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Abstract 
Point clouds models are a common shape representation for 

several reasons. Three-dimensional scanning devices are widely 

used nowadays and points are an attractive primitive for rendering 

complex geometry. Nevertheless, there is not much literature on 

collision detection for point cloud models.  

This paper presents a novel collision detection algorithm for point 

cloud models. The scene graph is divided in voxels. The objects of 

each voxel are organized in R-trees hierarchies of Axis-Aligned 

Bounding Boxes to group neighboring points and filter out very 

quickly parts of objects that do not interact with other models. The 

proposed algorithm also uses Overlapping Axis-Aligned 

Bounding Boxes to improve the performance of the collision 

detection process. Points derived from laser scanned data typically 

are not segmented and can have arbitrary spatial resolution thus 

introducing computational and modeling issues. We address these 

issues and results show that the proposed collision detection 

algorithm effectively finds intersections between point cloud 

models since it is able to reduce the number of bounding volume 

checks and updates.  
Keywords: Collision detection, virtual environments, surface 

segmentation, point cloud processing.  

 

1.  INTRODUCTION 

Point cloud models are an increasingly attractive representation 

used as the basis to capture and measure reality rapidly in an 

increasing number of applications such as environmental 

surveying, structure analysis and archaeology [1]. Point cloud 

models also share a remarkable similarity with a very popular 

computer game representation of the 80s, numerous Sinclair 

Spectrum games used axonometric projection of point models to 

convey details of buildings, interiors and avatars. A crucial 

element to enable laser scanned point models to be used in a 

similar scenario is collision detection of point clouds. In general 

interactive virtual environments often need very fast collision 

detection queries to simulate physical behaviour and to allow the 

user to interact. However, there is practically no literature on 

determining collisions between two sets of points. 

This paper describes a novel collision detection algorithm for 

point cloud models. 

The scene graph is organized in voxels. To speed up the process 

of finding collisions, for each voxel, each object is represented by 

an R-tree data structure of Axis-Aligned Bounding Boxes 

(AABB) defined in its own local coordinate system. The R-tree 

organizes spatially its geometry, grouping neighbouring points. 

The proposed algorithm is also based in the use of the 

Overlapping Axis-Aligned Bounding Box (OAABB) to improve 

the performance of the collision detection process. In addition a 

traversal algorithm for collision detection for point clouds that 

takes advantage of the OAABB is also presented, improving 

performance by reducing the number of bounding volume checks 

and updates. 

Results show that the proposed approach uses effectively the R-

tree structure and the OAABB concept to find intersections 

between point cloud models at interactive rates. In addition, unlike 

CAD objects which typically contain object hierarchies and the 

data is already segmented into surface groups, point data sets 

derived from laser scanned data do not have such information thus 

presenting computational issues. We address these issues and 

present a solution that adapts to point sets derived from different 

laser scanners and spatial settings.  

The paper is organized as follows. Section 2 presents collision 

detection approaches for the determination of intersections 

between polygonal and point cloud models. Section 3 describes 

the VIZIR project that highlighted the need to develop an efficient 

collision detection algorithm for point cloud models. Section 4 

describes the data structures for the representation of the scene 

graph that are used to improve the performance of the novel 

collision detection algorithm, which is presented in Section 5. 

Section 6 presents the evaluation results using CAD models and 

addresses laser scanned point sets. Conclusions and future work 

are presented in Section 7. 

 

2.  RELATED WORK 

Currently, there are many implementations of collision detection 

schemes for interactive system, most of them only support 

polygonal models. Frequently, they use bounding volume 

hierarchies (BVH), spatial subdivision methods and more recently 

use graphics hardware to accelerate collision detection by 

hardware. There is a lack of collision detection systems for point 

cloud models. 

Bounding volume hierarchies are frequently used to organize the 

triangles of an object to improve the performance of the collision 

detection process, by reducing the number of pairs of bounding 

volume tests. The classic scheme for hierarchical collision 

detection is a simultaneous recursive traversal of two bounding 

volumes trees A and B. 

