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Abstract

Discrete models are important to reduce the complexity of the protein folding
problem. However, a compromise must be made between the model complexity and
the accuracy of the model.

Previous work by Park and Levitt has shown that the protein backbone can be
modeled with good accuracy by four state discrete models. Nonetheless, for ab-
initio protein folding, the side chains are important to determine if the structure is
physically possible and well packed.

We extend the work of Park and Levitt by taking into account the positioning of
the side chain in the evaluation of the accuracy. We show that the problem becomes
much harder and more dependent on the type of protein being modeled. In fact, the
structure fitting method used in their work is no longer adequate to this extended
version of the problem. We propose a new method to test the model accuracy.

The presented results show that, for some proteins, the discrete models with side
chains cannot achieve the accuracy of the backbone only discrete models. Neverthe-
less, for the majority of the proteins an RMSD of four angstrom or less is obtained,
and, for many of those, we reach an accuracy near the two angstrom limit. These
results prove that discrete models can be used in protein folding for obtaining low
resolution models. Since the side chains are already present in the models, the re-
finement of these solutions is simpler and more effective.
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1 Introduction

The ab-initio protein folding problem consists in determining the structure of a
protein using only the information of its amino acid sequence. Even extremely
simplified versions of this problem have been proved to be NP-Hard !2:6:1:14,

In a protein structure there are several structural constrains. For the atomic
angles and bond lengths the variation is small and, thus, the majority of the
folding algorithms focus on the dihedral angles. In addition to the structural
constrains, the protein structures are defined by the atomic interactions. Al-
though the dihedral angles have optimal values they usually assume different
values to allow for interactions between atoms.

In the context of this work, a discrete state model is an all heavy atoms
protein model that uses a discrete set for the possible values of the dihedral
angles. The atomic bond lenghts and angles are considered fixed at the optimal
values. Previous work by!® has shown that discrete state models with a limited
number of states (four) can describe proteins with relatively good accuracy. In
that work the authors have also shown that, for the same degree of complexity,
off lattice discrete state models are more accurate than lattice models.

In the work of Park and Levitt only the main chain is used and no consideration
is made for clashes between atoms. In this work we will analyze the accuracy of
discrete state models using an all heavy atoms representation and disallowing
atomic clashes. Using all heavy atoms representations requires positioning of
the side chains. A simple positioning method based in rotamer libraries is
proposed.

1.1  Motivation

Although important studies on the accuracy and application of discrete mod-
els, like the referred work of!? and the work of?!, where published more then
10 years ago, discrete models are still being studied and applied to problems
in recently published works. Discrete models are used in studies for ab-initio
protein folding!3!7. Recent works also use discrete models for generating en-
sembles of structures!®?. The study of discrete protein models is, therefore,
highly relevant. Although the models presented by Park and Levitt are used
in protein folding problems, the models where only shown to be accurate for
modeling the backbone. Using only backbone models can produce physically
impossible models. Moreover, depending on the scoring function, these models
may have a high score and may be chosen as the best model. Therefore, to
avoid physically impossible models, we have extended this work by considering
side chain position and atomic clashes.



We can divide protein models in two general classes: discrete models and con-
tinuous models. For protein folding in continuous models a scoring function,
normally an energy function, is used in conjunction with some minimization
technique such as simulated annealing, gradient descent or other. In discrete
models the problem is reduced to a discrete number of choices for each amino-
acid. This reduces the complexity of the problem but makes it unlikely to
find the exact model. Consequently, the discrete models are particulary fit to
perform high level structure search, since the search space is greatly reduced
and very similar structures can be more easily avoided.

The applicability of the discrete models relies on the solution of three difficul-
ties, since discrete models:

e require a scoring function that can ignore the atomic details giving high
scores to physically inexact, near native structures.

e need a search technique that can efficiently search the structure space with-
out enumerating all the structures, since the space size is still exponential
on the size of the protein.

e need to use a set of dihedral angle values that can accurately model the
protein. Modeling the protein means that it should be possible to create
a structure with a low root mean square distance to the native one, but
also that it should be possible to create feasible structures, which avoid
atomic clashes and, when possible, emulate the secondary structure, atomic
contacts or other characteristics that define the structure of a protein. This
is important since the scoring function must be able to find, in the models,
characteristics that are similar to the characteristics of native protein.

The first difficulty can be solved using a statistical scoring function. The sec-
ond is the final step towards finding a near native structure and a number of
techniques have been proposed. However, the search will only work if a good
discrete model is available. The third difficulty is, therefore, the focus of this
work.

