

AN EFFICIENT COLLISION DETECTION ALGORITHM FOR
POINT CLOUD MODELS

Mauro Figueiredo
1
, João Oliveira

2
, Bruno Araújo

2
, João Pereira

2

1 Instituto Superior de Engenharia, Universidade do Algarve, Faro, Portugal

mfiguei@ualg.pt
2
 IST/INESC-ID, Rua Alves Redol, 9, 1000-029 Lisboa

{joao.oliveira, bruno.araujo, jap}@inesc-id.pt

Abstract
Point clouds models are a common shape representation for

several reasons. Three-dimensional scanning devices are widely

used nowadays and points are an attractive primitive for rendering

complex geometry. Nevertheless, there is not much literature on

collision detection for point cloud models.

This paper presents a novel collision detection algorithm for point

cloud models. The scene graph is divided in voxels. The objects of

each voxel are organized in R-trees hierarchies of Axis-Aligned

Bounding Boxes to group neighboring points and filter out very

quickly parts of objects that do not interact with other models. The

proposed algorithm also uses Overlapping Axis-Aligned

Bounding Boxes to improve the performance of the collision

detection process. Points derived from laser scanned data typically

are not segmented and can have arbitrary spatial resolution thus

introducing computational and modeling issues. We address these

issues and results show that the proposed collision detection

algorithm effectively finds intersections between point cloud

models since it is able to reduce the number of bounding volume

checks and updates.
Keywords: Collision detection, virtual environments, surface

segmentation, point cloud processing.

1. INTRODUCTION

Point cloud models are an increasingly attractive representation

used as the basis to capture and measure reality rapidly in an

increasing number of applications such as environmental

surveying, structure analysis and archaeology [1]. Point cloud

models also share a remarkable similarity with a very popular

computer game representation of the 80s, numerous Sinclair

Spectrum games used axonometric projection of point models to

convey details of buildings, interiors and avatars. A crucial

element to enable laser scanned point models to be used in a

similar scenario is collision detection of point clouds. In general

interactive virtual environments often need very fast collision

detection queries to simulate physical behaviour and to allow the

user to interact. However, there is practically no literature on

determining collisions between two sets of points.

This paper describes a novel collision detection algorithm for

point cloud models.

The scene graph is organized in voxels. To speed up the process

of finding collisions, for each voxel, each object is represented by

an R-tree data structure of Axis-Aligned Bounding Boxes

(AABB) defined in its own local coordinate system. The R-tree

organizes spatially its geometry, grouping neighbouring points.

The proposed algorithm is also based in the use of the

Overlapping Axis-Aligned Bounding Box (OAABB) to improve

the performance of the collision detection process. In addition a

traversal algorithm for collision detection for point clouds that

takes advantage of the OAABB is also presented, improving

performance by reducing the number of bounding volume checks

and updates.

Results show that the proposed approach uses effectively the R-

tree structure and the OAABB concept to find intersections

between point cloud models at interactive rates. In addition, unlike

CAD objects which typically contain object hierarchies and the

data is already segmented into surface groups, point data sets

derived from laser scanned data do not have such information thus

presenting computational issues. We address these issues and

present a solution that adapts to point sets derived from different

laser scanners and spatial settings.

The paper is organized as follows. Section 2 presents collision

detection approaches for the determination of intersections

between polygonal and point cloud models. Section 3 describes

the VIZIR project that highlighted the need to develop an efficient

collision detection algorithm for point cloud models. Section 4

describes the data structures for the representation of the scene

graph that are used to improve the performance of the novel

collision detection algorithm, which is presented in Section 5.

Section 6 presents the evaluation results using CAD models and

addresses laser scanned point sets. Conclusions and future work

are presented in Section 7.

2. RELATED WORK

Currently, there are many implementations of collision detection

schemes for interactive system, most of them only support

polygonal models. Frequently, they use bounding volume

hierarchies (BVH), spatial subdivision methods and more recently

use graphics hardware to accelerate collision detection by

hardware. There is a lack of collision detection systems for point

cloud models.

Bounding volume hierarchies are frequently used to organize the

triangles of an object to improve the performance of the collision

detection process, by reducing the number of pairs of bounding

volume tests. The classic scheme for hierarchical collision

detection is a simultaneous recursive traversal of two bounding

volumes trees A and B.

Several types of bounding volumes are available. Bounding

spheres can be used [2]. SOLID [3] and OPCODE [4] use axis-

aligned bounding boxes (AABB). RAPID [5], V-COLLIDE [6],

PQP [7], H-COLLIDE [8], use oriented bounding boxes (OBB).

