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Abstract—This work tackled the problem of finding a mathe-

matical model for the genetic network regulating the stress re-

sponse of the yeast Saccharomyces cerevisiae to the fungicide 

mancozeb This regulatory network comprises five genes, and an 

S-system formalism was used to model their interactions. Parame-

ter estimation was accomplished by decoupling the resulting 

system of nonlinear ordinary differential equations into a larger 

nonlinear algebraic system, and using the Levenberg-Marquardt 

algorithm to fit the model’s predictions to available experimental 

data. The introduction of constraints in the parameter estimation 

procedure, related to the partially known connectivity of the 

network, was explored. The success of the results obtained was 

limited, mainly due to the insufficient number of experimental 

points available, as well as to their poor dynamical variability. 

 
Index Terms—Differential Equations, Gene Regulatory Net-

work, Parameter Estimation, S-system Formalism, Saccharomy-

ces cerevisiae. 

 

I. BACKGROUND AND PROBLEM DEFINITION 

HE pattern of expression of a given gene in an organism 

often depends on a set of other genes, which interact 

among themselves, forming what is called a genetic regulatory 

network. Because these networks of interactions are usually 

large and intricate, and their resulting dynamics very complex 

and nonlinear, much effort has been put on finding systematic 

mathematical tools for their modeling and simulation [1]. One 

such tool is the S-system formalism, which is a variant of the 

formalism proposed by Biochemical Systems Theory (BST) 

[2;3]. The S-system formalism represents the dynamics of the 

biological network as a system of nonlinear ordinary differen-

tial equations, describing each component’s temporal rate of 

change (the derivative with respect to time of e.g. its concen-

tration) as the sum of one positive and one negative term, 

accounting, respectively, for its rates of production and degra-

dation: 
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In (1), M is the number of components of the network (or 

the number of state variables of the system), αi and βi are non-
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negative rate constants, and gij and hij are real-valued kinetic 

orders for the production and degradation terms, respectively. 

The advantage of using canonical formulations such as this is 

that they provide a consistent mathematical framework for the 

representation and analysis of the dynamical behavior of bio-

logical systems. 

The parameters specified by this type of model (vectors α 
and β, and matrices g and h) are estimated by fitting the 
model’s predictions to experimental data. In terms of the fit-

ting, two approaches may be followed: either  

i. the predictions of the numerically integrated system (1) 

are fitted to experimental time series of the (concentra-

tions of the) components of the network, or  

ii. the predictions of the differential equations in (1) are 

directly fitted to the  estimated experimental slopes of 

these time series.  

Besides bypassing the computationally heavy numerical in-

tegration steps, the latter approach has the additional advan-

tage of resulting in the replacement of the differential equa-

tions (1) with sets of algebraic equations, whose decoupling 

allows for the parameters pertaining to each state variable to 

be estimated separately [2]. A potentially problematic re-

quirement of this method has to do with the slope estimates, 

whose reliability depends on both the existence of a sufficient 

number of experimental points and an appropriate smoothing 

of the experimental data. 

The estimation of the parameters of highly parameterized 

nonlinear models of biological systems often reveals a particu-

larly troubling characteristic of these systems: the fact that a 

large range of parameter values may result in very similar 

dynamical behavior (and, specifically, in a similarly good fit of 

the model to the experimental data). In the case of S-system 

models, this also means that distinct types of interactions 

among network components may generate the same overall 

dynamical behavior (as the activation or inhibition effect that a 

given component has on another is defined by the signs of the 

corresponding kinetic orders). The fact that the dynamics of 

these systems are insensitive to particular directions in the 

parameter search space constitutes a phenomenon called slopi-

ness, and an approach for analyzing the sloppiness of a bio-

logical system is to explore the clusters or clouds of parame-

ters which result in a given dynamical behavior. 