Several types of bounding volumes are available. Bounding 

spheres can be used [2]. SOLID [3] and OPCODE [4] use axis-

aligned bounding boxes (AABB). RAPID [5], V-COLLIDE [6], 

PQP [7], H-COLLIDE [8], use oriented bounding boxes (OBB). 

QuickCD [9] and Dop-Tree [10] uses k-dops; and Swift++ [11] 

uses convex hulls (CH). There are also hybrid approaches like 

QuOSPOs [12] that use a combination of OBBs and k-dops.  



The main advantage of SOLID, OPCODE and Box-Tree is that 

AABBs are faster to intersect.  

RAPID approximates 3D objects with hierarchies of oriented 

bounding boxes (OBBs). The main advantage of RAPID is that 

OBBs are better approximations to triangles reducing effectively 

the number of intersecting operations.  

V-COLLIDE solves the broad-phase of the collision detection 

using a sweep-and-prune operation to find pairs of objects 

potentially in contact. It uses RAPID to find in the narrow phase 

which pairs of objects intersect.  

H-COLLIDE is a framework to find collisions for haptic 

interactions. It uses a hybrid hierarchy of uniform grids and trees 

of OBBs to exploit frame-to-frame coherence. It was specialized 

to find collisions between a point probe against 3D objects.  

The QuickCD and Dop-Tree implementations build a hierarchy 

tree of discrete orientation polytopes (k-dops). The main 

advantage of using discrete orientation polytopes is that k-dops 

are better approximations to the underlying geometry than 

AABBs with the advantage of its low cost compared to OBBs.  

Swift++ builds a hierarchy of convex hulls and intersection is 

tested using a modified Lin-Canny closest feature algorithm.  

He [12] uses a hybrid approach that combines OBBs and k-dops 

called QuOSPOs. This approach provides a tight approximation of 

the original model at each level. 

Another class of hierarchical data structures used for collision 

detection are spatial partitioning representations: regular grids [13, 

14, 15, 16], octrees [17, 18], BSP-trees [19] and R-trees [20]. 

Spatial subdivisions are a recursive partitioning of the embedding 

space occupied by objects. In general, spatial partitioning 

structures are used as a secondary representation for the collision 

detection process. 

The main idea behind all space partitioning methods is to exploit 

spatial coherency. For each object, we check for collision only 

objects of the neighborhood, eliminating comparisons with those 

objects that are far away and therefore cannot be colliding. 

Zyda [13] uses grids to find overlapping objects in the broad 

phase. García-Alonso [14] also uses uniform grids to find exact 

collisions between 3D objects for the narrow phase. Teschner [21] 

use uniform grid subdivision combined with hashing to reduce 

storage requirements for collision and self-collision detection of 

deforming objects that consist of tetrahedrons. Eits [22] also uses 

a spatial grid inspired by the work of Teschener together with 1D 

hash table to find collisions between deformable tetrahedral 

models. A hybrid approach is presented by Gregory [8] using 

regular grids, where each occupied grid cell stores an OBBs tree 

of those triangles on that cell. 

Hubbard [17] approach for finding collisions in real time is based 

on a time-critical computing algorithm and on octrees of spheres. 

Kitamura [18] algorithm for collision detection uses an octree for 

each object. Ganovelli [16] also associate an octree of axis aligned 

bounding boxes with each object, and keeps this hierarchy 

efficiently and dynamically updated for deformable objects. 

Luque [19] uses semi-adjusting BSP-trees for representing scenes 

composed of thousands of moving objects.  

Figueiredo [20] combines AABBs with R-trees to implement an 

efficient collision detection algorithm that determines intersecting 

surfaces. 

Various approaches have been recently introduced using existing 

graphics accelerated boards (GPU) [23, 24, 25, 26] or dedicated 

hardware [27] to accelerate collision detection by hardware.  

Algorithms using graphics hardware use depth and stencil buffer 

techniques to determine collisions between convex [23] and non-

convex [24] objects. CULLIDE [25] is also a GPU based 

algorithm that uses image-space occlusion queries and OBBs in a 

hybrid approach to determine intersections between general 

models with thousands of polygons. MRC [26] deals with large 

models composed of dozens of millions of polygons by using the 

representation of a clustered hierarchy of progressive meshes 

(CHPM) as a LOD hierarchy for a conservative errorbound 

collision and as a BVH for a GPU-based collision culling 

algorithm.  