As referred before, the model must be able not only to approximate the atomic
positions of the native structure, but also to avoid unfeasible structures, e.g.
structures with atomic clashes or unrealistic side chain conformations. Allow-
ing such errors to occur would provoke too much noise in the scoring function,
since it would be possible to pack residues in conformations that are not al-
lowed in the real fold process. Therefore, we will analyze the accuracy of known
discrete models, while considering clashes and side chain positioning.



2 Side Chain Positioning

One of the most used methods for side chain positioning is based on the use of
rotamers libraries. In this work we used the Dunbrack Backbone-Dependent
Rotamer Library®%1%! which contains information about each amino acid
side chain. For each amino acid, the library has the side chain dihedral angle
values indexed by the backbone ¢/ pairs in slots of 10 degrees. The library
also contains the observed frequency of the side chain dihedral angles in the
particular slot. To reduce the number of possible conformations we used the
frequency information contained in the library to prune less probable config-
urations. Unless otherwise stated, a 0.04 (4%) frequency cutoff was used.

The decision to use a rotamer method was made for two reasons:

e The method creates a discretized set of highly probable configurations. This
avoids the usage of continuous minimization methods.

e Since the rotamers are indexed by ¢ and i backbone angles, there is no
need to verify clashes between atoms of the same amino acid.

In this paper we present a simple positioning algorithm that tests the possible
rotamer conformations until a valid conformation is found. The frequency
information is used to establish the testing order. Rotamers that occur more
frequently in known proteins will be tested first. Notice that we only want to
verify if there is a possible side chain configuration and not to set the best
one. The best side chain conformation can be set in the end during refinement
using, for example, the SCWRL program®, which sets the side chain using
a graph theory based algorithm and an energy function. Since SCWRL does
not change the backbone it is essential that sufficient space is left for the side
chains.

After choosing a possible configuration, the algorithm continues to construct
the protein model by extending the backbone configuration. However, this
particular choice of the side chain configuration can be changed latter. The
side chain is modified if, afterwards, that particular side chain configuration
prevents other side chains from being positioned. When a clash between side
chains is detected (no changes in previous backbone atoms are allowed) the
algorithm sets the new side chain in the configuration with less conflicts and
tries to reconfigure the old side chain. If a new side chain conflict is found
the process is restarted until a predefined threshold for the number of side
chain changes is reached. Figure 1 shows a example of successful side chain
reconfiguration.

If an unresolvable conflict is found, like a side chain versus backbone conflict,
or the backtrack threshold is reached, the algorithm considers that there is
not enough space for the side chain and reports a clash. To avoid loops the



Fig. 1. Example of a successful side chain reconfiguration. Both the backbone,
stronger lines, and the side chains are represented. The red sphere shows the side
chain conflict between the new side chain and a previously set side chain. A new
configuration is chosen for the older side chain by rotating it to the opposite side of
the new side chain position.

algorithm also does not allow for the same side chain to be changed twice.

3 Discrete State Model

Previous work by!Y has tested various discrete state models and presented
some reasonably accurate sets of states. The test made by Park and Levitt
consisted in fitting the discrete models into the backbone of the known struc-
ture. The side chains, and possible clashes between atoms, were not considered
in the fitting problem. In this section we will analyze some of the models de-
scribed by Park and Levitt in a test platform that considers side chains and
atomic clashes.

Table 1 shows the discrete models previously proposed by!?. We used four of
these discrete models: three four states models and one six states model. We
have chosen the Rooman et al. six states model since it had better results
than the one proposed by Park and Levitt. In the four states models, we chose
model C because it was the best model and model A because it had the best
results for the Alpha and Beta secondary structures. Model G was chosen
randomly from the rest.

If we analyze the angle sets in terms of physical correction, we can notice
that only the best model, C, is near the probable zones of the Ramachan-
dran plot?°. The Ramachandran plots depict the probability distribution for
the ¢ and 1 angles in known proteins. Although a model might be near the
true structure even if the angles in that model fall outside the most probable
zone, the torsion angles will probably be very different from the true angles.
Figure 2 shows examples of Ramachandran plots taken from the web site of
Deniz Yuret (http://www.denizyuret.com/bio/). Nevertheless, the torsion an-