QuickCD [9] and Dop-Tree [10] uses k-dops; and Swift++ [11]

uses convex hulls (CH). There are also hybrid approaches like

QuOSPOs [12] that use a combination of OBBs and k-dops.

The main advantage of SOLID, OPCODE and Box-Tree is that

AABBs are faster to intersect.

RAPID approximates 3D objects with hierarchies of oriented

bounding boxes (OBBs). The main advantage of RAPID is that

OBBs are better approximations to triangles reducing effectively

the number of intersecting operations.

V-COLLIDE solves the broad-phase of the collision detection

using a sweep-and-prune operation to find pairs of objects

potentially in contact. It uses RAPID to find in the narrow phase

which pairs of objects intersect.

H-COLLIDE is a framework to find collisions for haptic

interactions. It uses a hybrid hierarchy of uniform grids and trees

of OBBs to exploit frame-to-frame coherence. It was specialized

to find collisions between a point probe against 3D objects.

The QuickCD and Dop-Tree implementations build a hierarchy

tree of discrete orientation polytopes (k-dops). The main

advantage of using discrete orientation polytopes is that k-dops

are better approximations to the underlying geometry than

AABBs with the advantage of its low cost compared to OBBs.

Swift++ builds a hierarchy of convex hulls and intersection is

tested using a modified Lin-Canny closest feature algorithm.

He [12] uses a hybrid approach that combines OBBs and k-dops

called QuOSPOs. This approach provides a tight approximation of

the original model at each level.

Another class of hierarchical data structures used for collision

detection are spatial partitioning representations: regular grids [13,

14, 15, 16], octrees [17, 18], BSP-trees [19] and R-trees [20].

Spatial subdivisions are a recursive partitioning of the embedding

space occupied by objects. In general, spatial partitioning

structures are used as a secondary representation for the collision

detection process.

The main idea behind all space partitioning methods is to exploit

spatial coherency. For each object, we check for collision only

objects of the neighborhood, eliminating comparisons with those

objects that are far away and therefore cannot be colliding.

Zyda [13] uses grids to find overlapping objects in the broad

phase. García-Alonso [14] also uses uniform grids to find exact

collisions between 3D objects for the narrow phase. Teschner [21]

use uniform grid subdivision combined with hashing to reduce

storage requirements for collision and self-collision detection of

deforming objects that consist of tetrahedrons. Eits [22] also uses

a spatial grid inspired by the work of Teschener together with 1D

hash table to find collisions between deformable tetrahedral

models. A hybrid approach is presented by Gregory [8] using

regular grids, where each occupied grid cell stores an OBBs tree

of those triangles on that cell.

Hubbard [17] approach for finding collisions in real time is based

on a time-critical computing algorithm and on octrees of spheres.

Kitamura [18] algorithm for collision detection uses an octree for

each object. Ganovelli [16] also associate an octree of axis aligned

bounding boxes with each object, and keeps this hierarchy

efficiently and dynamically updated for deformable objects.

Luque [19] uses semi-adjusting BSP-trees for representing scenes

composed of thousands of moving objects.

Figueiredo [20] combines AABBs with R-trees to implement an

efficient collision detection algorithm that determines intersecting

surfaces.

Various approaches have been recently introduced using existing

graphics accelerated boards (GPU) [23, 24, 25, 26] or dedicated

hardware [27] to accelerate collision detection by hardware.

Algorithms using graphics hardware use depth and stencil buffer

techniques to determine collisions between convex [23] and non-

convex [24] objects. CULLIDE [25] is also a GPU based

algorithm that uses image-space occlusion queries and OBBs in a

hybrid approach to determine intersections between general

models with thousands of polygons. MRC [26] deals with large

models composed of dozens of millions of polygons by using the

representation of a clustered hierarchy of progressive meshes

(CHPM) as a LOD hierarchy for a conservative errorbound

collision and as a BVH for a GPU-based collision culling

algorithm.

These GPU-based algorithms are applicable to both rigid and

deformable models since all the computations are made in the

image-space. Collision detection methods using GPUs have the

disadvantage that they compete with the rendering process,

slowing down the overall frame rate. Furthermore, some of these

approaches are pure image based reducing their accuracy due to

the discrete geometry representation.

All these collision methods have been applied only to polygonal

objects. Recently Klein [28] presented a novel approach for

collision detection of point clouds. They construct a point

hierarchy of bounding volumes to enclose the points at different

levels of the hierarchy. Points are stored in the hierarchy leaves.

