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Abstract

Graph clustering is an important problem in the analysis of computer networks, so-
cial networks, biological networks and many other natural and artificial networks.
These networks are in general very large and, thus, finding hidden structures and
functional modules is a very hard task. In this paper we propose new data struc-
tures and make available a new implementation of a well known agglomerative
greedy algorithm to find community structure in large networks. The experimen-
tal results show that the improved data structures speedup the method by a large
factor, for very large networks.

1 Introduction

In the study of many networks, such as computer networks, social networks, or biological networks,
it is frequently useful to identify communities. Informally, communities may be defined as unex-
pected densely connected sets of vertices. By identifying community structure we are able to capture
common properties among vertices, e.g., common function in biological networks or common se-
mantic attributes in social and web networks. Community structure identification can also help the
study of huge networks, for which a layered analysis may be useful if we want to study different
levels of relations. For a detailed discussion of motivations, see for instance [1].

Given the importance of community structure identification, many work has been done in computer
science, physics, biology, economics, and sociology [1, 2, 3]. Main research directions include
global, local, overlapping and non-overlapping community identification. An approach to commu-
nity finding is graph partitioning or clustering, where each vertex belongs to exactly one set. Many
approaches have been developed to tackle the problem of finding partitions in graphs [1, 3, 4, 5, 6, 7].
These approaches may differ in many aspects, such as hierarchical and non-hierarchical methods and
whether a priori knowledge of the size or number of communities is required.

A well known and natural approach was recently proposed by Newman and Grivan [4], which con-
sists of finding communities by maximizing the modularity score. The modularity of a given network
partition is given as the difference between the number of edges inside partitions, and the expected
number of such edges if randomly placed while respecting the vertices degrees. Although the prob-
lem of modularity maximization is NP-hard [8], many heuristic algorithms have been developed and
recent empiric results show that this approach identifies interesting community structure in real net-
works [1, 2, 4, 5, 6]. However, we should be careful with modularity maximization results, Fortunato
and Barthélemy [9] and Kumpula et al. [10] recently noted that modularity suffers some problems,
such as resolution limit. Thus, depending on the analysis, we may consider alternative scores such
as the similarity-based modularity [11]. Later we will discuss how the algorithm described in this
paper can be extended to different measures.
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The results reported in this paper are motivated by the emergent interest in finding communities in
very large networks with thousands of vertices. Regarding large networks and modularity maximiza-
tion, Newman [5] has proposed an algorithm based on the greedy optimization of the modularity.
It runs in O((n + m)n), or O(n2) for sparse graphs, where n is the number of vertices and m
is the number of edges. The running time of this algorithm can be improved by exploiting some
properties of the optimization problem and using more sophisticated data structures. Specifically,
Clauset et al. [6] proposed a greedy algorithm which runs in O(md log n), where d is the depth of
the “dendrogram” which describes the community structure. On sparse graphs with a hierarchical
community structure their algorithm runs on average in O(n log2 n) time. In what follows, we refer
to this algorithm as the CNM (Clauset-Newman-Moore) algorithm.

In this paper we propose and make available1 a new implementation of the CNM algorithm, using
improved data structures. Both analytical analysis and experimental results show that the improved
data structures speedup the method by at least a factor of two. The algorithm is an agglomerative
greedy algorithm with O(n2 log n) running time and O(n + m) required space for networks with n
vertices and m edges. We also show that its running time is O(n log2 n) for networks that are both
sparse and hierarchical.

2 Graph modularity

The concept of modularity is central to this problem [4]. Modularity is a property of the graph
and of a specific division of the graph into communities. It measures the quality of the division by
evaluating the number of edges within communities and the number of edges that connect vertices
in different communities. Let G = (V,E) be an undirected graph. Suppose the vertices are divided
into k communities and let 1 ≤ cu ≤ k denote the community where vertex u ∈ V belongs. The
adjacency matrix A of G is such that

Auv =
{

1 if (u, v) ∈ E,
0 otherwise. (1)

The degree du of a vertex u ∈ V is defined as the number of edges incident upon it, i.e.,

du =
∑
v∈V

Auv. (2)