Name Set of Pairs of Angles
« A {(-64,-40),(-123,134),(111,-46),(117,105)}
B {(-66,-40),(-119,114),(-36,124),(132,-40) }
x C {(-63,-63),(-132,115),(-42,-41),(-44,127)}
D {(-58,-31),(-127,126),(-97,-24),(109,108) }
E {(-71,-57),(-131,122),(-42,-36),( 107,-25)}
F {(-58,-51),(-133,135),(-33,174),(114,-40) }
* G {(-56,-48),(-129,128),(-108,35),(-31,-109) }
H {(-74,-31),(-131,125),(-101,179),(105,-40) }
6 states | {(-57,-47),(-139,135),(-119,113),(-49,-26),(-106,48),(-101,-127)}
* Rooman et al.?! {(-65,-42),(-123,139),(-70,138),(-87,-47),(77,22),(107,-174) }

Table 1
Discrete State models used in the work of Park and Levitt!'®. The * signals the
models used in this work.

gles (or dihedral angles) errors made by the models can be easily corrected
in refinement steps. Therefore we will focus on the correction of the overall
structure.
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Fig. 2. Ramachandran plots for the proline (right), glycine (center) and other
types of amino acids (left). Figures taken from the web site of Deniz Yuret
(http://www.denizyuret.com/bio/).

4 Testing Method

We used an efficient clash detection algorithm, proposed by*, and the side
chain positioning algorithm presented earlier. The clash detection algorithm
uses a three dimensional hash table and has constant clash detection time. To
set the side chains we used a maximum number of possible alterations (see



section 2) equal to the number of amino acids divided by 10. Since the number
of possible conflicts may increase with the size of the protein (but only until
a core of well packed atoms is formed), we increase the number of possible
alterations linearly with the size of the protein.

We have first tried the algorithm presented by!'® for testing discrete state
models. The algorithm does a simple beam search using the RMSD distance
as the scoring function. In a beam search, n states are saved at any given
time. Considering that there are m choices in an m state discrete model, the
algorithm starts by testing the first m choices. The algorithm then chooses the
best n states and tests all the choices for each of those states (n x m tests).
The best n states are chosen and the same steps are iterated until the final
configurations are reached.

Although the beam search method obtained good results in the backbone
only problem®, for the problem presented here the results were much worse.
In fact, when the protein size was greater than 80 amino acids, a solution with
an RMSD near five angstrom was difficult to obtain with this method. The
beam search approach is a non exact method. An explanation for this, already
presented by !, is that the neglected search states, although with worse RMSD
values at the time they where removed from search, may in reality provide
better fits in the long run. Since the number of states increases exponentially
not even an increase in the beam size can prevent this. With side chains, this
problem is greatly aggravated, since many states will prove to be dead ends,
because of collisions, or will just be driven away from the best fit because of
them. Because of these results we present a new search method that, although
computationally more expensive, can avoid this problem.

Each discrete state model is tested by searching in the discrete state search
space. Algorithm 1 presents the testing method proposed in this work. The
search is performed by fitting the model to the real protein, using a best first
approach with backtrack. For each amino acid, if the backbone conformation
with lowest RMSD has no conflict with the previously set atoms, and if a non
conflicting rotamer configuration is found, the algorithm sets the atoms and
tries to set the next amino acid (running the Next Amino Acid procedure).
During this step, previous side chains may be repositioned to accommodate
the new amino acid atoms. If a clash is found that cannot be resolved or if the
root mean square distance between the model and the protein exceeds a given
threshold, the algorithm backtracks (running the Backtrack procedure). While
backtracking, one of two actions occurs: if some of the possible configurations
for the backbone were not tested the algorithm chooses the next conformation
with lowest RMSD; if all configurations were tested the algorithm returns to
the previously set amino acid and resumes its main procedure.

The algorithm starts with a minimum RMSD threshold of 5 angstroms and



Algorithm 1 Testing method for the discrete models.

1: procedure FITMODEL(Pdb,Model)
2 RmsdLimit = 5
3: Start with the first amino acid of the sequence
4: while RmsdLimit > 1 and there is a possible (¢, ) pair do
5: Choose argmin ) RMSD ({non tested (¢,) pairs of Model })
6 if RMSD < RmsdLimit and the backbone does not clash with any
previous atom then
7 for all rotamers indexed by (¢, 1) do
8: if the side chain does not clash with any previous atom then
9: Set the Next Amino Acid
10: if no side chain was found then
11: Choose the rotamer that has less atomic conflicts and try to
correct the clash by changing a previously set side chain
12: if no correction is possible then
13: Execute a Backtrack
14: else
15: Set the Next Amino Acid
16: else
17: Execute a Backtrack
procedure BACKTRACK > The chosen (¢, ) pair is not a possible