These GPU-based algorithms are applicable to both rigid and 

deformable models since all the computations are made in the 

image-space. Collision detection methods using GPUs have the 

disadvantage that they compete with the rendering process, 

slowing down the overall frame rate. Furthermore, some of these 

approaches are pure image based reducing their accuracy due to 

the discrete geometry representation.  

All these collision methods have been applied only to polygonal 

objects. Recently Klein [28] presented a novel approach for 

collision detection of point clouds. They construct a point 

hierarchy of bounding volumes to enclose the points at different 

levels of the hierarchy. Points are stored in the hierarchy leaves. 

Each node stores a sufficient sample of the points plus a sphere 

covering of a part of the surface. Given two point cloud 

hierarchies, two objects are tested for collision by simultaneous 

traversal. At the leaves, an intersection is determined by 

estimating the smallest distance. 

Recently, Kim [31] et. al show the performance benefits of using 

compression of out-of-core AABBs for collision detection of  

polygon models that do not fit in main memory, namely they 

show that the resources of the CPU can be used to compensate the 

I/O lag of reading uncompressed data structures. 

 

3.  VIZIR 

The VIZIR project sets out to develop new visualization and 

interaction algorithms of massive out-of-core data. The 3D model 

of study consists of approximately 700 laser scans of the Batalha 

monastery, ~2 billion points, exceeding 100 GBytes.  

Collision detection is an important interaction cue to help user 

navigation in the virtual world. Unfortunately not much work 

exists with solutions for collision detection with point clouds.  

Before the full complexity of the model can be addressed, an 

efficient and reliable collision detection solution is needed for 

point clouds.  

For this purpose a simple scenario was designed to evaluate 

different user collisions that can occur whilst navigating and 

exploring a 3D point cloud model.  

In this scenario a subset of the model was chosen that enabled the 

user’s polygonal avatar, which is represented as a point cloud for 

collision detection purposes, to pass through open doors, walk 

alongside walls, but is stopped when colliding with the point 

cloud (Figure 1, 2). 

In addition standard collision detection tests were carried out, and 

collisions with points obtained from CAD models were also 

tested.  

In the next section we present our solution for efficiently detecting 

collisions with point clouds. 

 



 
Figure 1: First person view of the user in the scenario of 

interaction whilst navigating the scanned Batalha monastery 

model. 

 

4.  POINT CLOUD HIERARCHY  

This section presents the data structures that the proposed 

algorithm uses to find collisions in a large environment where 3D 

models are described as point clouds.  

First a uniform grid that divides the scene graph into N N N  

cubic cells of equal volume is used, thus building a grid of voxels. 

Each voxel has a list of the objects and the points occupying that 

region. To study the various user scenarios described in the 

previous section the voxel containing the entrance to the 

monastery was used (Figure 2). In a future scenario, each data 

structure associated with a voxel could be compressed and 

neighbour voxels to a user’s position loaded and uncompressed 

into a LRU queue [32]. 

 

 
Figure 2: Walkthrough collision test scenarios between the Al 

avatar model comprised of 3617 points (lower left) and the 

587923 point cloud belonging to a single voxel. 

 

To determine colliding objects at each voxel, the approach 

presented in this paper use R-tree hierarchies of Axis-Aligned 

Bounding Boxes, to find collisions between pairs of 3D objects 

defined as clouds of points. Each object is represented by a R-tree 

data structure in its own local coordinate system. The R-tree 

hierarchy structure is used to filter out portions of the object that 

cannot intersect. 

The choice of bounding volume type influences performance of 

the collision detection process. The implementation of the 

collision detection algorithm presented in this paper uses axis 

aligned bounding boxes because they are faster to intersect. 

It was decided to use R-trees [30] to build bounding volume 

hierarchies and organize 3D geometry of objects to improving the 

performance of the collision detection process. R-trees are a good 

choice for collision detection because first, at any level of the tree, 

each primitive is associated with only a single node. Secondly, in 

an R-tree all leaf nodes appear on the same level. Third, because 

the depth of a R-tree storing n primitives is logm n , m is the 

minimum number of children of a node. 

