuracy obtained by the decision

graph will not be any better than the one obtained by the decision tree that

was used in the initialization.

5.4.5 The Smog Algorithm

The algorithms described in sections 5.4.1 through 5.4.3 can now be

combined in a straightforward way as shown in figure 5.4.5.. The main loop

simply calls the above procedures until both return failure, while calling, at

each iteration, the reordering procedure described in section 5.4.3.

The algorithms described in this section were implemented in a system

called smog ( Selection of Minimal Ordered Graphs) that uses the RODG pack-

age described in [13] to perform the standard RODG manipulations. After an

extensive empirical evaluation of the algorithm performance with various values

of the parameters, the default value for the parameter α in equation (2.15) was

set equal to 0.5. However, for some problems, other values of this parameter

lead to better results and the user should select the appropriate value of α for

a particular application.
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MainLoop()

S :=InitRodg()

repeat

R := S Store the current RODG

R :=Reorder(R) Select best ordering for current RODG

S :=RemoveNode(R)

if S =Failure RemoveNode operation failed

S :=ReplacePair(R)

until S = Failure

return (R)

Figure 5.11: The smog algorithm

5.5 Experimental Results

5.5.1 Experiments Using the Exact Algorithm

The applicability of the exact algorithm is known to be limited to

small examples. It is, however, interesting to evaluate the limits of such an

approach and to study the dependency of the number of compatibles and the

number of primes on the problem size.

A number of simple functions was selected for this purpose. These

functions are also described in appendix B. Table 5.1 summarizes some statistics

about these functions. For each function, the RODG size required to represent

the target concept represents an upper bound on the minimum size of a RODG

consistent with the training set data. It is not a sharp bound because the

training set is chosen randomly and there may exist other functions consistent

with the target concept but with smaller RODGs. The value of this upper

bound is listed in the last column of table 5.1. Training sets for each of these

concepts were generated by randomly selecting half of the points in the domain
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and labeling them according to the target concept.

Table 5.1 also lists the sizes of the RODGs required to represent the

on, off and don’t care sets that were obtained from these training sets and the

size of the 3TRODG that represents the training set, F .

Concept # inputs RODG size
(g) fon fdc foff F Upper bound

xor5 5 14 17 15 22 11
xor6 6 23 27 24 38 13
xor7 7 36 46 38 59 15
xor8 8 56 78 62 97 17
xor9 9 97 129 92 158 19
xor10 10 160 227 160 273 21
dnfa 6 14 24 23 32 8
dnfb 7 24 43 42 53 14
dnfc 8 44 75 61 90 23
dnfd 9 45 127 124 150 23
carry4 8 51 75 61 97 32
monks1 10 79 124 81 142 10
monks2 10 89 134 124 171 25
heel6 6 14 24 22 33 8
heel9 9 74 127 101 151 11

Table 5.1: Test function statistics for the exact approach

The exact algorithm was run in these examples using a timeout of 1

hour (in a DEC/alpha machine) and a memory usage limit of 140 Megabytes.

This algorithm managed to compute the maximum compatible sets for each of

the problems, but failed to compute the full set of primes in some of them.

The results obtained, and the resulting RODG sizes are shown in table 5.2.

These results seem to imply that the applicability of the exact minimization

algorithm is limited to problems of no more than 8 variables. It is an open

question whether or not this represents a clear advantage over the exact ap-

proach proposed in [91], although the algorithms presented here seem to be less

limited by the number of points in the don’t care set. There exists, however,
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Concept # maximals # primes RODG size

xor5 15 27 10
xor6 38 107 13
xor7 90 550 15
xor8 132 35601 17
xor9 521 - -
xor10 1437 - -
dnfa 13 42 6
dnfb 27 55 14
dnfc 156 - -
dnfd 227 - -
carry4 233 - -
monks1 894 - -
monks2 568 - -
heel6 18 74 8
heel9 234 - -

Table 5.2: Resulting RODG sizes

the possibility of applying implicit enumeration techniques to the problem of

generating and solving the covering problem that results from this formulation.

5.5.2 Experiments Using the Heuristic Algorithm

An objective evaluation of the performance of the heuristic algorithm

in terms of how small are the RODGs obtained is hard to obtain because, in

general, it is impossible to obtain the value for the exact solution. An upper

bound can be computed by computing the size of the RODG needed to represent

the target concept, but, in some cases, this bound may be too lose. This is likely

to happen if there are paths in this RODG that are exercised by a only a small

number of minterms and none of these minterms is present in the training set.

Instead, the RODG sizes generated by the two most effective initial-

ization procedures were used a standard of comparison for the quality of the

final RODG generated. Since the heuristic approach can be initialized using

either the fulfringe constructive induction approach or the restrict heuristic for
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RODG reduction, it is easy to obtain the sizes after the initialization step. This

will also illustrate the need for the use of a variety of approaches to initialize the

local optimization algorithm. In fact, each of the initialization strategies used

can generate RODGs that are several orders of magnitude above the minimum

result possible.

For a number of functions labeled training set sizes of increasing size

were generated and used as the input for the smog algorithm. A fixed ordering

of the variables was used in these comparisons.

Tables 5.3 and 5.4 shows the sizes of the RODGs obtained by the two

initialization procedures referred above and the final size obtained by the smog

algorithm. It is important to note that even relatively small improvements in

the size of the RODG can have a large impact on the quality of the generaliza-

tion performed. For this reason, the differences observed in all these examples

are very important and do, sometimes, render the RODGs obtained after the

initialization algorithms uninteresting for inductive inference purposes.

It is interesting to note that, by fixing the ordering of the variables,

some of the problems are made much more difficult. For example, the mux11

problem that is easily solved by smog7 if a reordering of the variables is allowed

becomes very difficult under a fixed ordering because the RODG size, in this

problem, is very sensitive to the order selected.

7As shown in the learning curves for this problem described in chapter 7
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Concept Training Set Size smog restrict fulfringe

heel9 100 14 30 24
200 18 45 18
300 18 48 18
400 18 44 18
500 18 47 18

sm12 200 38 79 66
400 54 133 66
600 60 162 66
800 64 183 66

1000 65 191 66

str18 200 31 49 90
400 51 92 192
600 69 129 137
800 65 172 118

1000 104 210 212

heel18 200 52 91 103
400 57 169 103
600 65 231 103
800 74 309 103

1000 73 359 103

mux6 200 21 101 22
400 22 183 22
600 22 241 22
800 22 303 22

1000 22 357 22

mux11 200 64 104 2120
400 99 188 765
600 147 279 300
800 116 363 282

1000 130 444 282

par4 16 200 9 113 9
400 9 206 9
600 9 302 9
800 9 385 9

1000 9 450 9

Table 5.3: Initial and final sizes of reduced graphs, part 1
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Concept Training Set Size smog restrict fulfringe

par5 32 200 67 105 5831
400 116 200 46336
600 153 294 281376
800 242 416 537079

1000 305 463 438587

dnf1 200 42 82 329
400 81 146 5082
600 102 213 25700
800 140 256 134036

1000 173 300 459327

dnf2 200 55 102 1083
400 106 189 642
600 79 261 217
800 90 314 312

1000 224 368 605

dnf3 200 50 90 337
400 72 153 1722
600 112 213 453
800 143 280 648

1000 170 328 665

dnf4 200 55 105 1160
400 105 202 25362
600 142 283 22236
800 201 362 9597

1000 227 430 9925

Table 5.4: Initial and final sizes of reduced graphs, part 2
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Chapter 6

Finite State Machines

6.1 Introduction and Related Work

This chapter addresses a representation that is fundamentally different

from the ones addressed previously in that the objects in the domain are defined

by attribute sequences of variable length.

Finite state machines are a natural representation for hypotheses in

this domain. Unlike the case in the previous chapters the selected representation

cannot represent all possible concepts defined in the domain because only sets

that correspond to regular languages can be represented by finite state machines

[42]. This set is, however, rich enough to contain many concepts of interest

and many researchers have addressed inductive inference problems using this

representation.

With the particular encoding described in 6.2.1, the selection of a fi-

nite state machine that minimizes (2.15) is equivalent to the selection of a finite

state machine that has minimal number of states and generates outputs con-

sistent with the labels in the training set. There exists a trivial transformation

between the finite state machine that satisfies these conditions and the mini-

mal deterministic finite automaton (DFA) that accepts all positive instances in

the training set and rejects all negative instances. Therefore, all the previous

work done using the DFA formalism is relevant and closely related to the work
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discussed here.

The problem of selecting the minimum DFA consistent with a set of

labeled strings is known to be NP-complete. Specifically, Gold [32] proved

that given a finite alphabet Σ, two finite subsets S, T ⊆ Σ∗ and an integer k,

determining if there is a k-state DFA that recognizes L such that S ⊂ L and

T ⊂ Σ∗ − L is NP-complete.

If all strings of length n or less are given (a uniform-complete sample),

then the problem can be solved in a time polynomial on the input size [100,

75, 37]. Note, however, that the size of the input is in itself exponential on

the number of states in the resulting DFA. Angluin has shown that even if an

arbitrarily small fixed fraction (|Σ(n)|)ǫ, ǫ > 0 is missing, the problem remains

NP-complete [2].

The problem becomes easier if the algorithm is allowed to make queries

or experiment with the unknown machine. Angluin [3] proposes an algorithm

based on the approach described by Gold [31] that solves the problem in poly-

nomial time by allowing the algorithm to ask membership queries. Schapire

[89] proposes an interesting approach that does not require the availability of a

reset signal to take the machine to a known state.

All these algorithms address simpler versions of the problem discussed

here. In our case, the learner is given a set of labeled strings and is not allowed

to make queries or experiment with the machine. The best algorithms known

for the specific problem addressed here, where the learner has not control over

the training set, remain the ones proposed by Bierman et Al. [9, 10]. These

algorithms are based on an explicit search algorithm and are guaranteed to

obtain the exact solution, although they require, in general, exponential time.

These algorithms are described in some detail in section 6.4. Recently, con-

nectionist approaches have been proposed that address the problem of learning

from a given set of strings, but had limited success. Das and Mozer [22], Giles

et al. [29] and Polack [74] propose different approaches based on gradient de-

scent algorithms for neural network training, but their results show that this
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strategy does not have any important advantages over search-based methods

like the ones proposed by Bierman. Not only they are not guaranteed to find

the exact solution but they are also very limited in the size of problems they

can handle. For example, they are not even able to solve some of the Tomita

grammars [99], none of which requires more than 5-state DFAs. It must be

pointed out, however, that the main purpose of the connectionist work was not

to beat discrete search algorithms, but to evaluate the applicability of such an

approach to problems of this type.

Lang [53] describes a promising heuristic approach that is also based

on a discrete search strategy and is very efficient. He has shown that it can

be applied to find approximate solutions for machines with several hundred

states. Regrettably, in many cases the solutions obtained are very far from the

minimum and there is no way to estimate how close a given solution is from

the optimal one.

A different approach is to view the problem of selecting the minimum

automaton consistent with a set of strings as equivalent to the problem of

reducing an incompletely specified finite state machine.1 This problem is more

general than the one addressed here and was also proved to be NP-complete

by Pfleeger [72]. However, since this problem is of great practical importance,

many different algorithms have been proposed for its solution. Paull and Unger

[71] were the first to propose a method based on the selection of compatibility

classes, or compatibles. A compatible is a set of states that are equivalent

in the sense that they can be merged without affecting the behavior of the

machine. The minimal machine can be found by selecting a minimal set of

compatibles that satisfies two simple requirements. This method was improved

by Grasselli and Luccio [36] who showed that only a subset of the compatibles,

the prime compatibles, need be considered. An efficient implementation of these

algorithms was made available in the stamina program by Hachtel et al. [38].

This algorithm is still the state of the art in finite state machine reduction for

1The exact way in which this reduction is performed is section 6.2.
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the majority of the cases. Some problems, however, exhibit exponentially large

numbers of compatibles, rendering an explicit enumeration approach such as

stamina’s ineffective. In particular, incompletely-specified finite state machines

obtained from training sets by the procedure described in the next section tend

to have an extremely large number of compatibles. In this case, a version

of Grasseli and Luccio’s algorithm based on the implicit enumeration of the

compatibles proposed by Kam et al. [47] is more efficient.

