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Abstract—The Roofline model graphically represents the attainable upper bound performance of a computer architecture. This
paper analyzes the original Roofline model and proposes a novel approach to provide a more insightful performance modeling
of modern architectures by introducing cache-awareness, thus significantly improving the guidelines for application optimization.
The proposed model was experimentally verified for different architectures by taking advantage of built-in hardware counters with
a curve fitness above 90%.
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1 INTRODUCTION

Driven by the increasing complexity of modern applica-
tions, microprocessors provide a huge diversity of compu-
tational characteristics and capabilities. While this diversity
is important to fulfill the existing computational needs, it
imposes challenges to fully exploit architectures’ potential.
A model that provides insights into the system performance
capabilities is a valuable tool to assist in the development
and optimization of applications and future architectures.

In order to model the interrelation between architecture
capabilities and application characteristics, it is usually re-
quired to develop architecture-specific testing and simula-
tion environments, which result in accurate but complex,
difficult to develop and hard to use models. However,
simpler “bound and bottleneck” approaches can provide
valuable insights into the primary factors that affect the
system performance, and give useful guidelines for im-
proving applications and architectures [3]. In particular, the
Roofline model [10] provides insights into inherent archi-
tectural bottlenecks and potential application optimizations.
Its usefulness is patent in several works [9], both at the
application [4], [6], [8] and at the architectural level [5], [7].

Modern multi-core systems can be represented as a set of
central processing units (Cores) with on-chip memory hier-
archy connected to a DRAM memory (see Fig. 1). Hence, the
original Roofline model [10] shows the maximum attainable
performance of a computer architecture as a line in the form
of a roof. It relates the peak floating-point (FP) performance
(Fp in flops/s), the peak DRAM memory bandwidth (BD

in βD/s), and the application’s operational intensity (I in
flops/βD), where βD represents the data traffic in DRAM
bytes-accessed. It is based on the assumption that memory
transfers and computation can overlap, so the application
execution time, T (I), is limited by Fp or BD :

T (I) = T (
φ

βD
) = φ×max


1

BD × I
,

1

Fp

ff
(1)

where φ is the number of performed FP operations (flops).
Thus, the original Roofline model defines the maximum
attainable performance (Fa(I)), as:

Fa(I) =
φ

T (I)
=

1

max
n

1
BD×I

, 1
Fp

o = min {BD × I, Fp} (2)

Figure 2 shows the original Roofline model for the quad-
core Intel 3770K processor with the characteristics presented

in Tab. 1. The horizontal part of the Roofline model cor-
responds to the compute bound region where the Fp can
be achieved. The slanted part of the model represents the
memory bound region where the performance is limited
by BD . The ridge point, where the two lines meet, marks
the minimum I required to achieve Fp. In general, the
original Roofline modeling concept [10] ties the Fp and the
theoretical bandwidth of a single memory level, with the I
expressed in φ per accessed byte at that memory level. For
example, if working sets fit into the L2 cache, this concept
considers the peak L2 bandwidth (BL2) and I is defined as
φ per L2 bytes accessed (i.e., between L1 and L2 caches).
Hence, when improving the memory access pattern of ap-
plications, it is required to construct and simultaneously use
several instances of the model (one for each memory level)
in order to assess the optimization gains.

As shown in this paper, the original Roofline modeling
concept is usually not sufficient to fully describe the per-
formance of modern applications and architectures which
rely on the on-chip memory hierarchy. This paper proposes
the Cache-aware Roofline model, that is based on a different
Core-centric concept where FP operations, data traffic and
memory bandwidth at different levels are perceived from a
consistent architectural point of view, i.e., as seen by the
Core. These changes introduce a fundamentally different
view on the attainable performance and behavior of modern
applications and architectures, thus providing more insight-
ful guidelines for application optimization. Moreover, the
proposed model is a single-plot model that translates into
an increase of the maximum attainable performance when
directly compared to the original DRAM roof, which can be
considered as an upgrade to the loft.