Each node stores a sufficient sample of the points plus a sphere

covering of a part of the surface. Given two point cloud

hierarchies, two objects are tested for collision by simultaneous

traversal. At the leaves, an intersection is determined by

estimating the smallest distance.

Recently, Kim [31] et. al show the performance benefits of using

compression of out-of-core AABBs for collision detection of

polygon models that do not fit in main memory, namely they

show that the resources of the CPU can be used to compensate the

I/O lag of reading uncompressed data structures.

3. VIZIR

The VIZIR project sets out to develop new visualization and

interaction algorithms of massive out-of-core data. The 3D model

of study consists of approximately 700 laser scans of the Batalha

monastery, ~2 billion points, exceeding 100 GBytes.

Collision detection is an important interaction cue to help user

navigation in the virtual world. Unfortunately not much work

exists with solutions for collision detection with point clouds.

Before the full complexity of the model can be addressed, an

efficient and reliable collision detection solution is needed for

point clouds.

For this purpose a simple scenario was designed to evaluate

different user collisions that can occur whilst navigating and

exploring a 3D point cloud model.

In this scenario a subset of the model was chosen that enabled the

user’s polygonal avatar, which is represented as a point cloud for

collision detection purposes, to pass through open doors, walk

alongside walls, but is stopped when colliding with the point

cloud (Figure 1, 2).

In addition standard collision detection tests were carried out, and

collisions with points obtained from CAD models were also

tested.

In the next section we present our solution for efficiently detecting

collisions with point clouds.

Figure 1: First person view of the user in the scenario of

interaction whilst navigating the scanned Batalha monastery

model.

4. POINT CLOUD HIERARCHY

This section presents the data structures that the proposed

algorithm uses to find collisions in a large environment where 3D

models are described as point clouds.

First a uniform grid that divides the scene graph into N N N

cubic cells of equal volume is used, thus building a grid of voxels.

Each voxel has a list of the objects and the points occupying that

region. To study the various user scenarios described in the

previous section the voxel containing the entrance to the

monastery was used (Figure 2). In a future scenario, each data

structure associated with a voxel could be compressed and

neighbour voxels to a user’s position loaded and uncompressed

into a LRU queue [32].

Figure 2: Walkthrough collision test scenarios between the Al

avatar model comprised of 3617 points (lower left) and the

587923 point cloud belonging to a single voxel.

To determine colliding objects at each voxel, the approach

presented in this paper use R-tree hierarchies of Axis-Aligned

Bounding Boxes, to find collisions between pairs of 3D objects

defined as clouds of points. Each object is represented by a R-tree

data structure in its own local coordinate system. The R-tree

hierarchy structure is used to filter out portions of the object that

cannot intersect.

The choice of bounding volume type influences performance of

the collision detection process. The implementation of the

collision detection algorithm presented in this paper uses axis

aligned bounding boxes because they are faster to intersect.

It was decided to use R-trees [30] to build bounding volume

hierarchies and organize 3D geometry of objects to improving the

performance of the collision detection process. R-trees are a good

choice for collision detection because first, at any level of the tree,

each primitive is associated with only a single node. Secondly, in

an R-tree all leaf nodes appear on the same level. Third, because

the depth of a R-tree storing n primitives is logm n , m is the

minimum number of children of a node.

The objects of each voxel are represented by an R-tree data

structure in its own local coordinate system (Figure 3) to speed up

the process of finding collisions. The R-tree is built, grouping

neighbouring points. The leaf nodes represent the points that

define the object. For two objects, it checks for collisions between

points which are in the neighbourhood, eliminating comparisons

with those that are far away.

Figure 3: Every object of each voxel is an R-tree of points.

5. COLLISION DETECTION ALGORITHM

This section presents a novel algorithm for determining

intersections between pairs of 3D objects defined as point clouds.

The approach presented is supported by an R-tree hierarchy of

axis-aligned bounding boxes and the Overlapping Axis-Aligned

Bounding Box to improve performance by reducing the number of

bounding volume intersections.

The collision detection approach uses axis-aligned bounding

boxes for four reasons: i) they are fast to intersect; ii) use less

memory; iii) hierarchies of AABBs are faster to build; and iv)

faster to update.

The points of an object are organized in a hierarchical tree of

bounding volumes (BV). To find if two objects are intersecting,

the collision detection manager makes a a recursive traversal of

two R-tree bounding volumes trees A and B. The approach

presented takes advantage of the OAABB and is implemented to

avoid visiting the same node several times to improve

performance. It visits the nodes of object A once.