The approach described in this chapter represents joint work with

Stephen Edwards and is also based on the use of implicit techniques to perform

the search for the minimum consistent finite state machine. Like Bierman’s

algorithms, it can be viewed as an implementation of Gold’s identification in the

limit paradigm. Unlike Bierman’s approach, however, the algorithms described

in these chapter do not explicitly try all possible solutions. The selection of the

minimal consistent finite state machine is done by keeping an implicit list of all

consistent machines.

6.2 Definitions

6.2.1 Finite State Machines

The algorithms described in this chapter can be used with minor mod-

ifications to induce either Mealy or Moore machines and the differences required

will be pointed out when needed.

Definition 10 (Mealy Machines) A Mealy Machine is a 6-tuple M = (Σ,∆, Q, q0, δ, λ)

where

Σ 6= ∅ is a finite set of input symbols (The symbol a denotes a particular input

symbol)

∆ 6= ∅ is a finite set of output symbols (The symbol b denotes a particular

output symbol)

Q 6= ∅ is a finite set of states (The symbol q denotes a particular state)
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q0 ∈ Q is the initial “reset” state

δ(q, a) : Q × Σ → Q ∪ {φ} is the transition function

λ(q, a) : Q × Σ → ∆ ∪ {ǫ} is the output function

φ denotes an unspecified transition. ǫ denotes an unspecified output.

Definition 11 (Moore Machines) A Moore Machine is a Mealy Machine

where λ(q, a1) = λ(q, a2) for all a1, a2 ∈ Σ thereby implying that the output of

a Moore Machine does not depend on the input, only the state.

The domain of the second variable of functions λ and δ is extended to

strings of any length in the usual way:

Definition 12 (Output of a Sequence) If s = (a1, . . . , ak) the notation λ(q, s)

denotes the output of a Moore or Mealy machine after a sequence of inputs

(a1, . . . , ak), is applied in state q. The output of such a sequence is defined to

be

λ(q, s) ≡ λ(δ(δ(· · · δ(q, a1) · · ·), ak−1), ak) (6.1)

By definition, if M is a Moore Machine, then λ(q, (a1, . . . , ak)) is independent

of ak.

Definition 13 (Destination State of a Sequence) If s = (a1, . . . , ak) the

notation δ(q, s) denotes the final state reached by a Moore or Mealy machine

after a sequence of inputs (a1, . . . , ak), is applied in state q. This state is defined

to be

δ(q, s) ≡ δ(δ(. . . δ(δ(q, a1), a2) . . .), ak) (6.2)

Since the definitions above may require the computation of λ(φ, a), and to avoid

unnecessary notational complexities, λ(φ, a) is defined to be equal to ǫ. This

means that the output for sequences not present in the training set is defined

to be ǫ.
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accept reject
1 0
11 10
111 01
1111 00
11111 011
111111 110
1111111 11111110
11111111 10111111

Figure 6.1: A training set with variable number of attributes.

The function δ(q, a) defines the structure of the state transition graph

of the finite state machine while the function λ(q, a) defines the labels present

in each of the edges of that graph.

The exact algorithm described in this chapter minimizes expression

(2.14) using an encoding scheme that is exactly the one described in section

2.7.1 except for the fact that the value of the output for each edge in the

underlying graph is appended to the description of the state pointed to by that

edge.

6.2.2 From Training Sets to Tree Finite State Machines

An example of a possible training set for this representation is given

in figure 6.1.2 Alternatively, the training set can be specified by one or more

sequences where, at each time, the value of the input/output pair is known.

Figure 6.2 shows an example of this alternative way to specify a training set.

Both forms of training sets description are equivalent and can be viewed as

defining a particular type of incompletely specified finite state machine, a Tree

Finite State Machine (TFSM). Figure 6.3 shows the TFSM that corresponds

to the training set in figure 6.1.

2This particular training set for this concept was proposed by Tomita [99].
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Input: A A B B A B A B B B B A B A A A B A B B
Output: 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 0 1 0

−→ time

Figure 6.2: Observed input/output sequences for some FSM.

q′0 q′1
1/1

q′2
1/1

q′3
1/1

q′4
1/1

q′5
1/1

q′6
1/1

q′7
1/1

q′8
1/1

q′9

0/0

q′10

0/0

q′11

0/0

q′12
1/ǫ

q′13
1/ǫ

q′14
1/ǫ

q′15
1/ǫ

q′16
1/ǫ

q′17
1/0

q′18

0/0

q′19
1/0

q′20
1/0

q′21

0/0

Figure 6.3: The TFSM that corresponds to the training set in figure 6.1
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Definition 14 A Tree Finite State Machine is a finite state machine satisfying

definition 10 and the following additional requirements:

∀q ∈ Q \ q0, ∃1(qi, a) ∈ Q × Σ s.t. δ(qi, a) = q

∀q ∈ Q, ∀a ∈ Σ δ(q, a) 6= q0

These requirements specify that the graph that describes the TFSM is a tree

rooted at state q0.

Definition 15 (Contained strings) An input string s = (a1, . . . , ak), ai ∈ Σ

is contained in a TFSM T = (Σ,∆, Q, q0, δ, λ) iff there exists a sequence of states

(qr0 , qr1, . . . , qrk
) in Q such that for i = 1, . . . , k δ(qri−1 , ai) = qri

, qr0 = q0 and

λ(q0, s) 6= ǫ.

6.2.3 The Satisfying Criteria

A notion of “inequality” between outputs that takes into account the

fact that some outputs can be unspecified is the following:

Definition 16 (Output incompatibility) The output in a given transition,

bi = λ(qi, ai) is said to be compatible with bj = λ(qj , aj) and denoted bi ≡ bj in

accordance with the following definition:

bi ≡ bj



















true if bi = bj

true if bi = ǫ ∨ bj = ǫ

false otherwise

(6.3)

The aim is to construct a machine M that exhibits a behavior equal

to T for all strings contained in T . Assume that M = (Σ,∆, Q, q0, δ, λ),

Q = {q0, . . . qk} and T = (Σ,∆, Q′, q′0, δ
′, λ′), Q′ = {q′0, . . . q′k′} unless other-

wise stated.

Definition 17 (Satisfying machine) A machine M is consistent with a TFSM

T if, for any input string s = (a1, . . . , ak) contained in T

λ(q0, s) ≡ λ′(q′0, s) (6.4)
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q′
a/λ′(q′, a)

δ′(q′, a)

q
a/λ(q, a)

δ(q, a)

F (q′) F (δ′(q′, a))

Tree FSM:

Mapped FSM:

Figure 6.4: Output and transition requirements depicted graphically

A function F : Q′ → Q is called a mapping function between TFSM T

with set of states Q′ and FSM M with set of states Q if F (q′0) = q0. A mapping

function F satisfies the output requirement if

Definition 18 (Output requirement)

∀q = F (q′), λ′(q′, a) ≡ λ(q, a) (6.5)

A mapping function F satisfies the transition requirement if

Definition 19 (Transition requirement)

∀q = F (q′), F (δ′(q′, a)) = δ(q, a) (6.6)

Theorem 2 For any machine M = (Σ,∆, Q, q0, δ, λ) consistent with the tree

finite state machine T = (Σ,∆, Q′, q′0, δ
′, λ′) there exists a mapping function

F : Q′ → Q, F (q′0) = q0, that satisfies the output and transition requirements.

Proof: let si
k = (ai

1, a
i
2 . . . ai

k) be an arbitrary substring of some string si con-

tained in T and let the mapping function F be defined by F (δ′(q′0, s
i
k)) =

δ(q0, s
i
k).

Consider now all strings si
k+1 = (ai

1, a
i
2 . . . ai

k+1) in T . By the hypoth-

esis, λ(q0, s
i
k+1) ≡ λ′(q′0, s

i
k+1) and therefore the output requirement has to be

satisfied (simply make q′ in expression (6.5) equal to δ′(q′0, s
i
k)).

Furthermore, since the strings si
k+1 are themselves substrings of some

string contained in T (or else no si
k+1 contained in T exists, in which case the
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requirement is automatically satisfied), F (δ′(q′0, s
i
k+1)) equals δ(q0, s

i
k+1) and

therefore F also meets the transition requirement. 2

The result in this theorem is important because it is not valid, in

general, if the incompletely specified machine T is not a TFSM.

6.3 Compatible and Incompatible States

Theorem 2 shows that the selection of a machine that satisfies the

training set is equivalent to the selection of an appropriate mapping function.

The first step in selecting such a mapping function is the computation of the

incompatibility graph.

6.3.1 The Incompatibility Graph

Two states q′i and q′j in a finite state machine T are incompatible if,

for some input string s, λ(q′i, s) 6≡ λ(q′j, s). The incompatibility graph represents

this information. The nodes in this graph are the states in Q′, and there is an

edge between state q′i and q′j if these states are incompatible.

The incompatibility graph is represented by a function I : Q′ × Q′ →
{1, 0}. I(q′i, q

′
j) is 1 if and only if states q′i and q′j are incompatible. Since the

incompatibility relation is symmetrical, I(q′i, q
′
j) = I(q′j , q

′
i) for all q′i, q

′
j ∈ Q′.

A state is never incompatible with itself, i.e., I(q′i, q
′
i) = 0. The computation of

I(qi, qj) uses the following two definitions:

• Output incompatibility: two states are output incompatible if, on some

input, the two states produce a different output.

• Transitive incompatibility: two states are incompatible if, on some input,

the respective next states are incompatible.

Definition 20 (Incompatibility Graph) The incompatibility graph is

I(q′i, q
′
j) =















1 if ∃ai, aj : λ(q′i, ai) 6≡ λ(q′j, aj) ∧ ai = a†j

1 if ∃a : q′k = δ(q′i, a) ∧ q′l = δ(q′j , a) ∧ I(q′k, q
′
l) = 1

0 otherwise

(6.7)
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q′i
a/b1

q′k

q′j
a/b2

q′l

Mealy Output

Incompatible
b1 6≡ b2

q′i
ai/bi

q′k

q′j
aj/bj

q′l

Moore Output

Incompatible
b1 6≡ b2

q′i
a/b1

q′k

q′j
a/b2

q′l

I(q′k, q
′
l) = 1

Figure 6.5: Conditions for output and transitive incompatibility.

For Moore machines, the condition marked with a dagger (†), ai = aj, is omit-

ted.

6.3.2 A Clique in the Incompatibility Graph

A clique in the incompatibility graph gives a lower bound on the size

of the minimum machine. By definition, pairs of incompatible states cannot be

mapped to the same state and therefore, a clique in this graph corresponds to

a group of states that must map to different states in the resulting machine.

A large clique in the incompatibility graph is identified using a slightly

modified version of an exact algorithm proposed by Carraghan and Pardalos

[19]. Pseudo-code for this algorithm is shown in Figure 6.6. The algorithm

takes a set of states, forms subsets which are incompatible with another state

from the set, and calls itself on these subsets. Each state from each subset is

considered in turn, although only states which are “later” in the set (according

to an ordering imposed at the beginning) are considered to be part of the new

subset.

This algorithm was modified as to stop after a given amount of time

has elapsed. Every time a clique is located, the algorithm allocates an amount

of time that is a fixed multiple of the time is took to find that clique. This

timeout scheme was developed after observing that in most cases, a clique of
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MaxClique(C = {c1, . . . , cn} ⊆ Q′, depth)

for i := 1, . . . , n − depth states being examined

O := {c : c ∈ {ci+1, . . . , cn}, I(ci, c) = 1} state to consider next

if O 6= ∅
MaxClique(O,depth + 1)

else if depth ≥ maxclique

maxclique := depth + 1 found a clique larger than any known

Figure 6.6: The clique-finding algorithm.

maximum cardinality was found fairly quickly but the algorithm spent a large

amount of time ruling out larger cliques. Such a scheme can be used because the

selection of the maximum clique is not critical for the success of the algorithm.

The size of the clique provides a lower bound on the number of states

needed in the resulting machine. This lower bound is used as the starting point

for the implicit enumeration algorithm.

6.4 The Explicit Search Algorithm

The explicit search algorithm implemented for the purpose of compar-

ison is based on the algorithm proposed by Bierman et Al. [9, 10]. It builds

a finite-state machine and a mapping function F by fitting transitions from

the TFSM T into the machine M , one by one, forcing the transition (6.6) and

output requirements (6.5) to be satisfied for all the transitions considered.