2 CACHE-AWARE ROOFLINE MODEL

As stated before, in contrast to the original modeling con-
cept that ties the Fp with the bandwidth and data traffic at a
single memory hierarchy level, the proposed Cache-aware
Roofline modeling concept differs in how memory traffic
and bandwidth are observed. There are two fundamental
key differences: i) we account for all memory operations
including accesses to the different cache levels; and ii) the
bandwidth depends on the accessed memory levels and it
is defined relatively to the Core. Since the proposed model
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Fig. 1: General computer architecture
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Fig. 3: Performance and bandwidth variation on the Intel 3770K
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Fig. 2: Original Roofline model (3770K)
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Fig. 4: Cache-aware Roofline model (3770K)
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Fig. 5: Model validation for Intel 3770K

0.0078125 0.0625 0.5 4 32 256 2048 16384

0.5

1

2

4

8

16

32

64

128

Operational Intensity [Flops/Byte]

P
e

rf
o

rm
a

n
c

e
 [

G
F

lo
p

s
/s

]

 Intel 2600K
Sandy Bridge

rRMSE=0.0850
fitness=92.17%

0.0078125 0.0625 0.5 4 32 256 2048 16384

0.5

1

2

4

8

16

32

64

128

Operational Intensity [Flops/Byte]

P
e

rf
o

rm
a

n
c

e
 [

G
F

lo
p

s
/s

]

      Intel 3820
Sandy Bridge−E

rRMSE=0.0871
fitness=91.98%

0.0078125 0.0625 0.5 4 32 256 2048 16384

0.5

1

2

4

8

16

32

64

128

Operational Intensity [Flops/Byte]

P
e
rf

o
rm

a
n

c
e
 [

G
F

lo
p

s
/s

]

    Intel 3930K
Sandy Bridge−E

rRMSE=0.0766
fitness=92.88%

Fig. 6: Cache-aware Roofline model validation for different general-purpose machines

considers the complete volume of memory traffic, i.e., the
total number of transferred bytes (β), the I in the Cache-
aware Roofline Model is uniquely defined for all levels of
the memory hierarchy, thus resulting in a single-plot model.
In fact, in the proposed model, I can be the arithmetic inten-
sity (φ/β). However, we use the term operational intensity
to reflect the possibility of applying the proposed model for
other types of operations (not necessarily arithmetic).

In order to experimentally assess the bandwidth and
performance, we executed a series of tests based on Alg. 1.
In particular, the bandwidth was characterized by vary-
ing the number of memory operations (test code A) to
hit different memory levels by accessing contiguous and
increasing memory addresses. Figure 3 shows the results for
the quad-core Intel 3770K architecture1 (see Tab. 1), where
bandwidth varies with the number of transferred bytes.
It also shows that the achievable peak FP performance,
obtained by varying the number of flops (test code B),
depends on the occupation of the arithmetic units’ pipeline.
Figure 3 also depicts the results for a different number
of cores. Thus, the accurate Roofline model must consider
these variations such that:

Fa(I) =
φ

T (I)
= min {B(β)× I, F (φ)} (3)

where B and F are continuous functions of β and φ.
In order to derive the limits of the attainable FP perfor-

mance in the Cache-aware Roofline model, one must con-
sider the peak FP performance (F (φ)=Fp) for the compute
bound region and the L1 peak bandwidth (BL1�C ) for the
memory bound region (the cache level closest to the Cores).
Figure 4 represents both the original and the Cache-aware
Roofline models as the upper bounds for the achievable FP
performance. It can be observed that the memory bound
region of the original model is extended in the Cache-aware
Roofline model, an effect herein designated as “upgrading
the loft”. The new memory bound limits can be derived
from Equation (3), substituting B(β) by BL1�C . The latter

1. To fully exploit the architecture, we consider herein double-
precision FP Advanced Vector Extensions (AVX) instructions.

value can be obtained from the processor specifications by
multiplying the number of cores, the L1 bus width, and the
clock frequency (see Tab. 1). Moreover, the insightfulness of
the Cache-aware Roofline model can be further extended
by introducing additional memory ceilings depending on
the achievable bandwidth for each memory level (see Fig. 3
and 4). It is worth mentioning that the bandwidth from the
DRAM to the Core (BD�C ) is lower than the bandwidth
considered in the original Roofline model (BD) due to the
fact that the data goes through all cache levels before arriv-
ing to the processor Cores (see Fig. 3 and 4). Overall, the
proposed model reveals a previously unexplored area, thus
allowing even better insights on the attainable performance.