The objects of each voxel are represented by an R-tree data 

structure in its own local coordinate system (Figure 3) to speed up 

the process of finding collisions. The R-tree is built, grouping 

neighbouring points. The leaf nodes represent the points that 

define the object. For two objects, it checks for collisions between 

points which are in the neighbourhood, eliminating comparisons 

with those that are far away. 

 

 
Figure 3: Every object of each voxel is an R-tree of points. 

 

5.  COLLISION DETECTION ALGORITHM  

This section presents a novel algorithm for determining 

intersections between pairs of 3D objects defined as point clouds. 

The approach presented is supported by an R-tree hierarchy of 

axis-aligned bounding boxes and the Overlapping Axis-Aligned 

Bounding Box to improve performance by reducing the number of 

bounding volume intersections. 

The collision detection approach uses axis-aligned bounding 

boxes for four reasons: i) they are fast to intersect; ii) use less 

memory; iii) hierarchies of AABBs are faster to build; and iv) 

faster to update.  

The points of an object are organized in a hierarchical tree of 

bounding volumes (BV). To find if two objects are intersecting, 

the collision detection manager makes a a recursive traversal of 



two R-tree bounding volumes trees A and B. The approach 

presented takes advantage of the OAABB and is implemented to 

avoid visiting the same node several times to improve 

performance. It visits the nodes of object A once. 

Figure 4   

 

 
Figure 4: The OAABB is shown for two point cloud models 

intersecting. 

 

Figure 5 presents the pseudo code of the novel approach. 

 

Collide (A, B) 

1:AABBB(A)=MB A AABBA(A)//update BV 

2:if (AABBB(A) do not intersect AABBB(B))    

 return  

3:Determine OAABBB(A, B) 

4:DescendRtree( B, OAABBB(A,B)) 

5:for each point P(B) finside OAABBB(A,B) 

6:  Update point P(B) into coord. system of A PA(B) 

7:  DescendRtree( A, OAABBA(A,B), PA(B))  

Figure 5: Pseudo-code for finding two intersecting objects. 

 

The collision detection algorithm first checks if objects A and B 

are disjoint (line 1-2 in Figure 5). The bounding volumes of each 

object are originally computed in the object’s local coordinate 

system, AABBA(A) and AABBB(B), respectively. The 

transformation matrix that converts the local representation of 

object A into the local coordinate system of object B is defined as 

MB A. The bounding volume of object A is updated to the 

coordinate system of object B, by computing the cover axis-

aligned bounding box, AABBB(A). Once the bounding volumes of 

each object are in the same coordinate system they can be checked 

for overlap. If this pair of AABBs does not overlap, then the 

corresponding two objects are not intersecting and the process 

ends. If they overlap, then the system determines the Overlapping 

Axis-Aligned Bounding Box, OAABBB(A,B) of the two objects 

(line 3 in Figure 5), which is defined in the local coordinate 

system of object B.

The next step of the collision detection process determines the 

points from object B inside the OAABB (line 4 of Figure 5). As 

mentioned before, the points of object B are organized in a 

bounding volume R-tree. The points of B are stored at the leaf 

nodes of the R-tree. By descending this R-tree, the points of object 

B outside the OAABBB(A,B) are filtered out. Only points at the 

leaf nodes inside the OAABBB(A,B) are candidate for collision.  

The objects of object B inside the OAABB are transformed into 

the coordinate system of object A, PA(B) (line 6).  

Then, the collision detection algorithm descends the bounding 

volume R-tree for object A (line 7 of Figure 5). In this step it finds 

points of object A inside both the OAABB and points in close 

proximity of object B.  

 

6.  EXPERIMENTAL RESULTS 

This section presents the performance evaluation results of the 

novel collision detection algorithm for point cloud models 

described in this paper.  

 

6.1. Using Points from CAD Models 

This section shows that the proposed collision detection for point 

cloud models is effective in determining collisions in real time. It 

is also shown that it compares favorably with other approaches 

that determine collisions with a model´s polygons instead of with 

a model´s vertices.  