Modeling of the Saccharomyces cerevisiae FLR1 Regulatory Network 

using an S-System Formalism 

Dulce Calçada, Susana Vinga, Arlindo Oliveira 
KDBIO/INESC-ID, Lisboa, Portugal 

dulce.calcada@ist.utl.pt, svinga@kdbio.inesc-id.pt, aml@inesc-id.pt 

T 



Technical Report 68/2009 

December 2009 

2 

II. CASE STUDY: THE FLR1 REGULATORY NETWORK 

The biological system analyzed in this work was the genetic 

regulatory network that determines the stress-induced expres-

sion of Saccharomyces cerevisiae (S. cerevisiae) gene FLR1, 

in response to the fungicide mancozeb. This network com-

prises five interacting genes (the state variables) and its 

mathematical formulation was based on the S-system formal-

ism.  

The aim was to estimate the 60 resulting parameters (two 5-

by-1 α and β vectors, and two 5-by-5 g and h matrices), by 
fitting the slopes of each gene’s relative concentration at each 

time point (as estimated from the corresponding experimental 

time series) to the derivatives predicted by the mathematical 

model developed. The Levenberg-Marquardt algorithm was 

used to minimize a cost-function defined as the sum of squared 

residuals between the predicted derivatives and the estimated 

experimental slopes at each time point, subject to a number of 

nonlinear constraints [3].  

Because of the system’s anticipated sloppiness, the ap-

proach described by Vilela et al. [3] was used for parameter 

estimation, with admissible parameter sets being estimated by 

a Monte Carlo process combined with the optimization algo-

rithm.  

III. PRE-PROCESSING OF EXPERIMENTAL DATA 

Five sets of experimental data were available for this work 

[4]. Each set consists of five time series of the relative concen-

trations of the transcripts of five S. cerevisiae genes (parental 

strain BY4741) involved in its stress response to the fungicide 

mancozeb, measured over the course of 11 hours, at 8 non-

equally spaced time instants. The genes are FLR1, YAP1, 

PDR3, RPN4 and YRR1 and the relative concentrations of 

their transcripts (Flr1p, Yap1p, Pdr3p, Rpn4p and Yrr1p, 

respectively) were obtained as ratios of the levels of the corre-

sponding mRNA to the levels of ACT1 mRNA in the cells. 

The ratios obtained for control conditions (absence of man-

cozeb) were set to 1 and the remaining values were obtained 

relative to that control. Each data set corresponds to experi-

ments carried out using the wild-type S. cerevisiae strain 

BY4741, labeled wt, and four deletion mutants, missing genes 

YAP1, PDR3, RPN4 and YRR1, and labeled ∆yap1, ∆pdr3, 
∆rpn4 and ∆yrr1, respectively. 
In terms of the FLR1 gene, the yeasts’ stress response to 

mancozeb is characterized by a transient initial activation of 

FLR1 expression, followed by a decline in FLR1 transcript 

levels, until full adaptation to mancozeb is attained (e.g. in the 

wt data set). Because of this transient response, the initial 

period of the experiments was more finely sampled, with six 

measurements taken in the first 2 hours, and the two final 

measurements taken at the 6
th
 hour and at the 11

th
 hour. 

The authors sought to ascertain the regulatory roles of genes 

YAP1, PDR3, RPN4 and YRR1 in the control of FLR1 activa-

tion, and their analysis resulted in the proposal of a network 

specifying the interactions among these four transcriptional 

regulators and the FLR1 gene.  

The parameter estimation algorithm used in this work re-

quires the computation of the derivatives of the experimental 

time series. Because of the limited number of experimental 

data points and of noise in the corresponding measurements, 

an accurate estimate for these derivatives requires that the data 

be smoothed. Thus, cubic smoothing splines [5] were con-

structed for every experimental time series using function 

csaps of the MATLAB
®
 Spline Toolbox. The smoothing spline 

ƒ = csaps(x,y,p) minimizes  

 ( ) ( ) ( )( ) ( ) ( ) ( )
2 2

2

1

:, 1
n

j

p w j y j f x j p t D f t dtλ
=

− + −∑ ∫ (2) 

The first term in (2) is called the error measure, and the sec-

ond term the roughness measure. Parameter p is called the 

smoothness parameter as it determines the relative weight of 

the two contradictory demands of having ƒ be smooth and 
simultaneously be close to the data. For p=0, ƒ will be the 
least-squares straight line fit to the data, while for p=1, it will 

be the data’s “natural” cubic spline interpolant. Parameter w in 

the error measure is a vector of weights, and parameter λ in the 
roughness measure is a piecewise constant weight function, 

which allows one to force ƒ to be smoother (by making the 
weight function larger) or, on the contrary, closer to the data 

(by making the weight functions smaller), in some parts of the 

spline interval than in others. 