Experimental Setup and Model Validation
In order to validate the proposed model, we performed an
extensive set of experiments with micro-benchmarks based
on Alg. 1 (test code C), across 3 different architectures of
Intel processors in 4 computer systems (see Tab. 1). The
micro-benchmarks are assembly programs designed to hit a
given level of the memory hierarchy and to reach a specific
operational intensity by interleaving different numbers of
FP and memory operations. The proposed model does not
make any direct assumptions associated to Intel processors
and can be applied to any general-purpose architecture.

To experimentally construct the models, we have created
a specialized software tool2 that relies on built-in hardware
performance counters [1]. Each obtained point represents
the median of 8192 micro-benchmark repetitions to reduce
the intrinsic measurement errors in real non-dedicated sys-
tems. The accuracy of the testing tool and procedures can be
evidenced in Fig. 3 where the theoretical peak L1 bandwidth
was achieved, although these tests are the most error prone
and sensitive to the measurement method due to the very
low number of memory operations.

The theoretical models, presented as lines in Fig. 5
and 6, were validated by the experimentally obtained re-

2. The specialized software tool is available upon request by e-
mail to the corresponding authors.
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Algorithm 1: Assembly test micro-benchmark codes

Test code C

perform
φ ′

flops
T
ransfer

β
′bytes

and

vmovupd (%rax),%ymm0
vmovupd 32(%rax),%ymm1
vmulpd %ymm2,%ymm2,%ymm2
vaddpd %ymm3,%ymm3,%ymm3
vmovupd %ymm4, 64(%rax)
vmovupd 96(%rax),%ymm5
vmovupd 128(%rax),%ymm6
vmulpd %ymm7,%ymm7,%ymm7
vaddpd %ymm8,%ymm8,%ymm8
vmovupd %ymm9, 160(%rax)
· · ·



for i in 1 to N do

end

Test code B
vmulpd %ymm0,%ymm0,%ymm0
vaddpd %ymm1,%ymm1,%ymm1
vmulpd %ymm2,%ymm2,%ymm2
vaddpd %ymm3,%ymm3,%ymm3
· · ·

Test code A
vmovupd (%rax),%ymm0
vmovupd 32(%rax),%ymm1
vmovupd %ymm2, 64(%rax)
vmovupd 96(%rax),%ymm3
vmovupd 128(%rax),%ymm4
vmovupd %ymm5, 160(%rax)
· · ·
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Fig. 7: Application classes in the Original Roofline model

sults (points), which resemble quite accurately the expected
shapes for each tested system and memory hierarchy level.
The resulting performance and operational intensity (as
shown in Fig. 5 and 6) were obtained with the hardware
performance counters, i.e., as seen by the Core. In detail,
the experimental points achieve an rRMSE of about 0.1
and a fitness higher than 90% in all cases3. As expected,
each architecture has different rooflines and ceilings: e.g., the
six-core 3930K delivers the highest Fp, whereas the 2600K
results in the lowest BD�C .

3 ANALYZING THE ROOFLINE MODELS

In order to show the practical repercussions of redefining
the original Roofline model4 for cache-awareness, we se-
lected 3 micro-benchmarks from the ones used for model
validation in the previous section (test code C in Alg. 1).
The selected micro-benchmarks represent the kernels of
three classes of applications (see Tab. 2), which differ in
the amount of transferred bytes, β′, and in the number of
performed flops per iteration, φ′ (“for” loop in Alg. 1).
Each class consists of k instances with different number of
iterations N=2k (1≤k≤20), where in each iteration the FP
operations are performed on the same data set. For each
APP-D instance, all memory operations in each iteration
involve accesses to the DRAM. For the remaining two
classes they occur only during the first iteration, while for
subsequent iterations different on-chip memory levels are
accessed, L1 cache for APP-L1 and L3 cache for APP-L3.
Figures 7 and 8 show the results obtained for all the classes
and instances (points in the figures).