The algorithm is started with a machine containing only the reset

state. At any time, the algorithm selects a transition in T and has to verify

that transitions in M generate outputs consistent with the transitions in T . Let

q′s be the state where the transition under consideration origins and qs be the

state of M such that F (q′s) = qs and let the transition under input a be the one
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q′s q′d
a1/b1

qs q1

q2

q3

a1/b1

a2/b2

a3/b3

F () F (q′d) must be q1

(a)

q′s q′d
a1/b1

qs

q2

q3q4

qn new state

?

could be qs, q2, q3, q4, or qn

a2/b2

a3/b3
a4/b4

F ()

F ()

(b)

Figure 6.7: The two main cases of the explicit algorithm

under consideration. Two main cases should be considered, shown in figure 6.7:

• The choice of the mapping of the destination state is forced by an existing

transition, labeled with a. If this is the case, two things may happen:

– The output of the corresponding transition in M is consistent with

the output of the transition in T . This means that the machine M

is, so far, consistent with T .

– The output of the corresponding transition is not consistent with the

output of the transition in T . In this case, some transition in M (not

necessarily this one) is wrong and the algorithm backtracks to the

last point where it had a choice and tries another assignment of the

destination state.

• There is no existing transition labeled with a, so any of the existing states

or a new state is a possibility.

6.5 Solution Using an Implicit Enumeration Algo-

rithm

The implicit approach described in this section avoids the need to

explicitly search for the right mapping function. It does so by keeping an
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implicit description of all the mapping functions that satisfy the output and

transition requirements.

The discrete function manipulation needed to keep this implicit list

of possible mappings is performed by a multi-valued RODG package Discrete

function manipulation using this type of representation is briefly described de-

scribed in appendix A.

This approach makes the implicit algorithm very simple to describe,

but incurs the overhead imposed by the use of discrete function manipulation

routines. This overhead can be recovered if the regularities of the problem make

the use of an implicit enumeration technique more efficient than an explicit one.

6.5.1 Implicit Enumeration of Solutions

An implicit list of the valid mapping functions F : Q′ → Q can be

directly manipulated using simple Boolean operations. This list is kept by

considering a function F : Q|Q′| → {0, 1} defined as follows:

Definition 21 F(x0, x1, . . . , x|Q′|−1) = 1 for the point v0, v1, . . . , v|Q′|−1 if the

mapping function F defined by F (q′0) = v0, F (q′1) = v1, . . . , F (q′|Q′|−1) = v|Q′|−1

produces a machine |Q′| that satisfies the transition and output requirements

(6.6) and (6.5).

There is a one-to-one correspondence between each variable xi in the

support of F and each node q′i ∈ Q′. Therefore, restrictions on valid mapping

functions can be written as restrictions on the variables xi. If two states in

T , q′i and q′j , have to be mapped to different states, this is equivalent to the

statement that F can only be true for points where xi 6= xj.

The transition and output requirements impose restrictions on the

function F . Let q′i and q′j be two states in Q′. For any two transitions out

of these states that take place on the same input and have different outputs,

the output requirement forces the source states of the transition to be mapped

to to different states. Let λ′(q′i, ai) = bi and λ′(q′j , aj) = bj. Then, for Mealy

machines this requirement is:
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(ai = aj) ∧ (bi 6≡ bj) ⇒ xi 6= xj. (6.8)

For Moore machines, different outputs imply different states even if the inputs

are not equal:

bi 6≡ bj ⇒ xi 6= xj . (6.9)

Next-state determinism implies that, for any two transitions in the

original machine that take place on the same input, the same assignment for

the initial states implies the same assignment for the final states. Let q′k =

δ′(q′i, ai) and q′l = δ′(q′j , aj). Then, this requirement translates into the following

restriction:

(ai = aj ∧ xi = xj) ⇒ (xk = xl). (6.10)

This can be rewritten as

(ai = aj) ⇒ (xi 6= xj ∨ xk = xl). (6.11)

For Mealy machines, (6.8) and (6.11) can be used to form F using the algorithm

in figure 6.8. For Moore machines, the lines that impose the output restriction

are changed to use (6.9) instead of (6.8).

6.5.2 Using the Incompatibility Graph to Improve Performance

The above description of the implicit algorithm is very simple because

all the complex manipulation of Boolean functions is performed by the decision

graph package. However, for complex problems, the storage requirements of

the RODG package limit the usability of the algorithm.

Although (6.8) and (6.10) contain all the information required to fully

specify F , the algorithm can be made more efficient by making use of the

information contained in the incompatibility graph. In particular, if I(q′i, q
′
j) =

1, then F (q′i) 6= F (q′j). This implies that (6.8) and (6.9) can be replaced by:

I(q′i, q
′
j) = 1 ⇒ xi 6= xj. (6.12)
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MainLoop()

F := 1

R := ∅ Stores the processed states

foreach q′i ∈ Q′

R := R ∪ q′i Add this state to the list

foreach q′j ∈ R

foreach a ∈ Σ s.t. δ(q′i, a) 6= φ ∧ δ(q′j , a) 6= φ

if λ′(q′i, a) 6≡ λ′(q′j, a) Output requirement

F := F ∧ (xi 6= xj)

q′k := δ(q′i, a)

q′l := δ(q′j , a)

F := F ∧ ((xi 6= xj) ∨ (xk = xl)) Transition requirement

return F

Figure 6.8: The implicit algorithm basic loop

As described in section 6.5.1, the resulting function F is 1 for all

points in Q|Q′| that represent a valid mapping. In general, many mappings

exist that satisfy the output and transition requirements. In particular, if a

mapping F : Q′ → Q exists, at least |Q|! mappings exist and can be obtained

by renumbering the states in the resulting machine.

Since F implicitly keeps track of all these redundant mappings, it

makes sense to preassign the mapping of some of the states. This can be done

by observing that the states in a large clique in the incompatibility graph have to

be mapped to different states and therefore pre-assigning the mapping of these

states to arbitrary (but different) states in M does not discard any simpler

solution and makes the computation of F much simpler.

Once the mapping of these states has been performed, some mappings

for other states can be removed from consideration. In particular, let C =
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ComputeAllowed(C)

foreach q′i ∈ Q′

Ai := 1

foreach q′ci
∈ C

Aci
:= (xci

= qi) States in the clique are assigned a unique state

foreach q′j ∈ Q′ \ C

foreach q′ci
∈ C

if I(q′ci
, q′j) = 1 If a node is incompatible with a node in the clique

Aj := Aj ∧ (xj 6= qi) it should be assigned a different value

Figure 6.9: Computation of the allowed mappings functions

{q′c0, q′c1 , . . . , q′cl
} be a clique in the incompatibility graph. Then, the mapping

of the states in this clique can be chosen arbitrarily to be F (q′c0) = q0, F (q′c1) =

q1, . . . , F (q′cl
) = ql. Furthermore, if q′i is a node such that I(q′i, q

′
cj

) = 1, then

F (q′i) 6= qj.

This information can be used by defining a family of functions Ai :

Q|Q′| → {0, 1} that describe the values allowed for each of the variables xi.

These functions can be computed by the procedure shown in figure 6.9.

6.5.3 Ordering and Other Efficiency Issues

There are two important ordering problems to be addressed in the

algorithm. The first one is the order in which states are included in the set R in

the pseudo-code in figure 6.8. The experiments have shown that no other order-

ing improved significantly the performance when compared with the ordering

obtained by performing a breadth first search in the graph that represents T .

This is the ordering used, by default.

The second ordering that deserves consideration is the ordering in

which variables are stored internally in the RODG package. The best results
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were obtained by sorting the states according to the degree of the respective

nodes in the incompatibility graph. More specifically, the states that correspond

to nodes with higher degree in the incompatibility graph come first in the

ordering. The intuitive justification for this ordering is that states that are

incompatible with a larger number of other states have less degrees of freedom

and restrict the branching of the RODG used to represent F .

Dynamic reordering algorithms were also tried but, although this tech-

nique reduced somewhat the memory requirements of the algorithm, it also im-

pacted the run-time in a very unfavorable way. It is, therefore, not used in any

of the experiments described in section 6.6.

Using the techniques described in section 6.5.2, the main loop of the

algorithm is shown in figure 6.10. A large clique of the incompatibility graph

is selected and the family of functions Ai is computed. This algorithm was

implement in the program iasmin.

6.6 Experimental Results

6.6.1 Comparison With Algorithms for IFSM Reduction

As described in section 6.2.2, the problem can be viewed as the min-

imization of the incompletely-specified finite state machine T . Algorithms for

the minimization of incompletely specified finite state machines have been the

subject of extensive research and several implementations of these algorithms

are available. In this section, the performance of iasmin, the algorithm de-

scribed in section 6.5 is compared with the performance of two algorithms that

solve the problem using the FSM reduction paradigm: stamina [38] and ism

[47].

To perform this comparison, three target machines, shown in Fig-

ure 6.11 were selected. For each machine, a number of training sets was gen-

erated, each training set consisting of a single random string of length between

10 and 65. For each time point, the value of the output was available, and,
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MainLoop()

F := 1

R := ∅ Stores the processed states

C := LargeClique()

ComputeAllowed(C)

foreach q′i ∈ Q′

R := R ∪ q′i Add this state to the list

F := F ∧ Ai

foreach q′j ∈ R

foreach a ∈ Σ s.t. δ(q′i, a) 6= φ ∧ δ(q′j , a) 6= φ

if I(q′i, q
′
j) Output requirement

F := F ∧ (xi 6= xj)

q′k := δ(q′i, a)

q′l := δ(q′j , a)

F := F ∧ ((xi 6= xj) ∨ (xk = xl)) Transition requirement

return (F)

Figure 6.10: Optimized version of the implicit algorithm
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therefore, each training set was effectively equivalent to a set of labeled strings

with a size comprised between these two limits. For each length considered,
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Figure 6.11: Machines used to generate training sets

five training sets were generated. The various programs were then used to find

the minimum machine consistent with each of the training sets.

Figures 6.12, 6.13, and 6.14 show the times required to find a solution.

Each point represents the average over the five different training sets generated

for each given length. These figures show that, in all cases, the state mini-

mization algorithms require a time that increases exponentially in the length

of the string while iasmin shows a less drastic increase. The different behavior

observed illustrates well the distinct exponential dependences off the different

approaches: traditional state minimization algorithms require time exponential

in the size of the original training set, while the algorithm described in this

chapter requires time exponential in the size of the final machine.

6.6.2 Comparison With the Explicit Search Algorithm

6.6.2.1 Inference of Randomly Generated Machines

The previous section has shown that the algorithms for the minimiza-

tion of incompletely specified finite state machines cannot be used effectively

for the task at hand.

The algorithms based on explicit search presented on section 6.4 per-
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Figure 6.12: Run-time comparison for training sets generated with the first
machine
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Figure 6.13: Run-time comparison for training sets generated with the second
machine
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Figure 6.14: Run-time comparison for training sets generated with the third
machine

form, however, much better and deserve a more careful comparison. This

comparison was performed on a large set of randomly generated finite state

machines. The random generation of finite state machines with a known num-

ber of minimum reachable states was performed using the following procedure.

First, a random state transition graph with a number of states varying between

4 and 25 was generated. By random graph, is it meant that for each state

and each possible input, a random output is chosen uniformly from all possible

values and a random next state is chosen uniformly from all possible states.

This does not guarantee that all states are reachable or that the ma-

chine is irreducible. The number of states in the minimum consistent FSM is

clearly bounded above by the number of states in the machine generated in this

way. However, the number of states in the minimum consistent solution can be

smaller when, for example, not every state in the generated machine is visited

or not every transition is taken by the inputs present in the training set. It is

still possible that the generating machine is itself non-minimal.

To obtain a tighter bound on the number of states in the minimal
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consistent machine for a given training set, all states and transitions which

were not visited are discarded. The resulting completely specified machine is

sent through a traditional state minimizer, stamina, [38] and the number of

states in this minimized machine is used as an estimate.

To examine the performance of the implicit and explicit search ap-

proaches with differently-sized minimum consistent machines, 575 training sets3

were generated from 115 finite state machines generated in this fashion. Each

program was given an hour and 150 Megabytes of memory to find the minimum

consistent machine in a DEC/alpha workstation.

