LSAT - An Algorithm for the Synthesis of
Two Level Threshold Gate Networks

Arlindo L. Oliveira

Dept. of EECS
UC Berkeley
Berkeley CA 94720

Abstract

We present an algorithm for the synthesis of two-
level threshold gate networks inspired in techniques
used in classical two-level minimization of logic cir-
cuits. We specifically address a restricted version of
the problem where the on and off set minterms are ez-
plicitly listed. Experimental results show that a simple
branch and bound algorithm can be used to obtain solu-
tions close to the absolule minimum in a set of stan-
dard problems, outperforming other minimizers even
when restricted to use only classic logic gates as build-
ing blocks.

1 Introduction

Threshold gate networks have been the focus of
an increasing interest in the research community in
the last few years. In part, this interest is due to
theoretical work that shows that threshold gates are
more powerful than logic (and & or) gates, in the
sense that polynomial size, bounded level networks
of threshold gates can implement functions that re-
quire unbounded level networks of purely logic gates.
For example, it has been shown that functions like
multiple-addition, multiplication, division and sorting
can be implemented by polynomial-size threshold cir-
cuits of small constant depth [1, 2]. While it is unclear
whether or not these results will have practical impli-
cations in the design of real integrated circuits, the
study of algorithms for the synthesis of threshold gate
networks remains important in other areas, such as
artificial neural networks and machine learning.

This paper proposes an algorithm for the synthe-
sis of two-level, single output threshold gate networks
when the target function is specified by two sets of
minterms, the on and the off set. This particular for-
mulation turns out to be the natural one in a class
of problems that is known as the rule induction from
ezamples problem in the machine learning literature.

An instance of the problem is created as follows:
minterms are randomly chosen according to some
probability distribution and classified as 0 or 1, ac-

CH3026-2/91/0000/0130/$01.00 © 1991 IEEE

130

Alberto Sangiovanni-Vincentelli

Dept. of EECS
UC Berkeley
Berkeley CA 94720

cording to the value of some boolean function, f. The
target of the learning system is to derive g, an approx-
imation of function f by just looking at the classified
samples it was presented with. Performance is mea-
sured by checking the agreement between the output
of functions g and f for a set of minterms drawn ac-
cording to the same distribution. Theoretical results
predict that, under reasonable assumptions [3], sim-
pler descriptions for g should be expected to lead to
better results when predicting the class of future sam-
ples.

2 Definitions

Let f be an incompletely specified function of n
boolean variables, {z1,...,2,}, i.., a mapping from
{0,1}" — {0, 1, %}, where the * is used to identify the
input points with unspecified output values.

Function f can be described by the following dis-
joint sets of minterms: fon, fpc and forr. The fon
(forr) set specifies which minterms should turn the
output on (off). Non trivial boolean functions should
have non-empty fon and forp sets. The fpc (don’t
care) set contains all minterms not contained in the
previous sets. A function g is compatible with f iff the
value of g for every point in the fon and forp sets if
compatible with f, i. e., iff fon Cgon C fon U fpc.

From a set of positive and negative examples defin-
ing the fon and forp sets of a function f, we want
to derive a compatible function g such that the size of
the network needed to implement g is minimal.

2.1

Let a literal be either a variable or its negation.
A cube is a conjunction of k literals (1 < & < n),
where no two literals corresponding to the same vari-
able appear. A cube with n literals corresponds to a
minterm. A cube ¢; is said to contain another cube
¢y if ¢3 = ¢y, i.e., if the truth values defined in Co
make ¢ true. If ¢; # ¢, then such a containment is
proper. The dimension of a cube ¢ is the number of
variables not present in ¢. The distance between two
cubes, c¢; and ¢y, 6(cy,c2) is the number of variables

Cubes and pyramids

that appear negated in one cube and non-negated in
the other. For example, 21F324 is at distance 2 from
T122T3.

A cube is identified with the boolean function im-
plemented by an and gate. Consider now a thresh-
old gate of k input variables with weights of value
-1 or +1 and let the input variables assume the val-
ues 0 or 1. Let the threshold gate be on when
wyZy + wakg + ... + wixr > Vinr, where it is assumed,
without loss of generality, that the gate implements
a function of the first k variables in an n-dimensional
input space. Let Vj,,, be the maximum value that the
sum in the previous expression can assume and cube
¢ be defined by the literals cjcs...c, where ¢; = z;
if w; = +1 and ¢; = 7; if w; = —1. Consider
now a minterm m = m;ms..mg..m,. This minterm
will turn the gate on iff no more that V5 — Vipr
literals are different from the literals in ¢, i.e., if
6(07 m) < Vinae — Vinr. Let h = Vinaz — Vinr. We
define a pyramid as a pair (¢ : h), where ¢ is a the
apex cube and h is a non-negative integer value, the
height. The minterms contained by a pyramid are at
distance h or less from the apex cube.! Figure 1 shows
graphical representations of a cube and a pyramid.