In the present case, x is the vector of measurement instants 

and y is the vector of transcript levels of a given gene, in a 

given data set. Parameter w was set to be a vector of ones the 

same size as x, since early experiments, in which it was set to 

be the inverse of the measurements variance (computed, when 

available, from 3 independent measurements), yielded poor 

results. Parameters p and λ were chosen, for each time series, 
by trial and error. In the case of parameter p, the values typi-

cally used were 0.8 or 0.97 but values as low as 0.3 and 0.5 

were found to be more adequate in some instances. As for 

parameter λ, its value also varied, but, in general, more rough-
ness was allowed at the initial time points, where he transient 

response occurs (smaller λ for those points). 
The splines were evaluated at 67 equally spaced time points, 

and their derivatives were obtained at the same time points, by 

using function fnder. Fig. 1 below shows the plots of the 

experimental and splined time series of the five aforemen-

tioned genes, in the wt data set. Fig. 2 shows the corresponding 

derivatives. The same data is shown in Fig. 3 and Fig. 4, re-

spectively, for the ∆yap1 data set. 
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Fig. 1. Experimental time series (red circles) of the transcript levels of FLR1, 

YAP1, PDR3, RPN4 and YRR1 in the wild-type strain of S. cerevisiae (wt 

data set). The blue lines are cubic smoothing splines. 
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Fig. 2. Time series of the transcript levels derivatives of genes FLR1, YAP1, 

PDR3, RPN4 and YRR1 in the wt data set, as obtained from the splines used 

to smooth the time series, at 67 equally spaced time points. 
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Fig. 3. Experimental time series (red circles) of the transcript levels of FLR1, 

YAP1, PDR3, RPN4 and YRR1 in the YAP1 deletion mutant of S. cerevisiae 

(∆yap1 data set). The blue lines are cubic smoothing splines. 
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Fig. 4. Time series of the transcript levels derivatives of genes FLR1, YAP1, 

PDR3, RPN4 and YRR1 in the ∆yap1 data set, as obtained from the splines 
used to smooth the time series, at 67 equally spaced time points. 
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Although the results were satisfactory for the wt data set 

(Fig. 1), the same cannot be said about the ∆yap1 data set (Fig. 
3). Indeed, the amount of noise seemed to be greater in the 

latter, and, had more points been sampled, data smoothing 

would probably have yielded a constant function for every 

time series. This problem also arose in a considerable portion 

of the time series in the other three data sets, leading to the 

conclusion that the few available measurements were not in-

formative enough to build reliable splines.  

As an alternative to cubic smoothing splines, the automated 

smoother described in [6] was also applied to the data, but, 

despite its handling of nonstationary noise structures, the re-

sults were not satisfactory. The limited success of this smooth-

ing method may have been due to the limited number of ex-

perimental points available and, perhaps more importantly, to 

the fact that the experimental points were not equally spaced. 

IV. MODELING AND PARAMETER ESTIMATION 

As stated earlier, the mathematical modeling of the FLR1 

regulatory network was based on the S-System formalism, with 

the state variables being the transcript levels of its five inter-

acting genes: X1=FLR1, X2=YAP1, X3=PDR3, X4=RPN4, and 

X5=YRR1.  

Parameter estimation was based on the decoupling of the re-

sulting system of ordinary differential equations, and the sets 

of admissible parameters were estimated using the method 

described in [3]. The computational implementation used was 

that made freely available by the authors in the form of a set of 

MATLAB
®
 scripts. The main script is EO_mainf and its syntax 

is 

result = EO_mainf(X,S,p) 

with X being the experimental time series, S its corresponding 

estimated slopes, and p a structure of optional parameters 

provided to the algorithm. X and S are thus matrices with a 

number of rows equal to the number of (splined) time points, 

and a number of columns equal to the number of network 

components. 