Figure 6.15 shows what fraction of the problems each algorithm was

able to complete in the allotted time/space plotted as a function of the number

of states in the minimum consistent machine.

These results show that the overall performance of the two algorithms

is comparable and no clear advantage exists in favor of each one of the ap-

proaches.
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Figure 6.15: Fraction of runs completed

3Each training set contained twenty strings of thirty steps each. Each state machine had
two inputs (0 and 1), and two outputs (0 and 1).
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6.6.2.2 Inference of Machines from Structured Domains

Although the experiments with random machines performed in the

previous section give a clear idea of the potential and limitations of the al-

gorithms studied, it is also interesting to evaluate their performance on more

structured problems. In fact, problems from structured domains tend to be

more regular and exhibit a higher level of symmetry, thereby making them

potentially more difficult to learn because it is harder to distinguish between

different states.

In this section, the target machines are the finite state machines that

correspond to the following robot-worlds:

1. N-Rooms: The robot is in a circular house with N rooms. At each point in

time, the robot has 3 possible actions (inputs to the finite state machine):

toggle the light switch, move to the room on the right or move to the

room on the left. The output is 1 if the light in the current room is on, 0

otherwise.

2. N×N Checkerboard: The robot is in a N×N checkerboard field that wraps

around in torus-like fashion. There are 4 possible actions: move left, move

right, move up or move down. The output is related to the square the

robot is on: the white squares have the same output and each black square

has a distinct output.

3. N-Counters: The robot is in a circular house with N rooms. There are

two possible actions: move to the next room on the right or stay in the

current room. The output is one only in the room immediately to the left

of the starting room.

Figure 6.16 shows an example of one machine from each of the families

listed above. For each problem in these three families, five experiments were

performed. Each training set consisted of twenty strings, each of length thirty.

Table 6.1 lists the number of successful runs using the same time and memory
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Figure 6.16: Examples of the structured finite state machines used

limits that were used in the previous section. Runs that failed to complete

within the allotted time and memory requirements were considered failures.

These results seem to imply that inferring machines that exhibit a high level

Problem Iasmin Explicit

2-room 5 5
3-room 1 3
4-room 0 0
2x2 board 5 5
3x3 board 5 5
4x4 board 0 0
4-counter 5 5
5-counter 5 5
6-counter 5 5
7-counter 5 5
8-counter 0 0

Table 6.1: Number of successful runs.

of symmetry in the state transition graph may indeed be more difficult than

inferring randomly generated machines. The data is, however, somewhat sparse

and more experiments are required to establish a firm conclusion. In fact, some

of these problems have multi-valued inputs or outputs, thereby making a direct
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comparison impossible. This is not true, however, for the 8-counter problem, a

finite state machine with only 8 states with binary valued inputs and outputs.

This example seems to show that these machines generate harder problems than

the randomly-generated machines studied in the previous section. However, the

increased difficulty may be related with other characteristics of the machine,

such as the imbalance between the number of times the machine outputs a 1

versus the number of times the machine outputs a 0.
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Chapter 7

Experimental Evaluation and

Applications

7.1 Experimental Comparison of Generalization Ac-

curacy

A full comparison of the relative merits of all algorithms described

in the previous chapters with all other approaches available for the task of

performing induction from examples is a very difficult task. Ultimately, each

algorithm has its own strengths and weaknesses and will outperform other algo-

rithms in a particular set of problems and be outperformed by them in another

set. In fact, the conservation law presented in section 2.4 proves that this has to

be the case, and that any learning algorithm will always outperform any other

learning algorithm in some set of problems.

There is, however, a case to be made for algorithms that perform

well in the majority of problems that are commonly encountered. The tests

performed using problems extracted from the literature and from commonly

available databases have shown that, of all the algorithms presented in this dis-

sertation, the heuristic algorithms for the inference of reduced ordered decision

graphs (smog) proved to be the most robust. The algorithms for the inference of
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Boolean networks (muesli) also perform well in many cases but are less robust

in problems where the value of the label is poorly correlated with the value of

input variables. This situation reduces the effectiveness of the heuristic based

on the maximization of mutual information and renders the muesli algorithm

relatively ineffective in these problems. In the next section, the quality of the

inference performed by smog and muesli is compared in a detailed way with the

quality of the inference performed by C4.5 [78], the most widely used algorithm

for the inference of decision trees.

7.1.1 Experimental Setup

The preferred approach to perform the performance comparison be-

tween different algorithms is to use multiple runs with fixed training set sizes.

This approach raises the problem of selecting the training set size small enough

to make the problem non-trivial but large enough to permit meaningful induc-

tion. For instance, the size of the training set may be selected as a function of

the complexity of the target concept when expressed using a given representa-

tion scheme. This was the approach used by Pagallo and Haussler [69] to derive

appropriate training set sizes for the problems they consider.

Regrettably, this approach gives, in many cases, estimates of the re-

quired size that are too pessimistic because they are based on theoretical worst-

case bounds [40]. Furthermore, the complexity of the representation of the

target concept depends on the underlying representation used by the learning

algorithms. This makes it difficult to use this approach when two very different

representation schemes are used.

Instead of evaluating the performance of the algorithms using only

training sets of one fixed size, the average accuracy for training sets of increasing

size was computed and used as a measure of performance. For each problem, a

test set was selected, containing either all the available data (for the problems

for which a limited amount of data is available), or (for problems where larger

amounts of data are available) a set of 5000 instances randomly generated and
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labeled in accordance with the target concept.

Ten different sizes for the training sets were then chosen. For problems

with test sets larger than 1000, the training sets have sizes that are a multiple

of 100. For problems with test sets of size z < 1000, the training set sizes are

of sizes i ∗ z/10, i = 1 . . . 10.

Each experiment consists in evaluating the performance of the pro-

grams using 10 different training sets of increasing size, randomly generated

in such a way that the larger training sets always include the smaller ones.

The experiment error for each of the programs is obtained by averaging the

generalization error in the test set over the 10 different training set sizes. The

experiment difference is obtained by subtracting the experiment errors of the

two algorithms under comparison.

All algorithms were run on exactly the same data by transforming the

problems that contain non-Boolean attributes into problems with only binary

attributes using binary coding.

For each problem 10 experiments1 were performed and the average

error was computed by averaging the 10 experiment errors. The values of

the 10 experiment differences were used to compute the average difference and

the difference variance. This values were used to perform an analysis of the

statistical significance of the observed differences in accuracy.

7.1.2 Evaluation of the Statistical Significance of Observed Dif-

ferences

Let si and ri denote the experiment error in experiment i for algorithm

S and algorithm R, respectively. Under reasonable assumptions, the differences

in performance observed for each run, zi = ri − si can be viewed as samples

of a random variable z with approximate Gaussian distribution of parameters

(µz, σ
2
z). This assumption is justified if the number of actual runs performed is

large enough to satisfy the requirements of the central limit theorem.

1This corresponds to a total of 100 runs by each program.
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The parameters µz and σz are unknown and have to be estimated

from the experimental data. The objective is to use the experimental results to

test the hypothesis that the average generalization accuracy of algorithm S is

superior to that of algorithm R.2

• H0 : µz > 0

against the opposite hypothesis

• H1 : µz ≤ 0

This hypothesis testing is to be performed with a pre-specified significance level,

β, that is defined as the probability that H0 is accepted as true when in fact it

is false. A low significance level decreases the probability of accepting a false

H0 as true, but increases the probability of rejecting a true H0 as false. Values

commonly used for the significance level in the absence of other restrictions are

β = 0.1 or β = 0.05.

In order to obtain a test for the validity of H0, observe that the non-

biased estimators for the unknown parameters are

z =
1

n
Σi(zi) (7.1)

and

σ̂2
z =

1

n − 1
Σi(zi − z)2 (7.2)

Under this conditions, it is known [59] that

t =
(z − µz)

√
n

σ̂z
(7.3)

has a Student’s t distribution with n−1 degrees of freedom. Therefore, hypoth-

esis H0 should be accepted and the performance of algorithm S judged superior

in a statistically significant way if

z >
σ̂z√
n

tn−1,1−β (7.4)

2Note that the term hypothesis used in this section is unrelated with the hypotheses de-
rived by the learning algorithms. Regrettably, hypothesis testing is the commonly accepted
terminology in the statistical literature and this overloading of the word is unavoidable.
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where tn−1,1−β is taken from the tables of the Student’s t distribution. This is

the criterion that will be used in the next sections to evaluate the significance

of observed differences in performance in the algorithms.

Expressions (7.1) and (7.2) are used to compute the average difference

and the difference variance for the set of 10 experiments that are performed for

each problem. In the sequence, all tests will be performed at a significance level

of 0.05, meaning, for this particular test, that, in the average, an algorithm will

be erroneously judged superior to another one no more than 5% of the cases.

7.1.3 Results in Problems From the Machine Learning Litera-

ture

Table 7.1 lists the average error for the C4.5, smog and muesli algo-

rithms. For the smog and muesli algorithms, the average difference and the

difference variance between the generalization accuracy obtained by them and

the generalization accuracy obtained by C4.5 is also shown. A positive differ-

ence means that C4.5 showed a larger error than the algorithm in that column

in a particular problem. These values were used to evaluate the statistical sig-

nificance of the differences observed. C4.5, smog and muesli were run using

the default parameters.

A circle in a given row marks the algorithm that obtained the lowest

average error in the given problem. A filled circle means that the difference

observed is statistically significant (when compared with C4.5).

Figures 7.1, 7.2 and 7.3 show the average learning curves observed for

the problems par5 32, mux11 and kkp, this last one being the problem used as

an example in section 1.1.1. Each curve represents the average error observed

for the 10 experiments performed. Some of these results are much better than

any ones previously published. For example, the problem par5 32 was solved

exactly for all experiments when the training set size reached 800 while Pagallo

and Haussler reported that they were unable to solve this problem using the

constructive induction algorithm fringe even using training sets of size 4000
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Problem C4.5 smog muesli

Error Error Aver. diff. ±σ Error Aver. diff. ±σ

dnf1 21.13 20.10 1.04 ± 1.15 • 18.04 3.09 ± 0.97
dnf2 18.52 10.84 7.69 ± 1.28 • 10.50 8.03 ± 1.25
dnf3 12.70 • 8.14 4.56 ± 1.05 8.49 4.21 ± 1.32
dnf4 32.93 20.26 12.67 ± 2.10 • 18.55 14.38 ± 0.77
mux6 1.38 • 0.19 1.19 ± 0.89 1.95 -0.57 ± 1.19
mux11 18.52 • 4.99 13.53 ± 1.67 16.27 2.25 ± 2.15
par4 16 34.86 • 0.77 34.09 ± 5.79 24.50 10.36 ± 5.88
par5 32 45.10 • 20.60 24.50 ± 4.49 44.47 0.63 ± 0.46
monk1 6.03 • 0.56 5.48 ± 1.34 3.66 2.38 ± 1.96
monk2 29.37 • 12.82 16.55 ± 1.49 18.49 10.88 ± 1.43
monk3 0.96 • 0.44 0.53 ± 0.58 0.70 0.26 ± 0.85
vote 3.76 • 2.85 0.91 ± 0.33 3.08 0.68 ± 0.48
mushroom 1.68 1.41 0.27 ± 0.68 • 1.16 0.51 ± 0.41
splice 10.45 10.09 0.36 ± 0.83 • 6.93 3.52 ± 0.57
tictactoe 7.90 • 4.33 3.57 ± 0.60 7.22 0.68 ± 0.60
breast 3.76 3.62 0.14 ± 0.50 • 3.32 0.44 ± 0.50
kkp 9.81 • 1.44 8.37 ± 1.77 5.96 3.85 ± 2.14
krkp 2.88 ◦ 2.74 0.13 ± 0.30 2.96 -0.09 ± 0.46
heel9 7.78 • 1.60 6.17 ± 0.84 2.12 5.66 ± 1.39
heel 24.03 • 2.52 21.51 ± 1.30 4.31 19.73 ± 2.04
sm12 9.96 • 2.01 7.94 ± 0.67 3.72 6.23 ± 0.88
str18 10.95 • 5.95 5.01 ± 1.14 6.83 4.12 ± 1.33

Table 7.1: Average errors for C4.5, smog and muesli

[69].