<
x2
x1

Figure 1: Cube F7z; and pyramid (z,Z3z3: 1)

The distance between a cube ¢; and a pyramid (¢ :
h) is given by max(é(c1,cz2) — h,0). Cube F1z2 and
pyramid (z1Zzz3 : 1) (above) are at distance 1.

A pyramid p is a prime pyramid, relatively to some
boolean function f, iff there is no other pyramid con-
tained in the fon|Jfpc set that properly contains
pyramid p.

Any pyramid p = (¢ : h) has a complement pyra-
mid, p = (é: k—h—1), where k is the number of liter-
als in ¢ and ¢ is the cube obtained by complementing
all such literals. It is trivial to show that pp = @ and

puUp= {07 1}71.
2.2 Covers and M-covers

The concept of cube cover of a boolean function
can be generalized in a way that preserves the relation
between a cover and a two-level implementation of f
but allows for the use of general threshold gates in
both the first and second levels.

A set of pyramids is a pyramid cover for a func-
tion f if every minterm in fou is contained in at least
one pyramid and no minterm in the fopp set is con-
tained in any pyramid. This concept of cover can be

1For a more detailed description of the relation between
threshold gates and logic functions, see [6].

further extended to a more general one that leads to
implementations where the second level gate is also a
general threshold gate instead of an or gate. A bag
of pyramids, B, is an M-cover (M > 1) for a function
f iff all minterms in the fon set are covered by at
least M pyramids and all minterms in the forp set
are covered by at most M —1 pyramids in B. Given an
M-cover for f, it is a trivial task to derive a two-level
network of threshold gates that implements f: sim-
ply allocate one threshold gate for every pyramid in
B and connect them to a gate in the second level with
all w; = 1 and V;s, = M. The search for a two-level
network that minimizes the number of gates is there-
fore equivalent to the search for an M-cover for the
specified function with a minimal number of pyramids
in B.

3 The synthesis algorithm

Assume we have one solution, i.e., an M-cover for
the function is known. A branch and bound algorithm
is used to search for an M-cover with one less pyramid.
A search tree is built with a predefined branching fac-
tor r, and, at each step, the most promising node in
the tree is explored.

The root corresponds to the initial solution with
one pyramid removed. Every node n; in the search
tree corresponds to a bag B; of pyramids and has a
value v; given by the heuristic Cu — z, where u is the
number of fon minterms covered less than M times, z
is the number of fon minterms covered more than M
times and C some large constant. If v; is non-positive,
then node n; represents a solution with one less pyra-
mid than the root. The value of a node estimates how
close it is to a solution. Minterms covered more that
M times are weighted negatively because some pyra-
mids that are currently covering these minterms are
potentially free to cover other points in the space.

At each step, the node with a smaller value of v;
is chosen, and its descendents generated. The bag of
pyramids for each children is obtained by changing
one of the pyramids in B; such that it covers a new
minterm. This is performed by applying the following
algorithm to node n;:

m « pick_one_uncovered_minterm(n;);
for j = 1 to r do {
Potd — choose_next_pyr(m);
(Sons Sofs) «— build_s_sets(m, n;, pora);
p «—find_max_red_pyr(Son, Soss);
ifp#0
n; — create_child(n;, B; U {p} \ {paia});

}

After picking one of the fon minterms covered less
than M times, the algorithm selects the r pyramids
closer to it as the candidates. Function build_s_sets
creates the S,,, set by adding minterm m to the list of

fon minterms covered by p and not covered more than
M times. The S,zs set consists of all the minterms
in the forp set that are already covered by M — 1
pyramids but not the selected one.