Eight distinct settings were considered for parameter estima-

tion, varying both in the data sets used, and in the topological 

constraints applied to the network. For each of these eight 

settings, the algorithm was run 100 times, with differing initial 

conditions (as explained at the end of this section). In terms of 

the data used, two alternatives were explored:  

i. using all five data sets, resulting in 335-by-5 X and S 

matrices (67×5=335 splined data points for each gene);  

ii. using only the wt data set, resulting in 67-by-5 X and S 

matrices (67 splined data points for each gene). 

As for the constraints applied to the network, four settings 

were tested, by imposing zero-valued entries in the kinetic 

orders matrices g and h. In practice, this was done by inputting 

the fields p.G and p.H of structure p as matrices of ones and 

zeros, according to whether or not a given gene was allowed to 

affect another gene’s production and degradation rate. The 

constraints imposed were based on the (positive or activation-

type) interactions specified in the putative network proposed in 

[4], of which a simplified version is reproduced in Fig. 5. 

Because there was no information regarding negative interac-

tions among the genes, the constraints imposed on p.H simply 

reflect the fact that the rate of degradation of each gene should 

depend solely on its own concentration level and not on any 

other component’s. 

RPN4

YAP1PDR3 YRR1

FLR1
 

Fig. 5. Putative FLR1 regulatory network proposed in [4]. The black arrows 

represent the activation effect that a given gene has on the level of expression 

of another (up-regulation only).  

 

The four tested settings were: 

i. a fully unconstrained network, where each gene is al-

lowed to have an effect on every other gene’s produc-

tion and degradation terms, i.e. for which  

 

1 1 1 1 1

1 1 1 1 1

. . 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

p G p H

 
 
 
 = =
 
 
  

 (3) 

ii. a fully constrained network, where the effect of a given 

gene on another gene’s production term was deter-

mined by the putative network proposed in [4] (with an 

additional dependence of the production rate of a gene 

on its own expression level), and its degradation term 

was made to depend only on its own level of expres-

sion, i.e. for which 

1 0 0 0 0 0 1 1 0 1 1 1 1 0 1

0 1 0 0 0 0 0 0 1 0 0 1 0 1 0

. 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1

0 0 0 1 0 0 1 0 0 1 0 1 0 1 1

0 0 0 0 1 0 1 1 0 0 0 1 1 0 1

p G

     
     
     
     = + =
     
     
          

(4) 

 

1 0 0 0 0

0 1 0 0 0

. 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

p H

 
 
 
 =
 
 
  

 (5) 

iii. a network with constraints on the production term but 

not on the degradation term, i.e. for which p.G is as de-

fined in (4) and p.H is as defined in (3); 

iv. a network with constraints on the degradation term but 
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not on the production term, i.e. for which p.G is as de-

fined in (3) and p.H is as defined in (5). 

The remaining fields of structure p for which the default 

values were not used were p.iter, p.ubB and p.int. Parameter 

p.iter (which is the number of iterations for the optimization 

algorithm and whose default value is 300) was set to 500; 

parameter p.ubB (which is the upper boundary value of the 

constant rates β and whose default value is 300) was set to 
100; and parameter p.int (which is a positive scalar used to 

calculate the initial values for the optimization algorithm and 

whose default value is 1) was made to vary between different 

runs of the algorithm – if k was the run index, then p.int was 

set to k/5. 

V. RESULTS 

Two criteria were defined for evaluating the performance of 

the parameter estimation algorithm in each of the 8 settings 

tested. The first criterion, C1, was the lowest cost function 

value achieved for each setting in the 100 runs of the algo-

rithm, and the second criterion, C2, was the percentage of runs 

reaching a cost function value below a certain threshold 

(which was set to 1000). The results of this evaluation are 

shown in Table I. 

TABLE I 

CRITERIA C1 AND C2 FOR EACH SETTING 

Setting 
Data Sets 

used 
Constraints C1 C2 

1 all none - 0 

2 all on g and h - 0 

3 all only on g - 0 

4 all only on h - 0 

5 wt none 108.82 60 

6 wt on g and h 945.92 100 

7 wt only on g 141.60 100 

8 wt only on h 310.71 99 

 

According to these criteria, the worst overall settings were 

those for which all five data sets were used to estimate the 

parameters. This may be explained by the fact the poor dy-

namic variability exhibited by the slopes of a large portion of 

the time series in the non-wild-type data sets. Specifically, in 

each of the four sets referring to deletion mutants, ∆yap1, 
∆pdr3, ∆rpn4 and ∆yrr1, the time series of the corresponding 
gene is constant. As the authors of the method point out [3], 

this may lead the algorithm to produce spurious results, due to 

numerical problems with the inversion of an ill-conditioned 

matrix. Within settings 5 to 8 (for which only the wt data set 

was used for parameter estimation) the best results were 

achieved when no constraints were imposed on the topology of 

the network (setting 5), while the worst results were obtained 

for the fully constrained topology. 