We define the modularity Q of G with respect to the given partition as

Q =
1

2m

∑
u,v∈V

[
Auv −

dudv

2m

]
δ(cu, cv), (3)

where m = |E| and the δ-function is such that δ(i, j) = 1 if i = j and δ(i, j) = 0 otherwise. We
note that the above sum runs over all possible pairs of vertices. Therefore, each edge is summed
twice. If we split the sum in two terms, the first term

1
2m

∑
u,v∈V

Auvδ(cu, cv) (4)

is the fraction of edges that fall within the communities, and the second term

1
2m

∑
u,v∈V

dudv

2m
δ(cu, cv) (5)

is the expected fraction of edges within the communities, if the edges were randomly distributed
while respecting the vertices degrees. In particular, if the edges were randomly placed as mentioned,
dudv/m is the probability of the existence of an edge between vertices u, v ∈ V .

Thus, modularity measures the fraction of edges that connect vertices in the same component minus
the expected value of the same quantity in a graph with the same components but random connec-
tions between the vertices [4]. Values near 1, the maximum value of Q, indicate strong community

1Available at http://kdbio.inesc-id.pt/software/gcf/.
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struct adj_node {
int id;
int u;
int v;
struct adj_node *u_nxt;
struct adj_node *u_prv;
struct adj_node *v_prv;
struct adj_node *v_nxt;

};

Figure 1: Cross-linked adjacency list data structure. List nodes are defined by the C structure on the
left and are linked as depicted on the right, where a cross-link is shown.

structure. Typically, values for graphs with known community structure are in the range from 0.3 to
0.7 [4, 12].

The modularity QG of a graph G is defined as the maximum value that can be obtained for expression
3, over all possible graph partitions. Thus, although expression 3 can take negative values, the
maximum modularity of a graph takes values between 0 and 1. For any graph, the value 0 is obtained
for the trivial partition where all nodes belong to the same community. Given a graph G, finding the
partition with maximum modularity QG is NP-hard [8].

3 Algorithm and data structures

The proposed algorithm starts with each vertex being the sole member of its community. Its oper-
ation consists in finding the pair of communities for which the merge will produce the maximum
positive change in the modularity score Q. This is the same principle employed by the Newman’s
greedy algorithm and by the CNM algorithm.

Given two communities i and j, ∆Qij denotes the change in Q produced by the merging of i and
j. Since calculating the ∆Qij for each pair i, j becomes time-consuming, we store these values for
each pair and only update them when needed. Given a community i, let

Ai =
1

2m

∑
u∈V

duδ(cu, i). (6)

If we are merging community i into community j, ∆Qjk for each community k adjacent to j and
Aj are updated as follows [6]:

∆Qjk =

{ ∆Qik + ∆Qjk if k is connected to i and j,
∆Qik − 2AjAk if k is connected to i but not to j,
∆Qjk − 2AiAk if k is connected to j but not to i;

(7)

Aj = Aj + Ai. (8)

Communities are considered connected if there exists at least one edge between them. Note that
merging two communities for which there is no connecting edge does not increase Q. Therefore, we
do not care about such pairs and we will not store their ∆Q. Thus, we will have at most m values to
store and we will store them in a heap data structure [13]. Since we have to perform both decrease
and increase operations over keys in the heap, we use a simple binary heap data structure. Therefore,
get minimum operation takes constant time in the worst case and insert, delete and update operations
take O(log m) time in the worst case.

