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brothers, Miguel and André for always being there to provide friendly chat and advice. And of course,

my dear friends, that while not directly there with me, provided me with much needed support, by either

providing distraction or listening to my protests; in no particular order: Nuno Sousa, Joana Teixeira,

Filipe Silva, Frederico Sabino, Cı́ntia Costa, Diogo Pedroso, Pedro Garcia, and Pedro Dias.

And last, and most importantly, the one who has most contributed to my mental health during this

thesis and the one who was most neglected as I spent yet another night working on this; my better half,

Inês Mendes. Your smile has been my pillar during all my struggles.

v



vi



Resumo

Nesta tese de mestrado, apresentamos uma ferramenta configurável, ERRORIST, capaz de criar texto

com erros e verificá-lo pelas suas correcções. ERRORIST é uma ferramenta extensı́vel, capaz de in-

serir uma variedade de erros baseados numa taxonomia de erros orientada à tradução. ERRORIST

foi desenvolvido com a Unbabel, uma start-up de tradução baseada em tradução automática auxiliada

por edição crowd-source. A avaliação de editores é uma das suas preocupações, visto que eles usam

editores crowd para corrigir texto traduzido automaticamente de forma a garantir qualidade. A inserção

de erros artificais é configurável em relação à sua variedade. ERRORIST foca-se na inserção de erros

artificiais em Português Europeu. Avaliamos esta ferramenta submetendo os seus erros para correcção

por parte de editores e detectando as correcções automaticamente. Avaliar as correcções automati-

camente é um desafio e apesar de ERRORIST não conseguir completamente substituir a avaliação

manual das correcções, consegue criar material para as mesmas de forma fiável e rápida, ao mesmo

tempo que reduz a necessidade de verificação manual das correcções. ERRORIST consegue reduzir

a necessidade de verificações manuais em 66.38%, ainda mais (70.48%) se apenas considerarmos

edição de documentos não traduzidos. ERRORIST provou a sua utilidade até num ambiente empre-

sarial, criando erros adequados para avaliação de editores e recuperando 58.82% das correcções dos

mesmos.

Palavras-chave: Avaliação, Erro, Erro artificial, Rastreabilidade
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Abstract

In this master thesis, we present a configurable tool, ERRORIST, capable of creating error prone text and

verifying it for corrections. ErrorIST is an extensible tool, capable of inserting a variety of errors based on

a translation error taxonomy. ErrorIST was developed with Unbabel, a start-up based on crowd-sourced,

machine aided translation. Editor evaluation is one of their concerns, since they use crowd editors to

correct machine-translated text in order to ensure quality. Artificial error insertion is configurable on error

type variety. ERRORIST focuses on the insertion of errors in European Portuguese. We evaluate this

tool by submitting its errors to editor correction and detecting their corrections automatically. Evaluating

the corrections accurately is a challenge and while ERRORIST cannot completely replace manual evalu-

ation, it creates the evaluation material reliably and fast whilst reducing the need for human verification in

correction detection. ERRORIST can reduce the need for manual correction verification in 66.83%, even

further (70.48%) if you consider non-translation editing. Even in a business environment, ERRORIST

proved its usefulness by creating adequate errors for editor evaluation and by tracing 58.82% of those

errors’ corrections.

Keywords: Artificial error, Error, Evaluation, Traceability
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Chapter 1

Introduction

This document describes an artificial error generation tool capable of introducing errors in European

Portuguese (EP) sentences, ERRORIST. In this chapter we discuss the motivation behind the develop-

ment of ERRORIST, the goals and main contributions of this thesis. Following this, we will present how

the document is structured.

1.1 Motivation

This master’s thesis was developed in the Spoken Language Systems Laboratory (L2F) in collaboration

with Unbabel1. Unbabel is a start-up based on crowd-sourced, machine aided translation. In Unbabel,

a translation job is first divided into multiple segments that are translated automatically, and, then, to

ensure text quality, delegated to members of their community (non-professional editors) for editing (that

is, detect and correct errors in translated text). These editors speak both the original language and the

target language. In order to produce quality translations, Unbabel has to guarantee that their community

editors are quality editors as well. This requires an evaluation method capable of grading the editors’

work. One way to evaluate editors is to provide them error-prone text for correcting and use the original

text to verify if the errors were identified and corrected.

Ideally, we can create these error-prone texts automatically by inserting errors in grammatically cor-

rect text, and, also automatically, verify the quality/coverage of corrections made after the editors’ revi-

sion.