Further analysis of the optimization results focused on the 

agreement of the predictions of the integrated version of (1) 

with the experimental data. Thus, defining the error (in the 

model) as the sum of squared residuals between the predictions 

of the integrated system (1) and the experimental data, two 

additional criteria for the evaluation of the results were de-

vised: criterion C3, corresponding to the lowest error achieved 

for each setting in the 100 runs of the algorithm; and criterion 

C4, corresponding to the percentage of runs achieving an error 

below a certain threshold (which was set to 5000).  

The predictions of the 100 models in each setting were ob-

tained for the five time series in each data set, via numerical 

integration of the system, with the five corresponding initial 

conditions in each data set. The numerical integration of the 

system was performed with the simple Euler method, since the 

stiff solvers available in MATLAB
®
 (ode15s and ode23s) 

could not successfully handle it. Time steps of 1/60 h were 

used, and a safeguard for the prediction of negative values (as 

well as numerical errors resulting in infinite and NaN values) 

was applied: if such values were predicted, they were changed 

into the value at the previous time step. Table II below shows 

the value of evaluation criterion C3 for each setting and data 

set.  

TABLE II 

CRITERION C3 FOR EACH SETTING AND DATA SET 

Data Set 
Setting 

wt ∆yap1 ∆pdr3 ∆rpn4 ∆yrr1 
1 1270.7 18.189 691.24 832.84 102.69 

2 14643 18.189 691.24 832.84 102.69 

3 Inf 18.189 7×10151 832.84 102.69 

4 1450.2 18.189 691.24 832.84 102.69 

5 727.36 18.189 691.24 832.84 102.69 

6 11050 18.189 691.24 832.84 102.69 

7 1018.3 18.189 691.24 832.84 102.69 

8 215.70 18.189 691.24 832.84 102.69 

 

Because these are absolute values, one cannot compare the 

errors among data sets (that is, the columns of Table II are not 

comparable). Nonetheless, a striking result is that the same 

lowest error was obtained for nearly all the settings in each 

data set referring to a deletion mutant (the only exception was 

the ∆yap1 data set, for which the lowest error achieved in 
setting 3 was exceedingly large). In fact, the best prediction in 

settings 1 to 8 was equivalent for every one of these deletion 

mutant data sets, yielding, for each gene, transcript levels that 

were constant in time and equal to their corresponding initial 

level (see in Fig. 8 the predictions of the models in setting 8 

for the ∆yap1 data set). 
Regarding the predictions for the wt data set, poor results 

were once again obtained for the settings imposing a fully 

constrained network topology (settings 2 and 6), but it was 

setting 3, referring to a production-term-constrained network 

whose parameters were estimated using all data sets, that 

yielded the worst results (with an “infinite” value being re-

turned for the error). The best results were obtained for set-

tings 8 and 5, referring, respectively, to a degradation-term-

constrained network (constrained matrix h) and a totally un-

constrained one. 

Table III shows the value of evaluation criterion C4 (per-

centage of runs reaching an error below 5000), for each setting 

and data set. 

 

TABLE III 
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CRITERION C4 FOR EACH SETTING AND DATA SET. IN PARENTHESIS IS THE 

PERCENTAGE OF RUNS SATISFYING BOTH C2 AND C4. 