We also maintain the community adjacency list. This data structure is a common graph adjacency
list [13], the adjacency list for each community being stored in a double-linked list. In order to
improve the algorithm running time, we maintain cross references among adjacency lists, being
able to solve side effects in constant time when merging two adjacency lists. In fact we share the
adjacency list nodes as depicted in Figure 1.
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As described above, the algorithm starts with each vertex u ∈ V being the sole member of a com-
munity cu. Thus, for each community i and for each edge (i, j) in the graph, we initially set

Ai =
di

2m
and ∆Qij =

1
m
− 2AiAj . (9)

The initial value of Q is set to
Q = −

∑
u∈V

AcuAcu . (10)

The algorithm proceeds as follows:

1. extract the edge (i, j) with maximum ∆Q in the heap;

2. if the edge (i, j) was removed from the community adjacency data structure, ignore it and
go to step 1;

3. remove the edge (i, j) from the community adjacency data structure;

4. merge adjacency lists of communities i and j;

5. update ∆Q for each adjacency pair accordingly to equation 7;

6. update Aj accordingly to equation 8, assuming without loss of generality that j becomes
the new community;

7. update modularity Q by adding ∆Qij ;

8. repeat from step 1 until one community remains.

Although similar, this algorithm differs from the CNM algorithm since it updates only one heap and,
by using cross-linked adjacency lists, the merge step is simplified.

4 Complexity analysis

Let n = |V | and m = |E|. The space requirement of the algorithm is simply O(n + m). The com-
munity adjacency data structure stores at most m connections and we need to store the connections
for each community. Thus, since there are n communities at most, we need O(n) plus O(m) space.
The heap stores m elements, and therefore, requires O(m) space.

Let us now examine the running time of the algorithm. We know that updating an element in the
heap takes cu log m time and that extracting an element from the heap takes cr log m, where m is
the maximum size of the heap and cu, cr > 0 are constants. Thus, the extraction in step 1 takes
cr log m time at most and, since there are m elements in the heap, this step is repeated m times.
Because we get a direct reference to the pair from step 1 and we are dealing with double-linked
lists, removing the edge (i, j) from the community adjacency data structure in step 3 takes constant
time. Step 4 takes 3cln time in the worst case, with cl > 0 being a constant. Note that there are at
most n adjacent communities to i and to j and that we can solve side effect changes in constant time
because of the above mentioned cross references among adjacency lists. If a community k appears
twice in the result, we only keep it once. To achieve linear time with unsorted lists, without loss
of generality, we must process the adjacency list of i and build a bit array of size n at most. Then
we process the adjacency of j, checking whenever a community k occurs in both adjacencies and
updating the bit array. Finally we reprocess the adjacency of i in order to find the communities k
which were not in the adjacency of j. Therefore, processing adjacencies takes at most 3cln. Step 5
can and should be done along with step 4 and each update takes cu log m time at most, thus step 5
takes less than cun log m time. Steps 6 and 7 are trivial and take constant time.

Although there exist m elements in the heap, steps 3-7 are executed at most n − 1 times because
there are at most n− 1 merges. Therefore, the running time of the algorithm is at most crm log m+
3cln

2 + cun2 log m, i.e., O(n2 log n) time in the worst case assuming as usual that m = O(n2).

For sparse and hierarchical graphs we can provide a better upper bound. A graph G = (V,E) is
sparse if m = O(n) and G is hierarchical if the resulting dendrogram for the community merging
is balanced. In this case, the sum of the communities degrees at a given depth d is at most 2m.
Therefore the running time is crm log m+6cldm+2cudm log m, i.e., O(md log n), where d is the
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depth of the dendrogram. Then for sparse and hierarchical graphs, m = O(n) and d = O(log n),
the algorithm running time becomes O(n log2 n).

Although the runtime asymptotic bounds are equal for our algorithm and for the CNM algorithm,
we note that there is an improvement of at least a factor of two. As before, the CNM algorithm
employs the same greedy algorithm but it maintains different data structures. Specifically, it stores
the ∆Q values in a sparse matrix with each row being stored both as a balanced binary tree and
as a max-heap. It also maintains a max-heap containing the largest element of each row. Before
discussing the running time, we note that we consider the same max-heap implementation as before.
Therefore, updating an element takes cu log n and extracting an element takes cr log n, where n is
the maximum size of the heaps in this case. Thus, extraction in step 1 takes cr log n time. Removing
the selected pair from the community adjacency data structure in step 3 takes 2ct log n to update the
binary trees plus 2cu log n to update the heaps, where ct > 0 is a constant. Steps 4 and 5 take at
most 2n(ct + 2cu) log n + cun time, since we must update the trees, the k-heap and the main heap
for each k in the adjacency lists being merged. The heap associated with the resulting adjacency
list can be updated in cun time [13]. As above, steps 6 and 7 are trivial and take constant time.
Since steps 1-6 are executed at most n− 1 times, the running time of the CNM algorithm is at most
(cr + 2ct)n log n + 2(ct + 2cu)n2 log n + cun2, i.e., O(n2 log n)). Taking as above d and m, the
running time is (cr + 2ct)n log n + 4(ct + 2cu)dm log n + 2cudm, i.e., O(md log n)). Thus, for
sparse and hierarchical graphs the running time becomes O(n log2 n).