3.1 Expanding and reducing pyramids

Function find_max_red_pyr derives the maximally
reduced pyramid covering all minterms in the S, set
and none in the Soss set. The algorithm starts by
identifying Sreq, the set of minterms in S, already
covered by the pyramid. The pyramid is first reduced
with respect to this set? and then expanded until ei-
ther all minterms in the S,y set are covered or a prime
is obtained. If the second condition holds and the first
doesn’t, it reports failure. Otherwise, it returns the
expanded pyramid.®

A pyramid can be expanded by either: a) expand-
ing the apex cube, by dropping one literal. b) re-
ducing the apex cube, by adding one literal while in-
creasing the pyramid height. It can be reduced by
either applying the reverse operations or by expand-
ing its complement pyramid. The reader may verify
that the expand (reduce) operation does indeed gen-
erate a pyramid that properly contains (is contained)
in the original one. Figure 2 shows an example of the
application of the expand operations.

B 1 2
2 — —_—
x1

Figure 2: (z3z3:0) — (z12923: 1) — (z223:1)

A detailed analysis shows that the procedure has
a worst case complexity of O(tm?n) and an expected
complexity of O((t + m)mn), where m is the number
of minterms and ¢ the maximum number of nodes in
the search tree.

3.2 Changing M

The algorithm is started with a 1-cover (M = 1)
consisting of all the minterms in the fon set. This
cover is then reduced as much as possible while keeping
M constant. When the maximum size of the search
tree is reached, the value of M is increased and a new
search for a smaller M-cover is started,

In the outer loop M is treated like a variable and
increased when the search for a better solution fails.
The procedure stops when a value of M is reached for
which no solution is found. This procedure may fail
to find the best M-cover, even if the inner loop always
finds the global optimum for a given M. In fact, we

2] e., it is reduced as much as possible while still covering all
the minterms in Syeq-
3 A detailed description of the procedure can be found in [7.

132

may fail to find a good solution for M = M, if no
good solution exist for M,pt — 1 because the algorithm
will stop when no (M pe — 1)-cover is found. Empirical
validation, however, has shown that, in general, there
is an optimal value for M, Mop:, and the cardinality
of the solutions increases with |M — Mopt|.

If an M-cover is the final solution, O(M) searches
for a cover are conducted in the inner loops. Together
with the results in the previous section, we should ex-
pect the algorithm to take an O(M(t + m)mn) time
to find and optimal M-cover.

3.3 Non-unitary weights

As described above, a pyramid corresponds to a
threshold gate with weights of +1 or -1. A search
for an implementation with larger integer weights is
equivalent to a search for a pyramid in a space of
higher dimensionality. Consider a function f of n vari-
ables, {v1, v2...v,} defined by its fon and forr sets.
Let z be an integer and f* be a function of zn variables
defined by its fiy and fopp sets. Every minterm in
fin (fopp) is obtained by replicating times every
variable in the corresponding minterm of fon (forF)-
For example, if z =2 and n =3 the minterm z122T3
is converted to #j,T1,%2,%2,T3, £3,. Now, let f be
a boolean function of n variables such that f is im-
plementable by a single threshold gate with integer
input weights {w1, wa..ws}. Let z be the maximum
value of | w1 |,] wa | ... | wn |- Then there exists a
pyramid in the space of zn dimensions that covers all
the minterms in the f5, set and none in the f&pp.
This fact implies that if we want to restrict the in-
put weights of the first level threshold gates to the
range [—z,+2] then, for a function of n variables, we
should perform a circuit minimization in a space of zn
dimensions.

4 Experimental results

We present the results obtained in two sets of ex-
amples. All results were obtained in a DECstation
3100 and all CPU times are in seconds. In the first
set, we compared the results obtained with the the-
oretical minimum cost realizations. All the problems
require the use of non-degenerate threshold gates (i.e.,
threshold gates different from either and and or gates)
to achieve the minimum realization. The asymmetry
problems also require weights larger than 1, and this
is reflected in the number of variables (n) for each
problem. The results are shown in table 1. As before,
m is the number of minterms and E and T are the
number of gates obtained experimentally and the the-
oretical minimum. These results show that we were
able to obtain the minimum size realization for all but
the two larger parity problems. The sharp increase in
CPU time for the larger asymmetry problems is due,
in part, to the large weights needed.

Problem m n| T F Tepu
6-parity 64 6| 6 6 4.3
7-parity 128 7 7 7 10.7
8-parity 256 8| 8 8 61.9
9-parity 512 91 9| 11 878.1
10-parity 1024 10 [10 |{ 24 | 1759.8
6-asymmetry 64 24 2 2 1.5
8-asymmetry 256 64 2 2 23.2
10-asymmetry || 1024 | 160 2 2 408.6
12-asymmetry || 4096 | 384 2 2| 11752.9

Table 1: Experiments using threshold gates.