The superior performance of smog in problems like mux11 is partly

due to its ability to select the right ordering. For this problem, the value of

the output is controlled by two sets of bits in the input: 3 control bits and

8 data bits. The 3 control bits select which one of the data bits defines the

output value. Other authors have noted [77] that this problem is very hard

for decision tree algorithms because the mutual information heuristic tends to

select the data bits first, while the minimal decision tree (or graph) should test

the control bits first. The reordering heuristics used in smog correctly identify
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the right ordering even with very small training sets and account for the large

differences in performance observed.
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Figure 7.1: Learning curves for the par5 32 problem

7.1.4 Results in the Wright Laboratory Benchmark Set

The results obtained in this set of problems were obtained by Timothy

Ross and the Pattern Theory Group at the Air Force Wright Laboratory. They

kindly agreed to run smog in a benchmark his group assembled for the purpose

of evaluating the efficacy of diverse learning algorithms.

Each one of the problems is defined over a space of 8 Boolean at-

tributes. The setup is similar to the one used in section 7.1.3. One experiment

consists of 10 independent runs with increasing training set sizes. The training

set sizes selected are the multiples of 25 between 25 and 250. As before, 10

experiments were performed for each problem.

Tables 7.2 and 7.3 on pages 140 and 141 show the results obtained

for the problems in this set. The meaning of the column labels is the same as

before. The results listed for the program C4.5 were obtained with the best
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combination found for the several options allowed by this program [34]. Since

these problems are known to be noise free smog was run with the parameter

α set to a value close to 0. Tables 7.2 and 7.3 show that the generalization

error obtained with smog was smaller in a statistical significant way for a large

number of problems. C4.5 was significantly superior only for a set of 3 functions

that are randomly generated but have a very different number of positive and

negative examples (see appendix B). Apparently, with the parameters used,

C4.5 is better at detecting an unpredictable function and simply predicting the

class of unclassified samples as the more commonly observed one.

This behavior can also be obtained with smog if the default value for

α is used. The last column in tables 7.2 and 7.3 shows the results obtained with

smog when the parameter α in equation (2.15) is set the default value. Setting

a higher value for this parameter makes it easier for smog to generalize better

in this type of random functions.

Other approaches were also tested in this benchmark. In particular,

an inference algorithm based on the popular two-level minimizer espresso and

the nearest-neighbor classification algorithm. This algorithm classifies unseen

samples in the same class as the closest available sample in the training set and

is commonly used as a standard of comparison. The graph in figure 7.4 shows

a plot of the generalization error for each of the problems in tables 7.2 and

7.3. The problems were sorted in increasing order of generalization error for

the smog algorithm to make the plot more readable. Algorithms with smaller

errors exhibit a curve closer to the y axis in this graph. The plot shows that

the smog algorithm shows a smaller generalization error for the majority of the

problems in this benchmark.
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Problem C4.5 smog (α = 0.01) smog (α = 0.5)
Error Error Aver. diff. ±σ Error

add0 6.09 • 4.73 1.35 ± 0.80 4.95
add2 10.49 • 8.02 2.46 ± 2.12 8.03
add4 1.68 • 0.25 1.43 ± 1.67 0.25
and or chain8 1.50 ◦ 1.40 0.10 ± 0.35 1.59
ch15f0 11.34 • 7.96 3.38 ± 1.48 8.18
ch176f0 1.50 ◦ 0.94 0.56 ± 1.78 0.97
ch177f0 0.94 • 0.00 0.94 ± 1.33 0.00
ch22f0 5.15 ◦ 4.71 0.44 ± 1.00 4.34
ch30f0 4.70 ◦ 4.68 0.02 ± 0.89 4.57
ch47f0 7.43 • 6.48 0.94 ± 1.34 6.38
ch52f4 8.52 • 7.86 0.65 ± 0.87 8.04
ch70f3 3.94 • 3.48 0.46 ± 0.50 3.46
ch74f1 ◦ 5.52 5.53 -0.01 ± 0.78 5.57
ch83f2 9.79 ◦ 9.76 0.03 ± 0.73 9.07
ch8f0 5.41 • 4.83 0.58 ± 0.84 8.16
contains 4 ones 21.95 • 13.99 7.96 ± 0.79 13.19
greater than 7.09 • 5.79 1.31 ± 0.83 5.99
interval1 13.46 • 11.18 2.29 ± 0.82 11.46
interval2 17.55 • 14.04 3.51 ± 0.81 14.45
kdd1 0.38 ◦ 0.13 0.25 ± 0.79 0.13
kdd2 1.61 ◦ 1.38 0.23 ± 0.42 1.69
kdd3 0.81 0.81 0.00 ± 0.00 0.88
kdd4 0.00 0.00 0.00 ± 0.00 0.00
kdd5 4.05 • 3.31 0.74 ± 0.47 3.51
kdd6 ◦ 0.97 1.13 -0.16 ± 0.47 5.34
kdd7 7.84 • 2.43 5.41 ± 0.78 2.43
kdd8 1.92 ◦ 1.75 0.17 ± 0.92 1.91
kdd9 4.64 • 3.59 1.05 ± 1.07 3.34
kdd10 7.52 • 4.77 2.75 ± 1.06 4.90

Table 7.2: Average errors for the Wright Labs benchmark, part 1



CHAPTER 7. EXPERIMENTAL EVALUATION AND APPLICATIONS 141

Problem C4.5 smog (α = 0.01) smog (α = 0.5)
Error Error Aver. diff. ±σ Error

majority gate 13.82 • 9.57 4.25 ± 0.66 9.84
modulus2 4.78 ◦ 4.64 0.14 ± 0.28 4.76
monkish1 2.38 • 1.25 1.12 ± 0.87 1.25
monkish2 17.43 • 12.85 4.57 ± 1.12 12.73
monkish3 1.84 ◦ 1.72 0.12 ± 0.34 1.59
mux8 5.47 • 3.91 1.56 ± 1.41 4.02
nnr1 17.50 • 11.80 5.70 ± 1.07 12.21
nnr2 2.25 ◦ 1.69 0.56 ± 1.19 1.75
nnr3 11.63 • 10.96 0.66 ± 0.77 11.15
or and chain8 ◦ 1.07 1.19 -0.12 ± 0.32 1.35
pal 6.34 • 5.21 1.13 ± 1.11 3.88
pal dbl output 19.95 • 18.13 1.82 ± 0.93 18.75
pal output 23.04 ◦ 23.00 0.04 ± 0.50 23.60
parity 33.28 • 14.88 18.40 ± 3.26 13.88
primes8 13.39 ◦ 13.35 0.04 ± 0.89 13.52
remainder2 ◦ 10.88 11.01 -0.13 ± 0.85 10.71
rnd1 24.25 • 23.75 0.50 ± 0.48 24.42
rnd2 ◦ 23.99 24.02 -0.04 ± 0.61 24.71
rnd3 ◦ 23.25 23.43 -0.18 ± 0.55 24.21
rnd m1 • 0.84 0.96 -0.11 ± 0.10 0.39
rnd m5 • 3.05 3.54 -0.48 ± 0.42 2.05
rnd m10 • 4.99 5.49 -0.50 ± 0.69 3.86
rnd m25 10.05 ◦ 9.88 0.18 ± 0.63 9.27
rnd m50 16.95 ◦ 16.58 0.37 ± 0.84 16.26
rndvv36 15.07 • 13.05 2.01 ± 1.17 13.24
substr1 10.96 • 6.76 4.20 ± 1.06 7.23
substr2 8.75 • 6.66 2.09 ± 1.10 6.87
subtraction1 15.80 • 13.59 2.21 ± 1.07 13.56
subtraction3 1.68 • 0.25 1.43 ± 1.67 0.25

Table 7.3: Average errors for the Wright Labs benchmark, part 2
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7.1.5 Analysis

The results presented in the previous sections have shown that the

algorithms described in chapter 5 and implemented in the program smog exhibit,

for many problems of interest, a higher performance accuracy than standard

decision tree algorithms like C4.5. The algorithms for the inference of Boolean

networks also show good generalization accuracy, but are less robust when the

value of the class label is poorly correlated with the attribute values.

It must be pointed out that, for problems that contain non Boolean

attributes, the performance of C4.5 is not the same when it uses the original

representation and the binarized version that contains only Boolean valued at-

tributes. However, most problems did not require this transformation, and, in

particular, none in the second benchmark set did. The setup used did not make

use of the superior flexibility of C4.5 in the handling of multi-valued attributes.

If this turns out to be important, it may be interesting to generalize smog to

handle multi-valued attributes directly, or, at least, have the option to do so in

specific circumstances.

7.2 Application to Handwritten Character Recogni-

tion

7.2.1 Problem Description

This section describes the application of the muesli and smog algo-

rithms to a real world problem that is much more complex than any of the ex-

amples used in the comparisons performed in the previous section. The problem

addressed is the recognition of handwritten digits introduced in section 1.1.1.

The input data used was obtained from the National Institute of Standards and

Technology (NIST) database of segmented handwritten characters [28] available

in CDROM.

The handwritten characters in this database were obtained by scan-

ning a large number of forms filled by volunteers and were assembled under the
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auspices of NIST. This database contains a total of 223,125 images of handwrit-

ten digits. This images have been segmented and labeled and each file contains

the image of a single digit digitized in a 256 by 256 binary grid. Figure 1.4 in

page 6, used to introduce this problem as a particular example of a inductive in-

ference problem, shows an example of some characters as they are present in the

database. The segmentation and the classification was manually checked and

corrected and the error rate of the segmented character files is less that 0.1%.

However, the segmented images sometimes contain noise, like, for instance, the

digit 1 in figure 1.4.

From this database, a training set of 53339 digits was selected together

with an independent set of 52467 digits that was used to evaluate the accuracy

obtained by the algorithms.

7.2.2 Pre-processing and Encoding

The images in the database were subject to a standard pre-processing

procedure that is commonly used by the majority of the algorithms used for

this problem [54]. First, they were de-skewed. This procedure identifies the

angle of the principal component of the image and performs a transformation

of the image using a linear operator that has the net effect of normalizing the

characters with respect to the angle they were written initially.

The de-skewed characters were then normalized to a 16 by 16 grid.

This normalization was performed by finding the bounding box of each image

and performing a new linear transformation that reduced all characters to the

same size.

Finally, the resulting images were discretized to binary values using

a fixed threshold value. This last step is not commonly used because other

algorithms like, for instance, neural networks, can handle continuous valued

attributes directly. Examples of the data that result from this transformations

are presented in figure 7.5.

The above discretization procedure has already mapped the original
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Figure 7.5: Discretized version of the digit recognition problem

problem into a 256 variable Boolean problem. However, since the problem is

a multi-class classification, an appropriate encoding of the outputs has to be

performed. The outputs were encoded using a 15 bit Hadamard error correcting

code, the third option described in section 1.1.4. Table 7.4 shows the correspon-

dence between the class defined by each digit and the desired values of the 15

outputs for this particular code. The reader may verify that this code ensures

Digit Code

0 000000000000000
1 101010101010101
2 011001100110011
3 110011001100110
4 000111100001111
5 101101001011010
6 011110000111100
7 110100101101001
8 000000011111111
9 101010110101010

Table 7.4: Digit encoding using a 15 bit error-correcting code
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a minimum Hamming distance of 8 between any two codewords.

7.2.3 Results

A 4 processor DEC/alpha machine was used to run these examples.

The muesli program was run for a period of 24 hours and the best solution

found at that time was used. The algorithm was still increasing the size of the

network and better results might have been obtained with a longer execution

time, but, for a problem of this size, the rate of the improvement becomes very

slow. The smog algorithm was also run on this problem, using the fast mode

described in section 5.4.4.

For this problem, there is an extra degree of freedom when generating

the classification of a given input because the classifier may decide not to classify

a character if it doesn’t have enough confidence in the classification obtained.

Such an action is termed a rejection. The ability to perform rejections is very

important because, in real applications, the consequence of a rejection is usually

less severe than the consequence of a wrong classification. For example, if used

in automatic mail sorting, a classifier that cannot classify the ZIP code of a

given letter will cause such a letter to be sent to a human for classification. On

the other hand, a classifier that mis-classifies the ZIP code will cause the letter

to be sent to the wrong post office, at a much higher cost.

For this problem, the objective is to achieve the lowest possible rate

of rejection with an error rate smaller than a given constant. Usually, the

minimum rate of rejection for an error rate of 1% is the desired objective.