Thus, although log n ≤ log m ≤ 2 log n, by comparing the above running time expressions we can
state that our implementation should achieve an improvement of at least a factor of two. We will
confirm this fact within the experimental evaluation.

5 Experimental evaluation

In this section we consider four implementations of the above method in C/C++. We have the
original implementation of the CNM algorithm as provided by the authors. We also implemented
it using optimized data structures to ensure fairness in the comparison. And we implemented two
versions of the algorithm using the new data structures, one using binary heaps and another one
using relaxed heaps [14]. Relaxed heaps should be faster than binary heaps, but are much more
complex. We used the relaxed heaps implementation of the Boost graph library [14].

We also included in our implementation a randomized comparison function. As noted by Brandes
et al. [8], the algorithm may perform badly if pairs with equal ∆Q are chosen in some crafted order.
Although we can not avoid undesired behavior by ordering these pairs randomly, we expect that it
will not happen every time. With respect to such fluctuations of modularity, we must mention that
even small fluctuations may correspond to very different node partitionings [15]. Thus, several runs
may be required to evaluate a given partitioning.

In order to evaluate the performance of the algorithm, we generated artificial networks from the
partial duplication model [16, 17]. We choose this model because we are interested in knowing our
algorithm efficiency on biological networks. Although the abstraction of real networks captured
by the partial duplication model, and other generalizations, is rather simple, the global statistical
properties of the biological networks and their topologies can be well represented by this kind of
model. Note that the described model exhibits exponents of the degree distribution in the proper
range and it also exhibits cluster coefficients like those seen for biological networks [18]. Note also
that we do not ensure any community structure on the generated networks. Let G0 = (V0, E0) be
an undirected and unweighted graph. Given 0 ≤ p ≤ 1, the partial duplication model builds a graph
G = (V,E) by partial duplication as follows: start with G = G0 at time t = 1 and, at time t > 1,
perform a duplication step:

1. uniformly select a random vertex u of G;
2. add a new vertex v and an edge (u, v);
3. for each neighbor w of u, add an edge (v, w) with probability p.

The edges added in step 2 make the graph always connected. For simplicity, we start the duplication
time at t0 = |V0|. Thus, at any time t ≥ t0, G has exactly t vertices. Usually, G0 is taken to be the
graph formed by one vertex.
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Figure 2: Average running time for duplication model graphs obtained with p = 0.5.

Table 1: Time and memory requirements for an artificial network with 1 million vertices and more
than 13 million edges.

Implementation Time Memory (MB) Q # Communities

Our w/ relaxed heaps 8h42:24.27 990 0.679 2770
Our w/ binary heaps 14h46:02.49 918 0.679 2828
Our CNM 40h13:25.23 1,796 0.644 -
Original CNM - 2,487 - -

Chung et al. [16] shown that, with probability p approaching 1 and the number of vertices becom-
ing infinitely large, the partial duplication model generates power-law graphs with the exponent β
satisfying

p(β − 1) = 1− pβ−1. (11)

In particular, if 1
2 < p < 1, then β < 2. However, the range of significant interest of β, between

1 and 2, is produced by only a relatively small range of selection probabilities, i.e., 0.5 < p <
0.56714329... In the next section we will consider selection probabilities in this range.