Figure 4

Figure 4: The OAABB is shown for two point cloud models

intersecting.

Figure 5 presents the pseudo code of the novel approach.

Collide (A, B)

1:AABBB(A)=MB A AABBA(A)//update BV

2:if (AABBB(A) do not intersect AABBB(B))

 return

3:Determine OAABBB(A, B)

4:DescendRtree(B, OAABBB(A,B))

5:for each point P(B) finside OAABBB(A,B)

6: Update point P(B) into coord. system of A PA(B)

7: DescendRtree(A, OAABBA(A,B), PA(B))

Figure 5: Pseudo-code for finding two intersecting objects.

The collision detection algorithm first checks if objects A and B

are disjoint (line 1-2 in Figure 5). The bounding volumes of each

object are originally computed in the object’s local coordinate

system, AABBA(A) and AABBB(B), respectively. The

transformation matrix that converts the local representation of

object A into the local coordinate system of object B is defined as

MB A. The bounding volume of object A is updated to the

coordinate system of object B, by computing the cover axis-

aligned bounding box, AABBB(A). Once the bounding volumes of

each object are in the same coordinate system they can be checked

for overlap. If this pair of AABBs does not overlap, then the

corresponding two objects are not intersecting and the process

ends. If they overlap, then the system determines the Overlapping

Axis-Aligned Bounding Box, OAABBB(A,B) of the two objects

(line 3 in Figure 5), which is defined in the local coordinate

system of object B.

The next step of the collision detection process determines the

points from object B inside the OAABB (line 4 of Figure 5). As

mentioned before, the points of object B are organized in a

bounding volume R-tree. The points of B are stored at the leaf

nodes of the R-tree. By descending this R-tree, the points of object

B outside the OAABBB(A,B) are filtered out. Only points at the

leaf nodes inside the OAABBB(A,B) are candidate for collision.

The objects of object B inside the OAABB are transformed into

the coordinate system of object A, PA(B) (line 6).

Then, the collision detection algorithm descends the bounding

volume R-tree for object A (line 7 of Figure 5). In this step it finds

points of object A inside both the OAABB and points in close

proximity of object B.

6. EXPERIMENTAL RESULTS

This section presents the performance evaluation results of the

novel collision detection algorithm for point cloud models

described in this paper.

6.1. Using Points from CAD Models

This section shows that the proposed collision detection for point

cloud models is effective in determining collisions in real time. It

is also shown that it compares favorably with other approaches

that determine collisions with a model´s polygons instead of with

a model´s vertices.

To evaluate this, two case studies were designed. The first case

study, evaluates the performance of the system with a real

maintenance application, with interpenetrations between 3D

models. The second case study, tests the performance of the

collision detection algorithm for very close proximity when there

are no intersections.

The first case study represents user operations to assembly the

components to build a digger mechanism (Figure 6, left). For this

application, it is necessary to allow the user to interactively carry

out assembly and disassembly operations on the virtual prototypes

in a realistic way. The three-dimensional virtual prototypes need

to simulate physical properties realistically and interactively.

The functional modules used by this application are collision

detection, constraint recognition, constraint satisfaction, constraint

management and constraint motion. The automatic constraint

recognition process uses collision detection services for various

purposes such as (a) to provide collision response to stop object

penetration, (b) to identify colliding parts to support the

recognition of assembly relationships between the assembly parts,

(c) to simulate constrained motion, (e) to simulate kinematics

motion and sliding, thus assisting users to carry out precise object

manipulations.

Figure 6: Test case scenario of: left) a Digger model; right) the

grid scene.

The second example is a scene with two grids from a collision

detection benchmark suite [31] (Figure 6, right). This

benchmarking system is used to to compare pairwise static

collision detection algorithms for rigid objects. This benchmark

generates a number of positions and orientations for a predefined

distance in close proximity and no interpenetration. It does not test

performance of collision detection approaches when intersections

occur.

Table 1 presents the complexity for the digger and grid case

studies.

The digger scenario has five parts that are assembled in a

sequence of five hundred and seven intersecting steps. At each

step it is found an intersection between parts of the scenario that

are recognized and assembled appropriately. This experiment was

conducted by the user executing the required assembly operations.

The executed path was recorded and it was repeated only the

intersecting steps to obtain the data values.

The second scenario has two equal grid objects defined each one

of them with forty thousand and eighty points. The benchmark

generated six thousand and thirty eight steps that positioned the

two objects very close to each other, but not touching each other.