Data Set 
Setting 

wt ∆yap1 ∆pdr3 ∆rpn4 ∆yrr1 
1 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 

2 0     (0) 100 (0) 100 (0) 100 (0) 100 (0) 

3 0     (0) 100 (0) 0     (0) 100 (0) 100 (0) 

4 68   (0) 100 (0) 100 (0) 100 (0) 100 (0) 

5 71   (51) 100 (60) 100 (60) 100 (60) 100 (60) 

6 0     (0) 100 (100) 100 (100) 100 (100) 100 (100) 

7 20   (20) 100 (100) 100 (100) 100 (100) 100 (100) 

8 64   (64) 100 (99) 100 (99) 100 (99) 100 (99) 

 

Although a great percentage of runs pertaining to settings 

1-4 satisfy criterion C4, none satisfy both C2 (referring to the 

error in the derivatives) and C4. On the contrary, in settings 5 

to 8, there is always at least one run satisfying both criteria, 

with the exception of setting 6 (fully constrained network), 

when trying to predict the values of the wt data set. The 

graphical depictions of some of the predictions obtained for 

these models are analyzed next. Fig. 6 below shows the time 

courses predicted for the wt data set by the models satisfying 

C2 and C4 in setting 5.  
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Fig. 6. Predicted time courses of the best runs from setting 5 for the initial 

conditions in the wt data set. 

 

The time courses in Fig. 6 show that several parameter sets 

resulted in atypically constant predictions in the final period of 

the experiment. Although it was at first suspected that this was 

simply the result of the safeguards introduced in the numerical 

integration routine, it was found that the same predictions 

arose when no safeguards were used. An alternative explana-

tion is that due to the larger number of parameters that had to 

be estimated for this fully unconstrained network, as well as to 

the fact that some of the time series are approximately collin-

ear (e.g. PDR3 and YRR1) and have constant slopes at the end 

of the experiment, the algorithm’s convergence was misled and 

a sub-optimum parameter set was obtained.  

Fig. 7 shows the time courses predicted for the wt data set 

by the models satisfying C2 and C4 in setting 8. 
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Fig. 7. Predicted time courses of the best runs from setting 8 for the initial 

conditions in the wt data set. 

 

For this setting, the parameter sets satisfying C2 and C4 do 

not result in time courses with constant final “tails” higher than 

the experimental ones (as was the case with setting 5), but 

instead, one of two distinct dynamic behavior clusters obtained 

does show a very quick rise at the final time instants, for nearly 

every gene. Also, the time courses predicted for each gene are, 

in general, more consistent than those obtained by the models 

in setting 5. 

Fig. 8 shows the time courses predicted for the ∆yap1 data 
set by the models satisfying C4 in setting 8. These results are 

very different from the ones on the two previous figures, since 

there is absolutely no variability in the models’ predictions, i.e. 

all 100 models predict, for each gene, the same time course. 

Though at first sight surprising, this may be partially explained 

by the low initial transcript levels observed for all the genes. 
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Fig. 8. Predicted time courses of the best runs from setting 8 for the initial 

conditions in the ∆yap1 data set. 
 

Given the difficulties just discussed, it would not be useful 

to embark on a more detailed analysis of the several parameter 

sets obtained for each setting, as an analysis of the system’s 

sloppiness requires that a sufficient number of parameter sets 

resulting in similar dynamical behavior be obtained. 

VI. CONCLUSIONS 

The main limitations in the results of this work are related to 

particularities of the experimental data. Firstly, too small a 

number of experimental points were available, resulting in the 

limited reliability of the splines constructed to smooth the data. 

This had, in turn, a negative effect on the estimation algorithm, 

since it crucially depends on the time series slopes estimated 

from the experimental data.  

On the other hand, because the experiments dealt with mu-

tant S. cerevisiae strains, each lacking a certain gene, the time 

course for that gene’s transcript level was always zero. More-

over, when the presence of this gene is required for the expres-

sion of other genes in the network (e.g. YAP1 is required for 

FLR1 expression), this means that the time course for those 

genes will also be zero throughout the whole experiment. The 

resulting poor dynamic range of the estimated slopes, as well 

as the presence of collinear time series, pose serious difficul-

ties to the parameter estimation algorithm, and may mislead its 

convergence.  

Further modeling efforts, in the context of the continuous-

time S-system formalism, should therefore depend on the ob-

taining of a larger and more diverse set of experimental data. 

Alternatively, discrete modeling of the network could perhaps 

be attempted with the present data [7;8], but the results should 

prove more qualitative than quantitative. 
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