We generate several graphs with different number of vertices and with selection probability p = 0.5.
Specifically, for each given number of vertices, we generate 10 random graphs. The number of
edges for those graphs is approximately 10 times the number of vertices. Figure 2 compares the
running time of our implementations versus the running time of the CNM algorithm. It is clear
that our implementation shows an improvement over CNM implementation, as we discussed in the
previous section. Consider our implementation of CNM algorithm and the new implementation with
binary heaps, both use the same implementation of binary heaps and differ only on the community
adjacency data structure. By analyzing Figure 2, we see and improvement of at least a factor of
two, e.g., for a graph with 20,000 vertices the new implementation takes less than half of the time.
The implementation with relaxed heaps performs even better. We run some tests with very large
networks and, in Table 1, we have the time and memory requirements to process a network with
1 million vertices and more than 13 millions edges. For this type of networks, the implementation
with relaxed heaps is clearly the best one. Note also the improvement in memory requirements.
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Although we did not ensured any community structure on the generated networks, it is interesting to
note that the values of modularity are most of the times higher than 0.5. This may be an interesting
property of the duplication model and it deserves a better understanding. We leave this study as
future work questioning if, for this class of networks, the approximation ratio can be lower than 2
since modularity is always smaller than 1. Note that this is in general false, Brandes et al. [8] shown
that there are networks for which the approximation ratio is unbounded.

Another important fact is that we have obtained different values of modularity for each implementa-
tion. As we mentioned before, this is related with the selection order of pairs with equal ∆Q values.
We implemented a randomized comparison function that picks randomly a pair whenever two pairs
have the same ∆Q value. Table 2 has the ranges of the modularity values for 3 real networks. These
ranges were computed by running 1,000 times one of the implementations. Note that with a ran-
domized comparison function we can run several instances and evaluate the stability of a network
partition, since modularity fluctuations may correspond to very different graph partitions.

Table 2: Maximum and minimum modularity for 3 real networks after 1,000 runs.

Network Max Q Min Q

Zachary’s karate club [19] 0.373 0.395
C. elegans metabolic network [2] 0.388 0.423
Protein interaction network [20] 0.808 0.846

Let us give some more details about the implementation and evaluation. The above running times
include the tracking of community membership. For that we use the disjoint sets data structure [13]
and, therefore, the running time cost is negligible. All implementations were compiled with GNU
C/C++ compiler and optimization flag -O3. The experimental evaluation was performed in a 2.33
GHz quad core processor with 16 GB of memory and running a GNU/Linux distribution.

6 Final remarks

In this paper we proposed a new implementation of a well known heuristic algorithm - CNM algo-
rithm - for the problem of finding communities in graphs, based on the greedy maximization of the
modularity score. The algorithm has a running time of O(m log n + n2 log n) and a space require-
ment of O(n + m), in the worst case. Although the method has the same asymptotic complexity as
the original CNM method, we obtained an improvement of at least a factor of 2 over previous im-
plementations. To achieve this improvement we used cross-linked adjacency lists, binary heaps and
disjoint sets to track community membership. Furthermore, by using relaxed heaps, we were able to
achieve an improvement of at least a factor of 4. We were also able to reduce memory requirements
by at least a factor of 2.

For sparse graphs the algorithm runs in O(nd log n), where d the depth of the dendrogram. If the
graph has a hierarchical structure, d = O(log n), the running time becomes O(n log2 n). This bound
can be enforced for the majority of sparse graphs, even for those without hierarchical structure, by
employing recently proposed heuristics [21]. These heuristics combine the ∆Qij values with the
difference of size of communities i and j, balancing the dendrogram.

We also presented results concerning the selection order of the community pairs with equal ∆Q. In
recent works as been discussed that the selection order could be important for the greedy optimiza-
tion [8] and that small modularity fluctuations may correspond to very different partitions []. We
implemented a randomized comparison function and we presented results concerning modularity
fluctuation for known networks. Such implementation can be useful to evaluate partition stability.

As mentioned before, modularity suffers some problems [9, 10]. Thus, alternative scores are impor-
tant and the described algorithm may be adapted. It is sufficient to reformulate equations 7 and 8,
see for instance [11] where this algorithm was used with the similarity-based modularity.
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