With these two case studies, the performance of the novel

collision detection approach for cloud point models is evaluated.

Table 1: Complexity of the case studies.

 Digger Grid

Number of Objects 5 2

Number Points 7356 46080

Number of steps 507 6038

All the experiments run in an Intel Core 2 Duo T7300, 2GByte of

RAM memory at 2GHz.

The execution times, presented in this section, include only the

time to determine collisions and do not include time for rendering

or motion simulation.

Table 2 presents these times. The proposed collision detection

algorithm for point cloud models achieves interactive rates in real

industrial applications as desired.

Table 2: Collision detection time to find intersecting surfaces.

Time in milliseconds per

step to determine intersections

3D models of

Point Clouds

Digger 0.03

Grid 0.21

The time to determine the collisions between two objects depends

on: (1) the cost of intersecting and updating bounding volumes;

and (2) on the number of such operations. Table 3 shows the

number of operations executed to determine intersections. This

table shows that the number of bounding volume updates is

significantly lower than the number of bounding volume

intersections. The update of a bounding volume is a more

expensive operation than a bounding volume intersection.

Table 3: Operations per step to determine intersections.

Number of operations Digger Grid

AABBs tests 149 634

AABBs updates 26 131

Table 4 shows the time and the number of operations executed to

run the two test cases with the same collision detection algorithm,

but it does not use the OAABB concept. This table presents

results for the same traversal scheme to find collisions using only

R-Trees.

Table 4: Traversal scheme for collision detection using R-Trees

and not using the OAABB.

 Digger Grid

Time to find intersections (ms) 0.15 3.79

Number AABBs tests 230 4810

Number AABBs updates 174 4625

The performance of the collision detection approach proposed is

better when it uses the OAABBs.

From comparison of Tables 3 and 4, it is possible to see that the

number of bounding volume checks and updates is reduced

significantly by the use of the OAABB.

It is also important to compare the performance of this algorithm

with other collision detection systems, although public collision

detection toolkits are supported by polygonal models. Table 5

presents the times obtained for the two case studies with the S-

CD, PQP, RAPID, OPCODE and Dop Tree collision detection

toolkits. The times presented were obtained in the determination

of the first intersecting triangle.

Table 5: Time to find first triangle intersection.

Time to find first

triangle intersection

(milliseconds)

Digger Grid

PQP 0.94 8.99

RAPID 0.36 6.02

OPCODE 0.08 0.61

Dop Tree 1.26 7.09

S-CD 0.25 2.29

Tables 2 and 5 shows there is an improvement in performance for

the collision detection approach supported by point cloud models.

This improvement can be explained by the fact that the novel

approach presented in this paper is being supported by point cloud

models and, in this way, it does not make triangle checks to find

intersections, which is an expensive operation. For this reason,

there is a difference on the number of intersections determined

with a collision detection using polygonal models and the

approach described in this paper. However, for the digger case

study there was only 1,1% different answers reported, which is a

low error probability for the new collision detection algorithm for

point cloud models.

6.2. Using Points from Scanned DataSets

Collision detection algorithms designed for polygonal and CAD

models can rely on the concept of collision between subset

surfaces. This has the advantage that searches for instance can be

faster as we are dealing with only subsets rather than the entire

model. In addition since we are typically only interested in

detecting the collision between surfaces, a small standard

tolerance constant is used in the literature. However point clouds

derived from laser scans present two main differences: they are

not segmented, and points are only samples of the surface, making

an actual collision between points a less likely event. Point based

rendering algorithms such as QSplat [33] change the thickness and

shape of a point splat to better convey visually the underlying

surface while viewing in close range. Similarly we use the average

closest point distance of a point divided by two to create bounding

boxes at point level that ensure collision detection of the surface

they represent. In addition for each voxel we use an octree to

segment points into smaller working sets.

As mentioned in section 3, we created an interactive system to

study various collision scenarios using the Batalha Façade Model.

This model was obtained using a laser scan and contains 587923

points. The avatar is the Al model using 3617 points and walks

along a predefined path of 40 seconds used to benchmark our

collision algorithm and depicted with a white dashed line in Fig.

2.

We performed several partitions of the model into surfaces using

an octree data-structure with different levels (4 joining cells of the

first level, 8, 64, 512, 4096 cells). The resulting non-empty cells

of the octree were used to create an R-tree collision structure of

degree 4 per each cell. We run our experiment on a laptop

equipped with a Core 2 Duo T9300 2.50 GHz Cpu, 4 Gb of RAM

memory, a NVIDIA 8800M GTX graphic card with 512 Mb and

running Windows 7 64 bits. Our walkthrough application was

implemented in C++ using GLUT and OpenGL libraries.