In the second set of problems, we compared the per-
formance of the described algorithm with the perfor-
mance of a popular two-level minimizer, ESPRESSO
[4]. To allow for a fair comparison, LSAT was con-
strained to use only and gates in the first level and or
gates in the second level. A detailed description of the
functions used for these tests can be found in [8]. The
input data sets were created by randomly generating
a minterm and getting its correct classification from
the function description. For each function, 2 different
inputs were tried, with a number of minterms of 200
and 600. According to the generation procedure, all
instances of the problem should accept a solution with
no more cubes than the theoretical minimum.

Problem ESPRESSO LSAT
Name m n| T E Tepu E | Tepu
dnfl 200 | 80 6 6 144 6 87
600 | 80 6 14 840 15 173
dnf2 200 | 40 8 8 84 9 21
600 | 40 8 10 236 8 161
dnf3 200 | 32 6 7 19 6 15
600 | 32 6 6 110 6 54
dnf4 200 | 64 | 10 13 183 9 80
600 | 64 | 10 25 1997 10 506
muxl11 200 | 32 8 14 39 8 33
600 | 32 8 20 208 8 99
ex50f32 | 200 | 32 | 16 15 49 15 21
600 [32 | 16 || 40 363 || 41 111

Table 2: Experiments using logic gates.

Table 2 shows that although no specific code op-
timization was performed for the special case when
a cube cover is to be found, the performance of the
algorithm still compares well with a classic two-level
optimizer. In particular, it obtains results that are
either similar or better than ESPRESSO and much
faster. Moreover, the speed gain increases with the
size of the problem. This is due, in part, to the fact
that LSAT does not require an explicit cover for the
fpc set while ESPRESSO does. Is is also clear from
these results that both programs obtain results very
far from the minimum in a large number of cases. A

133

different approach to this optimization problem may
lead to better results in these and other problems.

5 Conclusions and future work

We designed and implemented and algorithm for
the synthesis of threshold gate networks and have
shown, experimentally, that results near the theoret-
ical minimum are obtainable in many problems. The
algorithm has a run time polynomial in the input size
and its performance degrades slowly with the size of
the problem. Experimental results have also pointed
out the need for a deeper understanding of this partic-
ular version of this optimization problem. In particu-
lar, the reason why, in some cases, different algorithms
find similar solutions very far from the optimum re-
quires further study.

The most interesting single direction for future
work in this area is the extension of these techniques
to the synthesis of multi-level networks. Classic multi-
level techniques {5] can provide the starting point for
such an algorithm. Another interesting research topic
related with this work is the design of multi-valued
threshold gate networks.

Acknowledgments

This work was supported by the Air Force Office
of Scientific Research (AFOSR/JSEP) under Contract
No. F49620-90-C-0029 and the Portuguese INVOTAN
committee. The authors would like to thank Gregory
Sorkin who suggested the use of threshold gates in
logic synthesis and Jaijeet Roychowdhury who intro-
duced the concept of pyramids.

References

[1] K. Y. Siu & J. Bruck “On the Power of Threshold
Circuits with Small Weights”, to appear in SIAM J.
Discrete Math.

[2] K. Y. Siu & J. Bruck “Neural Computation of Arith-
metic Functions” Proc. IEEE, 78, No. 10:1669-1675,
October 1990.

[3] A. Blumer, A. Ehrenfeucht, D. Haussler & M. War-

muth “Occam’s Razor”, Information Processing Let-

ters, vol 24, pp. 377-380, North-Holland, 1987.

R. Brayton, G. Hachtel, C. McMullen & A.

Sangiovanni-Vincentelli “Logic Minimization Algo-

rithms for VLSI Synthesis”, Kluwer Academic Pub-

lishers, 1984.

R. Brayton, G. Hachtel & A. Sangiovanni-Vincentelli

“Multilevel Logic Synthesis”, Proceedings of the

IEEE, vol. 78:2, pp. 264-300, February 1990.

[6] S. Muroga “Threshold Logic and its Applications”,
Wiley-Interscience, 1971.

[7] A. Oliveira “Logic Synthesis Using Threshold Gates”,
Internal Memo, UC Berkeley, 1990.

[8] G.Pagallo & D. Haussler “Boolean Feature Discovery
in Empirical Learning”, Machine Learning, 5:71-99,
1990.

(4]

(5]