The use of an error correcting code allows for a tradeoff between the

number of digits rejected and the number of errors committed. Specifically, the

classifier may decide to reject a given digit if the output code obtained for that

digit is too far away from the nearest valid codeword.

Table 7.5 and the graph in figure 7.6 show the error rates and the

corresponding rejection rates in the training and test sets for the classifiers

derived by muesli and smog. These rates are plotted against the maximum
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distance from a valid codeword allowed for non-rejection. If outputs that are at

a larger distance from a valid codeword are accepted, less digits will be rejected

but the classifier will have an higher error rate because classifications performed

with a lower degree of certainty will be accepted as valid.

Distance from muesli smog

codeword Error (%) Rejected (%) Error (%) Rejected (%)

0 0.1128 40.30 0.0381 38.95
1 0.4457 22.76 0.1334 20.74
2 1.2905 13.16 0.5127 11.58
3 3.2005 5.94 1.7840 5.42

Table 7.5: Error and rejection rates for the NIST database
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Figure 7.6: Error and rejection rates in test set vs. maximum distance from
valid codeword

The accuracy obtained by these approaches is very good although is

doesn’t match the best approaches proposed to date. These solutions [68] make

heavy use of the characteristics of the domain and use the full set of 223,125
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digits as the training set. Depending on the test set used, raw error values

between 0.3% and 3.2% have been reported. Given this variations and the

different sizes of the training sets used, a direct comparison is impossible. The

classifier derived by the muesli algorithm has approximately a 13% rejection

rate for a 1.3% error rate, obtained by rejecting any instances that cause an

output at distance larger than 2 from a valid codeword. The classifier obtained

using smog will reject 11.5% at an error rate of 0.51% and 5.42% at an error

rate of 1.78%. These results can be further improved by using a variety of

techniques that were proposed by other researchers in this problem. In fact,

the performance of smog and muesli is severely hampered by the fact that no

domain specific information or topological information of any sort was used.

In contrast, all the approaches that obtain higher accuracy use large amounts

of domain specific knowledge and, in some cases, hand-engineered features to

improve generalization accuracy. None of these techniques were used because

the main objective was not to obtain a competitive solution but merely to

illustrate the applicability of the techniques developed to real world problems.

7.2.4 VLSI Implementation

One of the key characteristics of the majority of the approaches pre-

sented in this dissertation is that the classifiers obtained can be easily im-

plemented using standard digital technologies. To illustrate this procedure, a

VLSI implementation of the handwritten character recognizer was performed.

The classifier obtained by muesli was selected because of its smaller size. In

fact, the network obtained by mapping the classifier obtained using the smog

algorithm into primitive Boolean functions is considerably larger than the one

obtained directly by applying the muesli algorithm. While the combinational

block obtained using smog contained 36600 literals and used an area of 337 sq.

mm3 the combinational block obtained using muesli had only 11000 literals and

used an area of 89 sq. mm.

3Assuming 0.8 µ technology is used.
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The Boolean network obtained by muesli was optimized using stan-

dard logic synthesis optimization techniques and mapped into a standard cell

structure using the octtools system [96], a package for the logic and physical

design of VLSI circuits developed at Berkeley. The logic optimizations per-

formed didn’t change the logic functions implemented by the network because,

in this step, the flexibility given by the use of don’t care information was not

used.

The complete system consists of the combinational block generated by

muesli and some additional shift-registers that are required to store the data

as it is scanned in and out. Figure 7.7 shows the final result obtained, a chip

with 120 sq. mm. The large cell on the top is the combinational logic generated

automatically by the learning algorithm. The small blocks in the bottom are

the shift-registers used to store the data as it is shifted in. The chip has 15 data

outputs, 16 data inputs, 2 control signals used to scan the data in and power

supply pads. It is interesting to note that the routing and empty area of this

chip represents 95% of the total chip area. This value is unusually high and

accounts for the large size of the resulting circuit. This is due to the absence of

locality in the network generated by the learning algorithm. The introduction

of constraints that can restrict the type of connectivity allowed in the generated

networks is an interesting direction for future research and has the potential to

greatly reduce the overall size of the resulting system.



CHAPTER 7. EXPERIMENTAL EVALUATION AND APPLICATIONS 149

Figure 7.7: Chip layout for the handwritten recognition system
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7.3 Application to Image Processing

The second large application used to exemplify the application of the

algorithms was an image processing task. For this task, only the muesli al-

gorithm was used as a compact final implementation of the final classifier is

important for the interest of this approach.

7.3.1 Problem Description and Encoding

Although this problem was artificially created, it represents an appli-

cation that may be interesting for this type of approach because of the need to

process rapidly large amounts of instances, which, in this case, correspond to

pixels.

The objective is to reconstruct an original image from a corrupted

version of that image. In this experiment, 16 level gray scale images obtained

by scanning sections of bank notes were corrupted by switching each bit with

5% probability. Samples of this image were used to train a network in the

reconstruction of the original image. The training set consisted of 5x5 pixel

regions of corrupted images (100 binary variables per sample) labeled with the

correct value of the center pixel. Figure 7.8 shows a detail of the reconstruction

performed in an independent test image by the network obtained.

7.3.2 VLSI Implementation

The combinational network derived by the learning algorithm was

again optimized using standard logic minimization procedures and mapped to

a standard cell structure using the tools in the octtools suite. The resulting

cell is shown in figure 7.9. It occupies an area of 60 sq. mm using 0.8µ technol-

ogy and the routing area occupies 86.7% of the total area. Again, this fraction

represents an unusually high fraction of the total area and the comments made

in section 7.2 apply. In a real application, this cell would be used as a building

block for a chip. Additional circuitry could include memory cells together with

decoding logic or a bank of shift registers to hold sections of the image if holding
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Figure 7.8: Image reconstruction experiment

the full image is not feasible. It would also need to include decoding logic that

would generate the right pixel value from the values of the 15 outputs generated

by the combinational logic.
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Figure 7.9: Standard cell layout for the image reconstruction network
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Chapter 8

Conclusions

8.1 Conclusions

The main purpose of the research work described in this dissertation

was to study the applicability of discrete optimization algorithms to the problem

of inductive inference in discrete domains. Under fairly general assumptions, the

inductive inference problem can be transformed into an optimization problem

and solved using algorithms designed for this purpose. The general principle

known as Occam’s razor and the minimum description length principle provide

the justification for this transformation.

Several different representations were studied and several algorithms

were presented for the optimization of each of these representations. As is to

be expected, not all representations and algorithms were equally effective and

useful for the inference task they were designed for.

The heuristic algorithms for the optimization of reduced ordered deci-

sion graphs, implemented in the smog program, generated representations that

were particularly robust in the type of problems they can handle and have

shown the overall highest accuracy over the range of problems tested. These

problems are representative of the type of problems addressed in the machine

learning community. The comparisons performed between this algorithm and

the algorithms most commonly used to perform induction from examples have
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shown that smog consistently outperformed them in terms of generalization ac-

curacy. The performance of this algorithm can be influenced by a number of

different parameters. The value of α, the parameter that controls the trade-off

between accuracy in the training set and size of the solution did not have a

strong influence in the average performance of the algorithm but can change

significantly the performance for particular problems. The particular strategy

used to initialize the local optimization algorithm that is the center-piece of

smog can also influence strongly the quality of the solutions obtained.

The greedy heuristic algorithms for the reduction of combinational

Boolean networks presented in chapter 4 and implemented in the muesli pro-

gram were, on the other hand, somewhat less effective in some of the hard

problems that smog solves effectively. They are, however, much faster in some

situations because they construct the solution by considering larger and larger

networks while smog starts with a large decision graph and reduces it. This

makes muesli interesting for problems that are very large and where an exact

identification of the minimum consistent hypothesis is not critical to the success

of the learner.

The algorithms for the synthesis of two-level threshold gate networks

implemented in the program lsat were judged the least effective overall, both in

terms of the generalization accuracy and in terms of computation requirements.

It is an open question whether much better algorithms can be obtained for

this problem or whether this results are closely related with the choice of that

particular architecture. The success enjoyed by approaches based on neural

network algorithms seems to show that there is nothing fundamentally wrong

with the architecture in itself. However, networks obtained using standard

neural network training algorithms are also unable to solve the harder problems

where lsat performed less well, and, in fact, they fail even in some cases where

lsat succeeds.

The exact algorithms for the synthesis of finite machines using implicit

enumeration techniques also failed to meet the expectations in the sense they
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their performance is very similar to the one obtained using explicit algorithms

published in the machine learning literature. In fact, a detailed comparison has

shown almost no differences between the performance of the two approaches.

The performance of the implicit algorithms does depend, however, on a variety

of parameters like the variable ordering chosen and the type of representation

used to manipulate Boolean functions. It remains an open question whether or

not changes on some of these parameters can alter the scene significantly and

change the relative performance of the two approaches. The exact approach

described in chapter 6 is, however, important, because it explored the use of

implicit techniques as one possible solution for the problem and made clear

both the advantages and limitations of this alternative.

The results obtained in the two large problems addressed in the last

part of chapter 7 have shown that the approaches described here can be compet-

itive with alternative ones, specially if digital implementations of the resulting

classifiers are important. For example, the application of muesli and smog to

the character recognition problem generated classifiers that have a performance

not very different from the one obtained with the best alternatives available.

Furthermore, this gap in generalization accuracy can probably be bridged, at

least partially, by the use of some domain specific knowledge.

8.2 Future Work

Many questions remain open and are appropriate topics for future

research as the wide variety of representations and algorithms addressed in this

research limited the amount of effort that was put in each individual algorithm

and in possible avenues for improvement.

The limitation of the algorithms to discretely valued attributes is a

serious one and limits the applicability of these algorithms to a wider variety of

problems. Removing this restriction by finding a way to select appropriate splits

in continuously valued variables is an important task that is left as future work.

The current version can handle continuously valued attributes by selecting splits
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in a way similar to the one used in decision tree algorithms, but such a greedy

approach is not likely to give the best results. In fact, in decision trees these

splits are essentially independent but in decision graphs the idea is to select a

split that can be reused. At present, it is not clear how this problem can be

formulated and even less clear how it can be solved, but further research in this

particular direction will produce interesting results.

Another open question that deserves further investigation is whether

or not the performance of the implicit algorithms for the inference of finite state

machines can be significantly improved by the use of alternative representations

or different orderings. One possible alternative is the use of zero-suppressed

RODGs as the support for the Boolean function manipulation routines. Zero-

suppressed RODGs are interesting for this application because they are con-

sidered more efficient at representing the sparse sets that are likely to be the

solutions of the problem. The use of zero-suppressed RODGs does not involve

any major changes in the algorithm, but only a change in the package used for

Boolean manipulation. Further research in this area may therefore yield very

interesting results with a comparatively small investment.

Another interesting direction for future research is the application of

implicit solution techniques to solve the exact RODG minimization problem

using the exact algorithms described in chapter 5. Experiments have shown

that these techniques can be very effective in the solution of similar problems

that involve very high numbers of compatible sets. The application of implicit

techniques to this problem should be immediate, given the similarity of the

exact formulation presented in section 5.3 to the formulation obtained when

the problem is the reduction of incompletely specified finite state machines. It

remains to be seen, however, whether or not the implicit algorithms applied

to this problem suffer from the same limitations they exhibit when applied to

the reduction of tree finite state machines obtained from training sets using the

approach described in chapter 6

Finally, heuristic approaches for the induction of small finite state
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machines consistent with the training set data are also important because, even

if the exact approach can be improved, it will still be unable to find solutions for

very large problems. Ultimately, this is the most important direction to follow

if the minimum description length paradigm is to be applied to hypotheses

represented as finite state machines. Large problems will require not only the

selection of an approximate solution but also the ability to trade-off accuracy

in the training set data for compactness of the generated hypotheses and these

two objectives are not compatible with the choice of an exact algorithm for this

task.

Finally, for problems where hardware implementations are sought, it

would be interesting to change the cost function to take into account other costs

involved like the communication complexity between modules in the solution.

These considerations may lead to significant reductions in the final size of VLSI

implementations by reducing the amount of space dedicated to routing.
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Appendix A

Function Manipulation Using

RODGs

A.1 Algorithms for RODG Manipulation

This section gives a brief overview of the algorithms that were de-

veloped for RODG manipulation and follows closely in form and content the

work presented in [13]. For a much more complete description of the algorithms

used, the interested reader should consult this reference. This first section is

concerned with RODGs defined over Boolean spaces.