Table 6, presents the results of our algorithm during the

navigation of the avatar model along the predefined path.

The first column defines which partition was used for the model

resulting into several surfaces (i.e. set of points organized in a R-

tree) presented in the second column. We also present the memory

used by the application during the path traversal and the memory

size of the R-tree data structure. Finally, the average framerate of

the walkthrough as well as the pre-processing time needed to

create the collision structure are shown. We note that to run the

application for an interactive exploration, we only need a few

seconds to load the R-tree as shown in the last column of Table 6.

Table 6: Memory and Timing for several subdivision of the

Batalha Model.

Model
#RTrees

or

Surfaces

App Mem

(Mb)

Rtree

Mem.

(Mb)

Avg.

Fps

Pre

Processing

Time (h:mm)

Load

RTree

Time(s)

Sub 4 4 170.10 49.03 18.36 4h00 4.67

Oct 8 8 175.93 59.02 19.60 2h00 6.39

Oct 64 12 175.67 56.81 19.86 1h58 6.09

Oct 512 31 173.37 52.08 19.57 1h15 5.62

Oct 4096 95 172.78 52.66 23.78 0h25 5.34

Our application was designed to run a synchronized rendering

loop of 30 fps which is sufficient for desktop based real-time

visualization. We can notice that our approach provides an

average frame rate from 16 up to 24 fps with collision detection

(Figure 7). The penalty of the collision test is strongly related with

the partition of the model. We should notice that the collision test

is defined between the avatar and the scene points. Our

experiments have shown that creating more R-trees (one for each

non-empty subdivided octree leaf node), segments the object in

correspondingly more surfaces with less triangles (Table 6),

however as the octree subdivision is not deep (typically level 4),

very little extra memory is necessary than when using fewer R-

trees with less surfaces and more triangles. More R-Trees with

less triangles enable fewer run-time tests and faster average frame

rate (Figure 7). In addition, the preprocessing time when using

more R-Trees is significantly less as there are less triangles to

consider in the subdivision and grouping steps. This marginal

increase in memory makes us believe that the approach is suitable

and scalable to handle large point data-sets. Figure 7 depicts the

variation of the framerate along our 40 second path using the

different partitions. The black dashed line corresponds to the

framerate obtained with the walkthrough of the path without

collision detection. Figure 7 shows that even with collision

detection the navigation is still interactive and the cost of the R-

tree traversal is variable due to the spatial partition of the R-tree

structure. Depending of the octree level used for the model

subdivision into surfaces, the different R-tree do not have the

same depth. However the collision detection is faster using

smaller point sets, as each R-tree has less primitives to test (Figure

7). This is why we obtain the best results with the surface partition

based on 4096 cells of the octree (orange line) whith an average

framerate of 24 fps. These results shows that the partition of the

model improves the collision test performance providing

interactive collision detection with a model of 587923 points.

.

Figure 7: Application framerate when Al model is walking along
the path.

7. CONCLUSIONS AND FUTURE WORK

This paper presents a novel approach for collision detection of

point clouds. There are many approaches and algorithms to

determine collisions between 3D polygonal models. There is very

little in the literature about collision between 3D point clouds

models. However, point clouds have become a popular shape

representation. One of the reasons is due to the fact that 3D

scanning devices became affordable and widely used for projects

like VIZIR.

The proposed collision detection approach divides the scene graph

in voxels. There is a bounding volume R-Tree for each object in a

voxel that organizes spatially its point cloud.

To improve the sequential performance, the collision detection

manager also uses the overlapping axis-aligned bounding box

approach. The OAABB is used to filter out bounding volumes

from two R-trees that cannot intersect. It was shown that the use

of the OAABB reduces significantly the number of bounding

volume checks and updates.

Experimental results show that this implementation is effective in

determining interactively intersections between 3D models. In

particular we show the improvements that R-trees can offer over

just using AABB, we believe that these results can present

benefits in an out-of-core setting, since the solution for polygon

models developed by Kim et.al [31] al uses AABB.

This collision detection toolkit is publicly available for download

at http://w3.ualg.pt/~mfiguei/.

For future work we want to integrate the collision detection

manager presented in this paper in the VIZIR prototype that is

being developed and evaluate its applicability to very large

environments.