To evaluate this, two case studies were designed. The first case 

study, evaluates the performance of the system with a real 

maintenance application, with interpenetrations between 3D 

models. The second case study, tests the performance of the 

collision detection algorithm for very close proximity when there 

are no intersections. 

The first case study represents user operations to assembly the 

components to build a digger mechanism (Figure 6, left). For this 

application, it is necessary to allow the user to interactively carry 

out assembly and disassembly operations on the virtual prototypes 

in a realistic way. The three-dimensional virtual prototypes need 

to simulate physical properties realistically and interactively.  

The functional modules used by this application are collision 

detection, constraint recognition, constraint satisfaction, constraint 

management and constraint motion. The automatic constraint 

recognition process uses collision detection services for various 

purposes such as (a) to provide collision response to stop object 

penetration, (b) to identify colliding parts to support the 

recognition of  assembly relationships between the assembly parts, 

(c) to simulate constrained motion, (e) to simulate kinematics 

motion and sliding, thus assisting users to carry out precise object 

manipulations. 

 

 
Figure 6: Test case scenario of: left) a Digger model; right) the 

grid scene. 

 

The second example is a scene with two grids from a collision 

detection benchmark suite [31] (Figure 6, right). This 

benchmarking system is used to to compare pairwise static 

collision detection algorithms for rigid objects. This benchmark 

generates a number of positions and orientations for a predefined 

distance in close proximity and no interpenetration. It does not test 



performance of collision detection approaches when intersections 

occur. 

Table 1 presents the complexity for the digger and grid case 

studies.  

The digger scenario has five parts that are assembled in a 

sequence of five hundred and seven intersecting steps. At each 

step it is found an intersection between parts of the scenario that 

are recognized and assembled appropriately. This experiment was 

conducted by the user executing the required assembly operations. 

The executed path was recorded and it was repeated only the 

intersecting steps to obtain the data values.  

The second scenario has two equal grid objects defined each one 

of them with forty thousand and eighty points. The benchmark 

generated six thousand and thirty eight steps that positioned the 

two objects very close to each other, but not touching each other.  

With these two case studies, the performance of the novel 

collision detection approach for cloud point models is evaluated.  

 

Table 1: Complexity of the case studies. 

 Digger Grid 

Number of Objects 5 2 

Number Points 7356 46080 

Number of steps  507 6038 

 

All the experiments run in an Intel Core 2 Duo T7300, 2GByte of 

RAM memory at 2GHz.  

The execution times, presented in this section, include only the 

time to determine collisions and do not include time for rendering 

or motion simulation. 

Table 2 presents these times. The proposed collision detection 

algorithm for point cloud models achieves interactive rates in real 

industrial applications as desired.  

 

Table 2: Collision detection time to find intersecting surfaces. 

 

Time in milliseconds per 

step to determine intersections 

3D models of 

Point Clouds 

Digger 0.03 

Grid 0.21 

 

The time to determine the collisions between two objects depends 

on: (1) the cost of intersecting and updating bounding volumes; 

and (2) on the number of such operations. Table 3 shows the 

number of operations executed to determine intersections. This 

table shows that the number of bounding volume updates is 

significantly lower than the number of bounding volume 

intersections. The update of a bounding volume is a more 

expensive operation than a bounding volume intersection. 

 

Table 3: Operations per step to determine intersections. 

Number of operations Digger Grid 

AABBs tests 149 634 

AABBs updates 26 131 

 

Table 4 shows the time and the number of operations executed to 

run the two test cases with the same collision detection algorithm, 

but it does not use the OAABB concept. This table presents 

results for the same traversal scheme to find collisions using only 

R-Trees.  

Table 4: Traversal scheme for collision detection using R-Trees 

and not using the OAABB. 

 Digger Grid 

Time to find intersections (ms) 0.15 3.79 

Number AABBs tests 230 4810 

Number AABBs updates 174 4625 

 

The performance of the collision detection approach proposed is 

better when it uses the OAABBs.  

From comparison of Tables 3 and 4, it is possible to see that the 

number of bounding volume checks and updates is reduced 

significantly by the use of the OAABB. 