configuration
if 3 non tested (¢, ) pairs of Model then
Test the next (¢,1)) pair with lowest RMSD (step 5)
else
Backtrack to the previous amino acid and test the next (¢,1) pair
with lowest RMSD (step 4)

procedure NEXT AMINO ACID > A valid conformation was found for this

amino acid
if this is the last amino acid of the sequence then
RmsdLimit = RmsdLimit - 0.2
Re-evaluate this amino acid with the new limit (step 5)
else
Set the next amino acid (step 4)

decrements 0.2 angstroms each time a model is found for the previous thresh-
old. The algorithm stops if one of the following conditions is met: a 1 angstrom
RMSD threshold limit is reached, no more configurations are possible or a time
limit of one hour for each one hundred amino acids is reached. Although the
number of possible configurations grows exponentially, an exponential increase
of the time would be prohibitive. Since the linear increase may not be enough
to produce equivalent results for all protein sizes, the test will also analyze the
impact of the size of the protein on the model accuracy. We considered differ-
ent thresholds for the side chain rotamer library (see section 2). In addition to



the 4% default value, we also tried 1%, 0.1% and without any cutoff (complete
rotamer library). Since there is a time limit considering more rotamers or a
more complex model may or may not produce better results.

5 Results

To test the accuracy of discrete models we compiled a set of protein struc-
tures of increasing size. The proteins also differ in terms of secondary struc-
ture composition (Alpha Beta, Mainly Alpha and Mainly Beta proteins). We
have chosen the proteins from a list compiled in the What If database!®
(http://swift.cmbi.kun.nl/whatif/select/). In this database a technique sim-
ilar to the PDB_SELECT program (*!°) was used to select a set of proteins
from the PDB database? (http://www.rcsb.org/). Both techniques filter the
proteins using a similarity threshold and a minimum resolution. Table 2 shows
the set of chosen proteins and figure 3 shows the respective structures.

Name | Size Type

1r69 | 63 Mainly Alpha
lctf 69 Alpha Beta
1poh | 85 Alpha Beta
lobu | 88 | All Beta (beta helix)
1e9m | 106 Alpha Beta
lco6 | 107 Mainly Alpha
1vhh | 157 Alpha Beta
lkao | 167 Alpha Beta

Table 2
Protein data set

We have chosen different types of proteins and different sizes to study the
impact of these features in the precision of the discrete models. We imposed
a limit on the number of amino acids since larger proteins would require too
much time to test. The largest proteins in the test set already allow a group of
amino acids to form a core surrounded by other amino acids. Larger proteins
would repeat this pattern. We also decided to focus our choice in globular
proteins which are more packed and therefore more difficult.

Figure 4 shows the results using side chains cutoff of 4% and 1%. Figure 5
shows the results when using 0.1% and the complete rotamer library.

From the results on figure 4 it is possible to verify that, for the majority of
the proteins an accurate model can be found. However, for some proteins, it is
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Fig. 4. Results of the Discrete State Models Using Side Chain cutoff of 4% and 1%.

hard to find a model and, in some cases, no model can be found. For the cases
were an accurate model was found the results are consistent with the ones
presented by!® (2.22 to 2.43 angstroms for the four states models and 1.74
for the six states model). These results were expected since the side chain will
only affect the fit in places where the protein is more compact. In those places,
the minor errors in the discrete state models may not provide enough space
for the side chains to be positioned. For the small proteins, the fitting problem
is much easier since the error accumulation in the fitting will be small, and
also because the side chains can almost always be positioned by choosing a
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Fig. 5. Results of the Discrete State Models Using Side Chain cutoff of 0.1 percent
and using all side chains in the rotamer library.

conformation that points to the exterior of the protein.

The cases where the results are worse in the side chain discrete models happen
mainly with proteins with a large number of beta structures or that have a
dense core. In the first case, because the flexibility of the beta structures is
harder to model and in the second case, because it is harder to pack the atoms.
One of the most difficult proteins to model, despite its small size, was the 1lobu
mainly beta protein. The modeling difficulty of the beta strands is aggravated
by the rolling conformation formed by the sheet. We also verify that, for the
four states models, the C model has the best results. Moreover, we confirm
the increased performance of model A on beta structures shown in the work

of 19,

The six states model performs better than the four states models. However, the
increase in the performance would probably not compensate for the increase in
search space in a search procedure. Notice that, in this problem we are using
the root mean square distance (RMSD) instead of the scoring functions used
in ab-initio folding. The information given by a scoring function is less precise
and the space that needs to be searched is much greater, even in a four state
model. In a six state model that space will be even greater. We can probably
achieve the same result from a four states model after a refinement process
and we would benefit greatly from the smaller size of the search space during
the search process.