In the context of laser scan data, we found that using the average

closest point distance of a point divided by two to create the

bounding box around each point works well in general. However

the sampling density of such models is not the same everywhere

thus making the underlining surface more porous for collision. We

tested a more conservative approach that used the average closest

point distance to ensure overlap between point boxes. This test did

not interfere with the framerate. However, traversing tighter areas

such as the door of the Monastery became more difficult without

colliding. In the future we would like to design an adaptive

bounding box size to better handle point sets with heterogeneous

sampling density.

We would also like to test the performance of the collision

detection algorithm using manually defined point subsets that

spatially approximate more closely the underlying real world

surfaces.

8. ACKNOWLEDGMENTS

The authors would like to thank Instituto de Gestão do Património

Arquitectónico e Arqueológico (IGESPAR) and "Artescan,

Tridimensional Digitization" for the model of the Batalha

cathedral.The work presented in this paper was funded by the

Portuguese Foundation for Science and Technology (FCT), VIZIR

project grant (PTDC/EIA/66655/2006). In addition, Bruno Araújo

would like to thank FCT for doctoral grant reference SFRH/ BD/

31020/ 2006.

REFERENCES

[1] Oliveira, J., Oliveira A., Boavida, J. Catarino, L., Araújo, B.,

Pereira, J and Jorge J, 2009. “Value added 3D modelling of Laser

scanned and photogrammetric data”, Proc. of 17º Encontro

Português de Computação Gráfica.

[2] Bradshaw, G. and O’Sullivan, C., 2004. “Adaptive medial-axis

aproximation for sphere-tree construction”, ACM Transactions on

Graphics, 23, 1–26.

[3] Van Der Bergen, G., 1997. “Efficient Collision Detection of

Complex Deformable Models using AABB Trees”, Journal of

Graphics Tools, 2, 4, 1-13.

[4] Terdiman, P., 2001. “Memory-optimized bounding volume

hierarchies”, http://www.codecorner.com/Opcode.pdf.

[5] Gottschalk, S. , Lin, M. and Manocha, D., 1996. “Obb-tree: A

hierarchical structure for rapid interference detection”, Proc. of

ACM Siggraph'96, 171-180.

[6] Hudson, T., Lin, M., Cohen, J., Gottschalk, S. and Manocha,

D., 1997. “VCollide: Accelerated Collision Detection for VRML”,

Proc. of VRML.

[7] Larsen, E., Gottschalk, S., Lin, M. and Manocha, D. 1999.

“Fast Proximity Queries with Swept Sphere Volumes”, Technical

report TR99-018, UNC.

[8] Gregory, A., Lin, M.C., Gottschalk, S. and Taylor, R., 1999.

“A Framework for Fast and Accurate Collision Detection for

Haptic Interaction”, Proc. of the IEEE Virtual Reality, 38–45.

[9] Klosowski, J., Held, M., Mitchell, J., Sowizral, H. and Zika,

K., 1998. “Efficient Collision Detection using Bounding Volume

Hierarchies of k-DOPs”, IEEE Trans. On Visualization and

Computer Graphics 4, 1, 21-36.

[10] Zachmann, G., 1998. “Rapid Collision Detection by

Dynamically Aligned DOP-Trees”, Proc. of IEEE Virtual Reality

Annual International Symposium; VRAIS, 90–97.

[11]Ehmann, S. and Lin, M., 2001. Accurate and fast proximity

queries between polyhedra using convex surface decomposition.

Computer Graphics Forum. 20,500–10.

[12] He, T., 1999. “Fast collision detection using QuOSPO trees”,

Proc. of the Symposium on Interactive 3D graphics, 55–62.

[13] Zyda, M., Osborne, W., Monahan, J. and Pratt, D., 1993.

“NPSNET: Real time vehicle collisions, explosions and terrain

modifications”, The Journal of Visualization and Computer

Animation, Vol. 4, No. 1, 13-24.

[14] García-Alonso, A., Serrano, N. and Flaquer, J., 1994.

“Solving the collision detection problem”, IEEE Computer

Graphics and Applications,V14,No.3, 36-43.

[15] Zhang, D., Yuen, M., 2000. “Collision detection for clothed

human animation”, Proceedings of Pacific Graphics ’00, 328–

337.

[16] Ganovelli, F., Dingliana, J., O’Sullivan, C., 2000.

“BucketTree:Improving collision detection between

deformableobjects”, Proceedings Spring Conference on Computer

Graphics SCCG ’00.