It is also important to compare the performance of this algorithm 

with other collision detection systems, although public collision 

detection toolkits are supported by polygonal models. Table 5 

presents the times obtained for the two case studies with the S-

CD, PQP, RAPID, OPCODE and Dop Tree collision detection 

toolkits. The times presented were obtained in the determination 

of the first intersecting triangle.  

 

Table 5: Time to find first triangle intersection. 

Time to find first 

triangle intersection 

(milliseconds) 

Digger Grid 

PQP 0.94 8.99 

RAPID 0.36 6.02 

OPCODE 0.08 0.61 

Dop Tree 1.26 7.09 

S-CD 0.25 2.29 

 

Tables 2 and 5 shows there is an improvement in performance for 

the collision detection approach supported by point cloud models. 

This improvement can be explained by the fact that the novel 

approach presented in this paper is being supported by point cloud 

models and, in this way, it does not make triangle checks to find 

intersections, which is an expensive operation. For this reason, 

there is a difference on the number of intersections determined 

with a collision detection using polygonal models and the 

approach described in this paper. However, for the digger case 

study there was only 1,1% different answers reported, which is a 

low error probability for the new collision detection algorithm for 

point cloud models. 

 

6.2. Using Points from Scanned DataSets 

Collision detection algorithms designed for polygonal and CAD 

models can rely on the concept of collision between subset 

surfaces. This has the advantage that searches for instance can be 

faster as we are dealing with only subsets rather than the entire 

model. In addition since we are typically only interested in 

detecting the collision between surfaces, a small standard 

tolerance constant is used in the literature. However point clouds 

derived from laser scans present two main differences: they are 

not segmented, and points are only samples of the surface, making 

an actual collision between points a less likely event. Point based 

rendering algorithms such as QSplat [33] change the thickness and 

shape of a point splat to better convey visually the underlying 

surface while viewing in close range. Similarly we use the average 

closest point distance of a point divided by two to create bounding 

boxes at point level that ensure collision detection of the surface 

they represent. In addition for each voxel we use an octree to 

segment points into smaller working sets. 



As mentioned in section 3, we created an interactive system to 

study various collision scenarios using the Batalha Façade Model. 

This model was obtained using a laser scan and contains 587923 

points. The avatar is the Al model using 3617 points and walks 

along a predefined path of 40 seconds used to benchmark our 

collision algorithm and depicted with a white dashed line in Fig. 

2.  

We performed several partitions of the model into surfaces using 

an octree data-structure with different levels (4 joining cells of the 

first level, 8, 64, 512, 4096 cells). The resulting non-empty cells 

of the octree were used to create an R-tree collision structure of 

degree 4 per each cell.  We run our experiment on a laptop 

equipped with a Core 2 Duo T9300 2.50 GHz Cpu, 4 Gb of RAM 

memory, a NVIDIA 8800M GTX graphic card with 512 Mb and 

running Windows 7 64 bits. Our walkthrough application was 

implemented in C++ using GLUT and OpenGL libraries. 

Table 6, presents the results of our algorithm during the 

navigation of the avatar model along the predefined path. 

The first column defines which partition was used for the model 

resulting into several surfaces (i.e. set of points organized in a R-

tree) presented in the second column. We also present the memory 

used by the application during the path traversal and the memory 

size of the R-tree data structure. Finally, the average framerate of 

the walkthrough as well as the pre-processing time needed to 

create the collision structure are shown. We note that to run the 

application for an interactive exploration, we only need a few 

seconds to load the R-tree as shown in the last column of Table 6.  

 

Table 6: Memory and Timing for several subdivision of the 

Batalha Model. 

 

Model 
#RTrees 

or 

Surfaces 

App Mem 

(Mb) 

Rtree 

Mem.

(Mb) 

Avg.  