Observation 1: the same application can be perceived dif-
ferently in the two Roofline models in terms of its operational
intensity when different problem sizes are considered.

As reported in [10], in the original Roofline model, for the
classes APP-L1 and APP-L3, both performance and I vary
with N for each instance, as depicted in Fig. 7 (shown by
the arrow). In contrast, in the Cache-aware Roofline model
the instances of the three classes do not change their I
with the problem size (see Fig. 8). This phenomenon arises

3. rRMSE: relative root-mean squared error; fitness= 100
(1+rRMSE)

4. Due to the fact that the authors in [10] mainly focus on the
DRAM variant of the original model, the results presented herein
also consider this variant. However, the observations described
herein are also valid for its cache level variants.

TABLE 1: General-purpose CPUs used for model evaluation
Intel processor model 2600K 3820 3930K 3770K

Architecture Sandy Sandy Sandy Ivy
Bridge Bridge-E Bridge-E Bridge

#Cores 4 4 6 4
frequency [GHz] 3.4 3.6 3.2 3.5

Fp , AVX MAD (8 flops) [GFlops/s] (*) 108.8 115.2 153.6 112

L1 size [bytes] 32K 32K 32K 32K

(per core) bus width [bits] 384 384 384 384
bandwidth [GB/s] 163.2 172.8 153.6 168

L2 size [bytes] 256K 256K 256K 256K
L3 size [bytes] 8M 10M 12M 8M

DRAM to LLC #channels (8bytes/channel) 2 4 4 2

(DDR3) bus frequency [MHz] 2×800 2×933 2×800 2×933
bandwidth BD [GB/s] (**) 25.6 59.7 51.2 29.9

(*) Fp=Max #flops×#Cores×frequency; (**) BD=#channels×word size×bus frequency;
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Fig. 8: Application classes in the Cache-aware Roofline model
TABLE 2: Different application classes (values per iteration)

Application class β′ [bytes] φ′ [flops] I (1st iteration)
APP-L1 4.5K 72 1/64
APP-L3 2M 524.3K 1/4
APP-D 61M 1023.4 M 16

from the fact that both models account for the total number
of performed FP operations at the core level (φ′·N ), while
they perceive memory traffic differently. The original model
accounts for the memory traffic to a specific memory level
(e.g., the DRAM), whereas the proposed model accounts for
the total memory traffic as seen by the core (β′·N ).

For APP-D class, both models see the complete volume of
data traffic, since all instances access the DRAM, thus they
achieve the peak performance without changing their I (see
the overlapping square points). However, for APP-L1 and
APP-L3, only the instances with a single iteration (points
marked as “1st”) show the same behavior in both models.
For the other instances, the original and the proposed mod-
els see a different volume of data traffic, since subsequent
iterations access a specific cache level (L1 for APP-L1 and
L3 for APP-L3). In the original model, for these two classes,
I shifts with N for each instance due to the fact that the
total number of DRAM accesses becomes constant after the
first iteration (β′), thus the same application can shift from
a memory bound region to a compute bound region just
by increasing its problem size. In contrast, in the proposed
model the performance obtained for these instances shows a
consistent trend towards the memory ceiling corresponding
to the accessed cache level (see arrow in Fig. 8).

Since both models see the performance in the same
way, the instances achieve the same performance in both,
but with shifted I in the original model. Indeed, if each
performance point in the original model is projected on a
vertical line of fixed operational intensity (the I of the points
marked as “1st”), it will correspond to a point of equivalent
performance in the Cache-aware model.

Observation 2: in the original Roofline model, for a fixed I ,
an application achieves unexpected performance when accessing
different memory levels.

This observation corresponds to the performance varia-
tion between the instances from different classes for a fixed
I in Fig. 7. For example, for I=16, the APP-L1 instance,
where the computations are performed on data loaded from
the L1 cache, achieves lower performance compared to the
other two instances (APP-L3 and APP-D), which operate on
data transferred from significantly “slower” memory levels.
Thus, the optimization guidelines deduced from the original
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Fig. 9: Matrix multiplication optimization steps (Intel 3770K)
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Fig. 10: Optimizing matrix multiplication with about 100 techniques (Intel 3770K)

model suggest that there is a better opportunity for further
performance improvements (i.e., space to achieve Fp) for
instances from APP-L1 than for APP-L3 and APP-D.