[17] Hubbard, P. M., 1996. “Approximating polyhedra with

spheres for time-critical collision detection”, ACM Trans.

Graphics, Vol. 15, No. 3, 179-210.

[18] Kitamura, Y., Ahuja, H. and Kishino, F, 1994. “Coarse to

fine collision detection for real time applications in virtual

workspace”,Intern. Conference on Artificial Reality and Tele-

Existence,147-157.

[19] Luque, R.G., Comba, J.L.D. and Freitas, C.M.D.S., 2005.

“Broad-Phase Collision Detection Using Semi-Adjusting BSP-

trees”, Proc.s of the 2005 symposium on Interactive 3D graphics

and games,179–186.

[20] Figueiredo, M., 2009. “Surface Collision Detection for

Virtual Prototyping”, Proc. of the IADIS International Conference

Computer Graphics, Visualization, Computer Vision and Image

Processing 2009, 65-72.

[21] Teschner, M., Heidelberger, B., Mueller, M., Pomeranets, D.

and Gross, M., 2003. “Optimized Spatial Hashing for Collision

Detection of Deformable Objects”, Proceedings of Vision,

Modeling, Visualization, 47–54.

[22] Eitz, M., and Lixu, G., 2007. “Hierarchical Spatial Hashing

for Real-time Collision Detection”, International Conference on

Shape Modeling and Applications.

[23] Baciu, G. and Wong, S., 2003. “Image-based Techniques in a

Hybrid Collision Detector”, IEEE Trans. On Visualization and

Computer Graphic, 9, 2, 254-271.

[24] Knott, D. and Pai, D., 2003. “ClnDeR: Collision and

Interference Detection in Real-time using Graphics Hardware”,

Proc. of Graphics Interface 2003, 73-80.

[25] Govindaraju, N., Redon, S., Lin, M. and Manocha, D., 2003.

“CULLIDE: Interactive collision detection between complex

models in large environments using graphics hardware”. Graphics

Hardware 2003, 25–32.

[26] Yoon, S., Salomon, B., Lin, M. and Manocha, D., 2004. “Fast

Collision Detection between Massive Models using Dynamic

Simplification”, Eurographics Symposium on Geometry

Processing, 136-146.

[27] Raabe, A., Hochgurtel, S., Anlauf J. and Zachmann, G.,

2006. “Space-efficient FPGA-accelerated collision detection for

virtual prototyping”, Proc. of Design, Automation and Test in

Europe, 206-211.

[28] Klein, J., Zachmann, G., 2004. “Point cloud collision

detection”, Computer Graphics Forum (EUROGRAPHICS), 567–

576.

[29] Figueiredo, M., Boehm, K. and Teixeira, J., 1993. “Precise

Object Interactions using Solid Modeling Techniques”, Proc. of

IFIP TC 5/WG 5.10 Conference on Modeling in Computer

Graphics, 157-176.

[30] Guttman A., 1984. “R-trees: A dynamic index structure for

spatial searching”, Proc. of the ACM SIGMOD International

Conference On Management of Data, 47-57.

[31] Trenkel, S., Weller, R. and Zachmann, G., 2007. “A

Benchmarking Suite for Static Collision Detection Algorithms”,

International Conference in Central Europe on Computer

Graphics, Visualization and Computer Vision (WSCG), Czech

Republic.

[32] Kim, T., Byun, Y., Kim, Y., Moon, B., Lee, S. and Yoon, S.,

2010. “HCCMeshes: Hierarchical-Culling oriented Compact

Meshes”, Proc. of EUROGRAPHICS.

[33] Rusinkiewicz, S. and Levoy, M., 2000. “QSplat: A

Multiresolution Point Rendering System for Large Meshes”, Proc.

of SIGGRAPH,343-352.

About the author

Mauro Figueiredo is Professor at the Universidade do Algarve,

Instituto Superior de Engenharia, Faro. His contact email is

mfiguei@ualg.pt.

João Oliveira is completing his post-doc at the INESC-ID research

institute in Lisbon. His contact email is joao.oliveira@inesc-id.pt

Bruno Araújo is a PhD Student at the Instituto Superior Tecnico

from Technical University of Lisbon and he is a researcher at

INESC-ID in the Visualization and Intelligent Multimodal

Interfaces Group. His contact email is bruno.araujo@inesc-id.pt.

João Madeiras Pereira is Associate Professor at Technical

University of Lisbon (IST), Department of Computer Science. He

is also the Head of Visualization and Simulation Group at the

research institute INESC-ID. His contact email is jap@inesc.pt .