From tables 4 and 5 we can see the impact of the size of the rotamer library
in the search. The performance of the models initially increases with the size
of the protein. However, for the 0.1% threshold, we can already see that, for
the bigger proteins, the performance sometimes decreases. When we avoid the
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cutoff we can see this result again. This happens because, when we increase the
size of the library, a greater number of side chain conformations may be tested.
Consequently, although some conflicts may now be avoidable, the cost of the
extra tests might not allow for the same number of conformations to be tested.
Moreover, even the conflicts that were avoided may prove to be a dead end and
cost the algorithm even more time. This increase of time for each side chain
positioning will have a even greater impact in an ab-initio search algorithm,
since no exact measure like the RMSD exists. Without an exact measure,
the number of wrong conformations searched will be much greater and the
increased computational cost of the enlarged library will further decrease the
performance.

The type of model used and the threshold limit will have to be chosen accord-
ing to the type of proteins (specially their secondary structure and size) and
the search algorithm. If no information is known about the protein, a generic
model like the C model or the six states model will probably be the best choice.
For a search algorithm, with no specific information, a four states model with
a side chain threshold of 1% will probably have best results because of the in-
crease in the size of the searched space. If the protein is small, there are fewer
possible conformations, and more detailed models can be found using more
rotamers or even using the 6 states model. For specific cases, where there is
some information about the protein, a model that increases the performance
can probably be built.

Notice that if we use a threshold limit of, for instance, 5 angstroms, and we
cannot find a model, we cannot be sure that no model can reach a 5 angstrom
RMSD. When we stop the model construction, it is above the threshold, but
subsequent choices could lower the RMSD. We chose not to pursue an exact
solution since we needed to significantly increase the search space. However,
we tried a limited solution that allows the algorithm to try a fixed number
of steps (ten) even if the threshold is surpassed. If the algorithm can find a
configuration ahead that is lower then the threshold, the algorithm continues,
if not, it backtracks. The idea is to see if it is possible for the algorithm to
correct a previous error. Table 6 shows results for the algorithm with the non
rigid RMSD limit.

From the results on table 6 we can see that the cost of trying to correct a
conformation error are too high even with a small limit. It is probable that
the conflicts that produce a higher RMSD value are not easily resolved and
that the increased flexibility on the limit would only increase the time spent
on those conflicts.

12
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Fig. 6. Results for the 4% side chain cutoff using the RMSD rigid cutoff and the
non rigid cutoff.

6 Discussion

The results show that, although the discrete models presented in the work of ¥

are well optimized for backbone fitting, when side chains are used and clashes
are disallowed the accuracy decreases greatly for some proteins.

For small proteins the problem does not exist, since the side chains may be
set to the outside of the structure. However, for larger proteins, especially
for proteins with beta sheets, the accuracy is significantly lower than the
one obtained for the backbone only tests. However, it is possible to obtain
structures with root mean square error close or lower than 4 angstroms, which
is still a very good, low detail, representation for the protein and a good
starting point for the refinement algorithms. Moreover, for many proteins the
results are near the 2 angstroms RMSD value and have, therefore, an accuracy
equivalent to the backbone discrete models.

Since even low detail structures are very useful to determine protein function,
these results show that the presented discrete models may be used in ab-
initio protein folding. Moreover, since the models used in this work have been
optimized for backbone models, it is possible that these results may improve
by optimizing the models for structures with side chain representations.

There are still questions to be answered in respect to the discrete models eval-
uated in this work. In the protein folding process, one important aspect is that
the scoring function is well adapted to the model that is being used. The model
must be able to represent the positive and negative aspects of the structure, in
a way that the scoring function can detect. However, no model will be useful
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if it cannot represent a structure near the native protein structure. In this
work, we have shown that it is possible to achieve a structure that is near the
native protein structure. Moreover, by considering side chains and disallowing
clashes, we have already obtained physically correct structures. This reduces
the noise for the scoring function, since positive aspects of a structure, like
the proximity of two amino acids, could be present in a physically impossible
structure.

In future work we propose to study efficient algorithms to search near native
conformations in the discrete state model space. This study may also be further
improved by constructing a better adapted discrete model with side chains.
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