Each non-terminal node n in the RODG represents a Boolean function

that is denoted by f(ni) = (vi, f(nthen
i ), f(nelse

i )), where vi is the variable tested

at ni and nthen
i and nelse

i are the nodes pointed to by the then and else edges,

respectively.

The fundamental operation implemented by the RODG package is the

Ite operator, defined as:

Ite(f, g, h) = fg ∨ fh (A.1)

It is a simple exercise to verify that all the basic Boolean operations of

two variables can be defined using the Ite operator with appropriate arguments.
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For example, f = ab is equivalent to f = Ite(a, b, 0) and f = a⊕ b is equivalent

to f = Ite(a, b, b).

Shannon’s decomposition theorem states that

f = vfv ∨ vfv (A.2)

where v is a variable and fv and fv represent f evaluated at v = 1 and v = 0,

respectively.

Now, let f(ni) = (wi, f(nthen
i ), f(nelse

i )) and assume that v comes be-

fore wi in the ordering or that v = wi. Finding the cofactors of f with respect

to v is trivial:

fv =







f if v 6= wi

f(nthen
i ) if v = wi

fv =







f if v 6= wi

f(nelse
i ) if v = wi

(A.3)

The following recursive definition gives a simple algorithm for the com-

putation a the function z = Ite(f, g, h). Let v be the top variable of f, g, h.

Then,

z = vzv ∨ vzv

= v(fg ∨ fh)v ∨ v(fg ∨ fh)v

= v(fvgv ∨ fvhv) ∨ v(fvgv ∨ f vhv)

= Ite(v, Ite(fv, gv , hv), Ite(fv, gv , hv))

= (v, Ite(fv, gv , hv), Ite(fv, gv, hv))

(A.4)

The terminal cases for this recursion are: Ite(1, f, g) = Ite(0, g, f) = Ite(f, 1, 0) =

f .

A systematic exponential complexity of the procedure is avoided by

keeping a table of existing functions. Each element in the table is a triple

(v, g, h) and each node in the RODG corresponds to an entry in this table.

Before applying the recursive definition (A.4) the algorithm checks to see if the

desired function already exists.

Figure A.1 shows an example of the application of the recursive def-

inition in the computation of the function z = Ite(f, g, h). For clarity, several

copies of the terminal nodes are shown. The reader should keep in mind that



APPENDIX A. FUNCTION MANIPULATION USING RODGS 160

only one copy of each function is kept at any time. This is true for the terminal

nodes and also for the nodes that implement the functions c and d, but depict-

ing only one copy of these nodes would make the diagram too complex to be

useful. In this example, the nodes that correspond to the functions c and d do

not need to be created from scratch. Since they already exist they are shared

by different functions.

X
1

X
2

X
3

X
4

f g

h

z

b

c

dd

c

z = Ite(f, g, h)

= (x1, Ite(fx1 , gx1 , hx1), Ite(fx1, gx1 , hx1))

= (x1, Ite(1, c, h), Ite(b, 0, h))

= (x1, c, (x2, Ite(bx2 , 0x2 , hx2), Ite(bx2 , 0x2 , hx2)))

= (x1, c, (x2, Ite(1, 0, 1), Ite(0, 0, d)))

= (x1, c, (x2, 0, d))

(A.5)

Figure A.1: Computation of Ite(f, g, h)

A.2 Manipulating Boolean Functions Using RODGs

For a given ordering of the variables, reduced ordered decision graphs

are a canonical representation for functions in that domain [18]. This means

that given a function f : {0, 1}N → {0, 1} and an ordering of the variables,



APPENDIX A. FUNCTION MANIPULATION USING RODGS 161

there is one and only one representation for the function f .

Packages that manipulate reduced ordered decision graphs are widely

available and have become the most commonly used tool for discrete function

manipulation in the logic synthesis community [16]. Some of these packages are

restricted to Boolean functions [13] (each non-terminal node has exactly two

outgoing edges) while others [46] can accept multi-valued attributes.

All these packages provide at least the same basic functionality: the

ability to combine functions using basic Boolean and arithmetic operations and

the ability to test for containment or equivalence of two functions. They also

provide an array of more complex primitives for function manipulation that are

not relevant for the work presented here.

Several functions can be represented using a single RODG and each

function is usually represented by a pointer to the RODG node that represents

the function. Due to the canonicity property described above, the equivalence

test (and, therefore, the tautology test) can be performed in constant time. This

means that the task of checking two functions represented by their RODGs for

equivalence is a trivial one because it reduces to the comparison of two pointers1.

The algorithms described in this paper make use of only a small frac-

tion of the facilities provided by RODG packages. In particular, we will only

use the following primitives for Boolean function manipulation:

• Boolean combination of two existing functions. For example, f := g ∧ h

returns a function f that is the Boolean and of two existing functions, g

and h.

• Complement of an existing function. Example: f := g.

• Creation of a function from an existing variable. For example, f :=

Fvar(i) returns a function f that is 1 when variable vi is 1 and is 0

otherwise.

1The reader should not be surprised that a complex problem such as function equivalence
check can be solved in constant time once the RODGs for the functions are known. The
process of building the RODGs involved may require, in itself, exponential time.
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• The if-then-else operator. For example, f := Ite(v, g, h) returns the func-

tion g for the points where function v is 1 and the function h for the

points where v is 0. Although the Ite operator is simply a shorthand for

the combination f := (v ∧ g) ∨ (v ∧ h), it is used so often that is deserves

separate treatment.

The previous section described how RODG packages manipulate in-

ternally Boolean function representations. However, for the purposes of un-

derstanding many the algorithms that use them as a tool to represent and

manipulate Boolean functions, it is sufficient to understand how the facilities

provided by these packages can be used to manipulate Boolean functions.

The pseudo-code in figure A.2 exemplifies how the function f : {0, 1}4 →
{0, 1} defined below can be obtained using the primitives provided by the pack-

age. Figure A.3 shows the successive RODGs created by the package to repre-

sent the functions g, h and f defined in (A.6).

f(x1, x2, x3, x4) =







x2 ∧ x4 if x1 = 1

x3 ∨ x4 if x1 = 0
(A.6)

Main()

RODG f, g, h Declares f,g and h as functions

InitializePackage()

g := Fvar(2) ∧ Fvar(4) Computes x2 ∧ x4

h :=!Fvar(3) ∨ Fvar(4) Computes x3 ∨ x4

f := Ite(Fvar(1), g, h)

Figure A.2: Computing the function f
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Figure A.3: Successive RODGs created to represent f

A.3 RODGs Defined Over Multi-valued Spaces

Any binary valued function of k discrete variables, x1, x2, . . . , xk

F : P1 × P2 × · · · × Pk → {0, 1} (A.7)

can be represented by a slightly different type of RODG defined over multi-

valued spaces. In the logic synthesis community, these RODGs are known as

Multi-valued Decision Diagrams (MDDs). To avoid an awkward notation, this

term will be used from now on. An MDD is also a rooted, directed, acyclic

graph where each non-terminal node is labeled with the name of one variable.

An MDD for F has two terminal nodes nz and no that correspond to the leaves

of the graph. Every non-terminal node ni, labeled with variable vj , has |Pj |
outgoing edges labeled with the possible values of xj . Each of these edges

points to one child node. The value of F for any point in the input space

can be computed by starting at the root and following, at each node, the edge

labeled with the value assigned to the variable tested at that node. The value

of the function is 0 if this path ends in node nz and 1 if it ends in node no.

The definitions of reduced and ordered are the same as for standard

RODGs defined over Boolean spaces. For a given variable ordering, reduced,

ordered MDDs are canonical representations for functions defined over that

domain, thus implying that two functions can easily be checked for equivalence.
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Figure A.4: Graphic representation of the MDDs for functions X 6= 3, X = Y
and X 6= 3 ∧ X = Y .

The implicit approach described in chapter 6 used the MDD package

described in [46]. This MDD package provides an array of primitives for function

manipulation. The reader is referred to that reference for a more detailed

description of these primitives.

Apart from the operations supported by Boolean RODG packages,

MDD packages also support the creation of functions that express arithmetic

relations between variables like. For instance, f := (xi = xj) returns the

function that is 1 for all points of the input space where xi = xj.

Figure A.4 depicts the MDDs for the function f := (x 6= 3), g := (x =

y) and h := f ∧ g, all defined over P × P , P = {1, 2, 3}.
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Appendix B

Description of the Problems

Used

B.1 Problems from the Machine Learning Literature

The majority of the problems used have been studied before by other

researchers. The problems dnf1, dnf2, dnf3, dnf4, par4 16, par5 32, mux6 and

mux11 were proposed in [69]. These concepts are identified by the functions

implemented by the following Boolean formulas:

dnf1 : f(x1...x80) = x5x28x38x72x74x76+x2x16x40x52x74+x10x21x23x28x30x63+

x40x56x58x60x63x72+x6x24x36x37x39x48+x3x17x45x55x72x75+x11x48x50x64x69x74+

x2x15x27x36x50x53 + x6x12x22x45x60

dnf2 : f(x1...x32) = x1x3x14x19x26x35x36 + x8x15x31x37 + x5x10x14x27x29 +

x18x20x30x36 + x2x3x9x19x24 + x24x25x27x36x37 + x6x7x14x25x26x31x34 +

x1x6x22x30

dnf3 : f(x1...x32) = x1x2x6x8x25x28 x29+x2x9x14 x16 x22x25+x1 x4 x19 x22x27x28+

x2x10x14 x21 x24 + x11x17x19x21 x25 + x1 x4x13 x25

dnf4 : f(x1...x64) = x1x4x13x57 x59+x18 x22 x24+x30 x46x48 x58+ x9x12 x38x55+

x5x29 x48+x23x33x40x52+x4 x26 x38 x52+x6x11x36 x55+ x6 x9 x10x39 x46+
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x3x4x21 x37 x55

mux6 : f(x1...x16) = x1 x2x3 + x1x2x4 + x1 x2x5 + x1x2x6

mux11 : f(x1...x32) = x1 x2 x3x4 + x1 x2x3x5 + x1x2 x3x6 + x1x2x3x7 +

x1 x2 x3x8 + x1 x2x3x9 + x1x2 x3x10 + x1x2x3x11

xor4 16 : f(x1...x16) = x1 ⊕ x2 ⊕ x3 ⊕ x4

xor5 32 : f(x1...x32) = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5

Other concepts defined by simple Boolean expressions are the follow-

ing:

dnfa : f(x1...x6) = x1x2 x6 + x1x2x3x6 + x3x6

dnfb : f(x1...x7) = x2x3 x4x5 + x1x4x5x7 + x1 x2x4

dnfc : f(x1...x9) = x2x3x5 x8x9+x1x2x3x5x6x8x9+x2 x3x7x8+x1 x2x4x5 x6+

x2 x3x5x6x7 x8 x9

dnfd : f(x1...x11) = x2 x3x4x5 x7 x8x9+x4x5x6x11+x4x5 x6 x11+x1x4x5 x6x8x9 x10+

x2x3x4x5x7x8+x4x5x6x10x11+x2x3x4x5x8x9 x10+x2 x3x4x6 x9+x2x3 x4

xor6 : f(x1...x6) = x1 ⊕ x2... ⊕ x6

xor7 : f(x1...x7) = x1 ⊕ x2... ⊕ x7

xor8 : f(x1...x8) = x1 ⊕ x2... ⊕ x8

xor9 : f(x1...x9) = x1 ⊕ x2... ⊕ x9

xor10 : f(x1...x10) = x1 ⊕ x2... ⊕ x10

sm12 : f(x1...x12) = (x1x2 + x3x4 + x5x6)(x7x8 + x9x10 + x11x12)

str18 : f(x1...x18) = (x1x2x3 + x4x5x6 + x7x8x9)(x10x11x12 + x13x14x15 +

x16x17x18)

heel9 : f(x1...x9) = x1x2x3 + x4x5x6 + x7x8x9
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heel : f(x1...x18) = x1x2x3 + x4x5x6 + x7x8x9 + x10x11x12 + x13x14x15 +

x16x17x18

Problems monk1, monk2 and monk3 were proposed in [98] and are the

encoding of concepts in a hypothetic robot world.