Fps 

Pre 

Processing 

Time (h:mm) 

Load 

RTree 

Time(s)

Sub 4 4 170.10 49.03 18.36 4h00 4.67 

Oct 8 8 175.93 59.02 19.60 2h00 6.39 

Oct 64 12 175.67 56.81 19.86 1h58 6.09

Oct 512 31 173.37 52.08 19.57 1h15 5.62

Oct 4096 95 172.78 52.66 23.78 0h25 5.34

 

Our application was designed to run a synchronized rendering 

loop of 30 fps which is sufficient for desktop based real-time 

visualization. We can notice that our approach provides an 

average frame rate from 16 up to 24 fps with collision detection 

(Figure 7). The penalty of the collision test is strongly related with 

the partition of the model. We should notice that the collision test 

is defined between the avatar and the scene points. Our 

experiments have shown that creating more R-trees (one for each 

non-empty subdivided octree leaf node), segments the object in 

correspondingly more surfaces with less triangles (Table 6), 

however as the octree subdivision is not deep (typically level 4), 

very little extra memory is necessary than when using fewer R-

trees with less surfaces and more triangles. More R-Trees with 

less triangles enable fewer run-time tests and faster average frame 

rate (Figure 7). In addition, the preprocessing time when using 

more R-Trees is significantly less as there are less triangles to 

consider in the subdivision and grouping steps. This marginal 

increase in memory makes us believe that the approach is suitable 

and scalable to handle large point data-sets. Figure 7 depicts the 

variation of the framerate along our 40 second path using the 

different partitions. The black dashed line corresponds to the 

framerate obtained with the walkthrough of the path without 

collision detection. Figure 7 shows that even with collision 

detection the navigation is still interactive and the cost of the R-

tree traversal is variable due to the spatial partition of the R-tree 

structure. Depending of the octree level used for the model 

subdivision into surfaces, the different R-tree do not have the 

same depth. However the collision detection is faster using 

smaller point sets, as each R-tree has less primitives to test (Figure 

7). This is why we obtain the best results with the surface partition 

based on 4096 cells of the octree (orange line) whith an average 

framerate of 24 fps. These results shows that the partition of the 

model improves the collision test performance providing 

interactive collision detection with a model of 587923 points. 

 

.  

Figure 7: Application framerate when Al model is walking along 
the path. 

 

7.  CONCLUSIONS AND FUTURE WORK 

This paper presents a novel approach for collision detection of 

point clouds. There are many approaches and algorithms to 

determine collisions between 3D polygonal models. There is very 

little in the literature about collision between 3D point clouds 

models. However, point clouds have become a popular shape 

representation. One of the reasons is due to the fact that 3D 

scanning devices became affordable and widely used for projects 

like VIZIR. 

The proposed collision detection approach divides the scene graph 

in voxels. There is a bounding volume R-Tree for each object in a 

voxel that organizes spatially its point cloud.  

To improve the sequential performance, the collision detection 

manager also uses the overlapping axis-aligned bounding box 

approach. The OAABB is used to filter out bounding volumes 

from two R-trees that cannot intersect. It was shown that the use 

of the OAABB reduces significantly the number of bounding 

volume checks and updates. 

Experimental results show that this implementation is effective in 

determining interactively intersections between 3D models. In 

particular we show the improvements that R-trees can offer over 

just using AABB, we believe that these results can present 

benefits in an out-of-core setting, since the solution for polygon 

models developed by Kim et.al [31] al uses AABB. 

This collision detection toolkit is publicly available for download 

at http://w3.ualg.pt/~mfiguei/. 

For future work we want to integrate the collision detection 

manager presented in this paper in the VIZIR prototype that is 



being developed and evaluate its applicability to very large 

environments.   

In the context of laser scan data, we found that using the average 

closest point distance of a point divided by two to create the 

bounding box around each point works well in general. However 

the sampling density of such models is not the same everywhere 

thus making the underlining surface more porous for collision. We 

tested a more conservative approach that used the average closest 

point distance to ensure overlap between point boxes. This test did 

not interfere with the framerate. However, traversing tighter areas 

such as the door of the Monastery became more difficult without 

colliding. In the future we would like to design an adaptive 

bounding box size to better handle point sets with heterogeneous 

sampling density.  

We would also like to test the performance of the collision 

detection algorithm using manually defined point subsets that 

spatially approximate more closely the underlying real world 

surfaces. 
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