This effect is not observed in the Cache-aware Roofline
model, since the instances do not change their I . Actu-
ally, the points in the proposed model that correspond to
the points of I=16 in the original model reveal that the
instances from APP-L1 and APP-L3 are memory bound,
and never compute bound. Thus, there are no optimization
techniques that can be applied to the APP-L1 instances to
provide performance improvements as suggested by the
original model, i.e., to achieve the peak performance in
the compute bound region. In fact, for the instance with
the maximum number of iterations (N=220) no further
optimizations can improve its performance since it achieves
the peak theoretical bandwidth of the L1 cache. The same
contradictory optimization guidelines are also observed for
the APP-L3 instances, although in this case the proposed
model suggests that the data access pattern can actually be
improved to hit cache levels closer to the core (up to Fp).

Observation 3: in the original Roofline model, an application
in the memory bound region is never able to achieve the model’s
maximum attainable performance.

Let us consider the instances from each class with a
single iteration, namely, I=1/64 for APP-L1, I=1/4 for
APP-L3, and I=16 for APP-D (marked with “1st”), where all
memory operations access the DRAM. Although the three
instances belong to different classes, they represent a set of
basic tests with different I that can hit the roof of the orig-
inal model in both compute and memory bound regions.
However, as evidenced in Fig. 7, only the APP-D instance is
able to achieve the Fa(I), while the other two instances are
clearly below the roof. This is due to the fact that the original
model mainly considers the peak bandwidth between the
DRAM and the last level cache (LLC) (BD in Fig. 1). This is
not realistic, since the memory operations must traverse the
whole memory hierarchy between the Core and the DRAM,
i.e., the bandwidth from the DRAM to the Core (BD�C in
Fig. 1) should be considered. For these reasons, the points
obtained for the same instances in the Cache-aware model
are clearly in line with the modeled attainable performance
in the memory bound region (see Fig. 8).

4 APPLICATION OPTIMIZATION

In order to evidence the insightfulness of the proposed and
original models for a real-world application, Fig. 9 shows
experimental results obtained when optimizing the dense
matrix multiplication of size N=M=K=2304. The numbers
in Fig 9 reflect different optimization techniques applied,
namely: basic implementation (1); improved access pattern
by transposition (2); blocking the data to fit in L3 (3), L2 (4),
and L1 (5); and MKL implementation (6).

The proposed model places the basic implementation (1)
in the compute bound region suggesting that, although lim-

ited by DRAM, it can be improved to hit Fp. Applying the
subsequent techniques gives performance improvements
towards the expected cache level ceilings, without changing
I , until reaching the suggested Fp with the highly optimized
MKL implementation. In contrast, the original model places
the basic implementation in the memory bound region, sug-
gesting that Fp cannot be achieved. The predicted memory
ceiling was reached with (2), thus the original model sug-
gests that no optimization can further improve performance.
When plotting the other optimizations there is a sudden
shift of I towards the compute bound region. However,
those improvements would never be reached by following
the initial suggestions of the original model.

Figure 10 shows results obtained for about 100 optimiza-
tion techniques with different access patterns and block
sizes. While the proposed model shows that different op-
timization techniques result in coherent performance im-
provements with fixed I , the optimization process in the
original model is more difficult due to a high variation of I .

5 CONCLUSION

In this paper we propose the Cache-aware Roofline model
that introduces a new perspective to the original Roofline
modeling concept [10] by revealing architectural details that
were previously disregarded, and by significantly improv-
ing the guidelines for application optimization. Highly ac-
curate results (rRMSE≈0.1, fitness>90%) were obtained for
different architectures when verifying the proposed model
by relying on hardware performance counters. We envision
that the importance of the proposed model will be higher
in future architectures, e.g., GPUs and Xeon Phi [2].
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