The problems tictactoe, vote, mushroom, breast and splice are from

the UCI database [62] and are described in detail in the online documentation

publicly available.

The problems krkp and kkp result from the encoding of chess posi-

tions. The first one is described in [90] and is the encoding of a King+Rook

vs. King+Pawn chess ending using high level attributes. The kkp problem is

obtained from the encoding of the chess endings described in section 1.1.1.

B.2 Problems from the Wright Laboratory Set

This set of problems has been assembled by a research group at the

Pattern Theory Program of the Air Force Wright Laboratory. A more complete

description of these problems can be found in [34].

All functions are of the form f(x1...x8) → {0, 1}. The functions are

intended to be representative of a wide variety of problems for testing machine

learning systems.

• Randomly generated functions: rnd1, rnd2, and rnd3.

• Randomly generated functions with a fixed number of minority elements:

rnd m1, rnd m5, rnd m10, rnd m25 and rnd m50.

• Random functions with irrelevant variables: rmdvv36.

• Boolean expressions [33] : kdd1, kdd2, kdd3, kdd4, kdd5, kdd6, kdd7, kdd8,

kdd9, kdd10

• Multiplexer functions : mux6.

• Deep functions : and or chain8 = ((((x1x2 + x3)x4 + x5)x6 + x7)x8)
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• Monkish Problems: 8 binary variable ”approximations” to the Monk’s

problems [98]

• String functions. Palindrome acceptor and variants : pal, pal output and

doubley.

• Interval acceptors. Accept strings with a given number of sequences with

only 0’s or only 1’s : interval1 (3 or fewer sequences), interval2 (4 or fewer

sequences).

• Sub-string detectors : substr1 (accepts inputs that contain 101) and sub-

str2 (accepts inputs that contain 1100.

• Pixel images : recognize center pixel given surrounding pixels of characters

from the Borland font set. Problem chXfY means character X from font

Y. The problems are: ch8f0, ch15f0, ch22f0, ch30f0, ch47f0, ch176f0,

ch177f0, ch74f1, ch83f2, ch70f3, ch52f4.

• Symmetric functions : parity, contains 4 ones, majority gate.

• Prime number recognition: primes8

• Numerical functions of two 4 bit numbers (the last number means what

bit of the results is the output bit) : add0, add2, add4, greater then,

subtraction1, subtraction 3, modulus2, remainder2.

• Geometric functions : output determined by selecting closest template us-

ing Hamming distance : nnr1 (four templates : {00000000 -, 00001111 +,

11110000 +, 11111111 -}), nnr2 (two templates : {00111010 -, 11011110 +}),
nnr3 (eight templates : {00010011 +, 00111010 +, 01000101 -, 01011001 -,

01110010 +, 10001101 -, 11000111 +, 11011110 -})



169

Bibliography

[1] J.A. Anderson and E. Rosenfeld, editors. Neurocomputing: Foundations

of Research. MIT Press, Cambridge, 1988.

[2] D. Angluin. On the complexity of minimum inference of regular sets.

Inform. Control, 39(3):337–350, 1978.

[3] D. Angluin. Learning regular sets from queries and counterexamples.

Inform. Comput., 75(2):87–106, November 1987.

[4] William Armstrong and Jan Gecsei. Adaptation algorithms for binary

tree networks. IEEE Transactions on Systems, Man, and Cybernetics,

9:276–285, 1979.

[5] Timur Ash. Dynamic node creation in backpropagation networks. Con-

nection Science, 1:365–375, 1989.

[6] Les Atlas, Ronald Cole, Yeshwant Muthusamy, Alan Lippman, Jerome

Connor, Dong Park, Mohamed El-Sharkawi, and Robert J. Marks II. A

performance comparison of trained multi-layer perceptrons and trained

classification trees. IEEE Proceedings, 1990.

[7] K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, R. Rudell,

A. Sangiovanni-Vincentelli, and A. Wang. Multi-level logic minimization

using implicit don’t cares. IEEE Transactions on CAD, 1988.

[8] S. Becker and Y. Le Cun. Improving the convergence of back-propagation

learning with second order methods. In D. Touretzky, G. Hinton, and



BIBLIOGRAPHY 170

T. Sejnowski, editors, Proceedings of the 1988 Connectionist Models Sum-

mer School, pages 29–37, San Mateo, 1989. Morgan Kaufmann.

[9] A. W. Biermann and R. Krishnaswamy. Constructing programs from

example computations. IEEE Trans. on Software Engineering, SE-2:141–

153, 1976.

[10] A. W. B. R. I. Biermann and F. E. Petry. Speeding up the synthesis of

programs from traces. IEEE Trans. on Computers, C-24:122–136, 1975.

[11] A. Blum and R. L. Rivest. Training a 3-node neural net is NP-Complete.

In Advances in Neural Information Processing Systems I, pages 494–501.

Morgan Kaufmann, 1989.

[12] B. Boser and E. Sackinger. An analog neural network processor with

programmable network topology. In ISSCC91 Digest of Technical Papers.

IEEE, 1991.

[13] K. Brace, R. Rudell, and R. Bryant. Efficient implementation of a BDD

package. In Design Automation Conference, June 1989.

[14] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli.

Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic

Publishers, 1984.

[15] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS:

A multiple-level logic optimization system. IEEE Transactions on

Computer-Aided Design, November 1987.

[16] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli. Multi-

level logic synthesis. Proceedings of the IEEE, 78:264–300, 1990.

[17] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification

and Regression Trees. Wadsworth International Group, 1984.

[18] R. E. Bryant. Graph-based algorithms for Boolean function manipulation.

IEEE Transactions on Computers, 1986.



BIBLIOGRAPHY 171

[19] R. Carraghan and P. M. Pardalos. An exact algorithm for the maximum

clique problem. Operations Research Letters, 9:375–382, November 1990.

[20] G. J. Chaitin. On the length of programs for computing finite binary

sequences. Journal ACM, 16:145–159, 1969.

[21] Olivier Coudert, Christian Berthet, and Jean Christophe Madre. Verifi-

cation of synchronous sequential machines based on symbolic execution.

In J. Sifakis, editor, Proceedings of the Workshop on Automatic Verifi-

cation Methods for Finite State Systems, volume 407 of Lecture Notes in

Computer Science, pages 365–373. Springer-Verlag, June 1989.

[22] S. Das and M. Mozer. A unified gradient-descent/clustering algorithm

architecture for finite state machine induction. In Advances in Neural

Information Processing Systems 6, Denver, CO, 1993. Morgan Kaufmann.

[23] T. G. Dietterich and G. Bakiri. Error-correcting output codes: A gen-

eral method for improving multiclass inductive learning programs. In

Proceedings of the Ninth National Conference on Artificial Intelligence

(AAAI-91), pages 572–577. AAAI Press, 1991.

[24] S.E. Fahlman and C. Lebiere. The cascade-correlation learning architec-

ture. In D.S. Touretzky, editor, Advances in Neural Information Pro-

cessing Systems, volume 2, pages 524–532, San Mateo, 1990. Morgan

Kaufmann.

[25] M Frean. The upstart algorithm: A method for constructing and training

feedforward neural networks. Neural Computation, 2:198–209, 1990.

[26] Steven J. Friedman and Kenneth J. Supowit. Finding the optimal variable

ordering for binary decision diagrams. IEEE Trans. Comput., 39(5):710–

713, May 1990.

[27] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. Freeman, New York, 1979.



BIBLIOGRAPHY 172

[28] M. D. Garris and R. A. Wilkinson. NIST Special Database 3 : Handwrit-

ten Segmented Characters. National Institute of Standards and Technol-

ogy, February 1992.

[29] C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C. Lee.

Learning and extracting finite state automata with second-order recurrent

neural networks. Neural Computation, 4:393–405, 1992.

[30] E. M. Gold. Language identification in the limit. Inform. Control, 10:447–

474, 1967.

[31] E. M. Gold. System identification via state characterization. Automatica,

8:621–636, 1972.

[32] E. M. Gold. Complexity of automaton identification from given data.

Inform. Control, 37:302–320, 1978.

[33] J. A. Goldman. Pattern theoretic knowledge discovery. In 6th Interna-

tional IEEE Conference on Tools with AI, 1994.

[34] Jeffrey A. Goldman. Machine learning: A comparative study of pattern

theory and C4.5. Technical Report WL-TR-94-1102, Wright Laboratory,

USAF, WL/AART, WPAFB, OH 45433-6543, June 1994.

[35] Nelson Goodman. Fact, Fiction and Forecast. Harvard University Press,

1983.

[36] A. Grasselli and F. Luccio. A method for minimizing the number of inter-

nal states in incompletely specified sequential networks. IRE Transactions

on Electronic Computers, EC-14(3):350–359, June 1965.

[37] James N. Gray and Michael A. Harrison. The theory of sequential rela-

tions. Information and Control, 9, 1966.

[38] G. Hachtel, J.-K. Rho, F. Somenzi, and R. Jacoby. Exact and heuristic

algorithms for the minimization of incompletely specified state machines.

In The Proceedings of the European Design Automation Conference, 1991.



BIBLIOGRAPHY 173

[39] S.J. Hanson and L. Pratt. A comparison of different biases for minimal

network construction with back-propagation. In D.S. Touretzky, editor,

Advances in Neural Information Processing Systems, volume 1, pages 177–

185, San Mateo, 1989. Morgan Kaufmann.

[40] D. Haussler, M. Kearns, and R. E. Schapire. Bounds on the sample

complexity of Bayesian learning using information theory and the VC

dimension. In Proc. 4th Annu. Workshop on Comput. Learning Theory,

pages 61–74, San Mateo, CA, 1991. Morgan Kaufmann.

[41] G.E. Hinton and T.J. Sejnowski. Learning and relearning in Boltzmann

machines. In D.E. Rumelhart and J.L. McClelland, editors, Parallel Dis-

tributed Processing, volume 1, chapter 7, pages 282–317. MIT Press, Cam-

bridge, 1986.

[42] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,

Languages, and Computation. Addison-Wesley, Reading, MA, 1979.

[43] Alan Hutchinson. Algorithmic Learning. Oxford University Press, New

York, 1994.

[44] N. Ishiura, H. Sawada, and S. Yajima. Minimization of binary decision

diagrams based on exchanges of variables. In ICCAD, pages 472–475.

IEEE Computer Society Press, 1991.

[45] J. S. Judd. Neural Network Design and the Complexity of Learning. MIT

Press, 1990.

[46] T. Kam and R.K. Brayton. Multi-valued decision diagrams. Tech. Report

No. UCB/ERL M90/125, December 1990.

[47] T. Kam, T. Villa, R. K. Brayton, and A. Sangiovanni-Vincentelli. A fully

implicit algorithm for exact state minimization. Proc. Design Automat.

Conf., 1994.



BIBLIOGRAPHY 174

[48] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partition-

ing graphs. The Bell System Technical Journal, pages 291–307, February

1970.

[49] S. Kirkpatrick, C.D. Gelatt Jr., , and M.P. Vecchi. Optimization by

simulated annealing. Science, 220, 1983. Reprinted in [1].

[50] Ron Kohavi. Bottom-up induction of oblivious read-once decision graphs.

In European Conference in Machine Learning, 1994.

[51] A. N. Kolmogorov. Three approaches to the quantitative definition of

information. Problems Information Transmission, 1:1–7, 1965.

[52] A. Kramer. Optimization techniques for neural networks. Technical Re-

port UCB-ERL-M89-1, UC Berkeley, Berkeley, CA, 1989.

[53] K. J. Lang. Random DFA’s can be approximately learned from sparse

uniform examples. In Proc. 5th Annu. Workshop on Comput. Learning

Theory, pages 45–52. ACM Press, New York, NY, 1992.

[54] Y. Le Cun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hub-

bard, and L.D. Jackel. Handwritten digit recognition with a back-

propagation network. In D.S. Touretzky, editor, Advances in Neural

Information Processing Systems, volume 2, pages 396–404, San Mateo,

1990. Morgan Kaufmann.

[55] Y. Le Cun, J.S. Denker, and S.A. Solla. Optimal brain damage. In D.S.

Touretzky, editor, Advances in Neural Information Processing Systems,

volume 2, pages 598–605, San Mateo, 1990. Morgan Kaufmann.
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