During editing, one of the concerns the editor (not necessarily just Unbabel’s) should have, is the

context. The context, as we understand, is any surrounding relevant information regarding any said text.

Whether this information originates from other words in a sentence, its original non-translated form or

client specifications, is not relevant to this definition.

Current error generation tools have other applications, like providing a way of creating an error an-

notated corpus for machine learning applications. In fact, most of the systems that use artificial error

generation were made with the end goal of creating error annotated corpora for machine learning-based

1Unbabel: https://unbabel.com/ Accessed last in 2016-10-10
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error detection/correction systems; some of these were created with an even more specific focus on

English learner errors, which are limited in variety. To the best of our knowledge, no current error gener-

ation system was created with the following in mind:

• Editor/Student linguistic evaluation

Current artificial error insertion systems only focus on corpora generation for machine learning.

• Error Generation in European Portuguese

Despite the existence of language neutral error insertion tools, EP specific error insertion is yet to

be explored.

• Retrieving corrections for generated errors

Generating errors is already possible, but verifying the sentences for corrections is not done by

current error generation tools

Taking this into account, we propose a tool, ERRORIST, capable of inserting adequate human-like

errors into text, in order to modify it in a way that will be used as a reliable resource for editor/student

evaluation and machine learning training.

1.2 Objectives

We intend to create a general error insertion tool, which we will refer to as ERRORIST henceforth, with

the following capabilities:

• Configurable Error Generation

The ability to insert errors according to a desired frequency, language (EP or English) and difficulty.

• Traceable Error Generation

The ability to insert errors that are, in some form, traceable to their origin.

• Correction Detection

The ability do detect if an artificial error was corrected.

• Extensible tool

The ability to extend the currently available tool to new languages, error types and error insertion

methods.

Achieving these goals requires an in-depth analysis of existing error types, how to insert them, in

which proportion and how to maintain or break grammatical correctness.

In order to evaluate the tool itself, we will use the following metrics:

• Error Quality

A measure to represent if the insertions errors accurately represent their error type.

2



• Error traceability

A measure representing how many of the generated errors were detected by the user and said

corrections were indentified by the tool.

These two features will represent ERRORIST’s performance in different ways. Error Quality rep-

resents the quality of each of the error types’ insertion methods. Error traceability will measure how

adequate ERRORIST is as an evaluation tool.

1.3 Thesis Outline

The document is organized as follows: in Chapter 2 we discuss the necessary knowledge and terms

needed to read this work, including Section 2.4, in which we analyse the two error taxonomies that we

will follow in this work plus two other relevant taxonomies, and Section 2.2, in which we discuss the state

of the art regarding error insertion, available error generating tools and types of errors inserted by each

of them; In Chapter 3 we describe the developed solution’s architecture and its error insertion methods;

In Chapter 4 we refer to the measures and procedures we used for evaluating ERRORIST and their

respective results; Finally, in Chapter 5, we summarize this document and present some possibilities for

ERRORIST’s extension.
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Chapter 2

Background

An error, as we define in our work, is any deviation from the language grammatical rules or intended

meaning as defined at the time of writing. This includes slight meaning variations, as error severity is

outside of this work’s scope. Artificial errors are errors that were not created by accident at the time of

writing, but errors that were inserted automatically by a computer. Artificial error insertion tools are not

numerous, and those that exist were not created for the purpose of our work: editor evaluation. Firstly, we

will enumerate some relevant error taxonomies that were taken into account in our work. Starting from

the simplest taxonomy, to the most complex. Following that, we describe some systems that generate

errors. We also discuss how error generation has contributed to machine learning applications and,

finally, we will describe some resources useful for error insertion.

2.1 Error Taxonomies

There is more than once way to classify an error. Here, we present the taxonomies relevant in ERROR-

IST’s development.

For a better understanding of the errors we refer to, examples for pertinent errors will be provided

throughout this document. These examples are written according to the following notation: brackets

mark where a word was removed, ‘[ ]’, parenthesis mark where a word was added, ‘(extra)’, and under-

lining marks where the error was introduced, ‘wrong’.

2.1.1 Basic taxonomy

The first taxonomy to consider is the simplest one, as any error can be categorized as one of the

following:

• Addition, in which a word is added.

• Omission, in which a word is removed.

• Substitution, in which a word is replaced by another.
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• Move, in which a word is moved to another part of the sentence.

GenERRate[1], as explained in Section 2.2.1, used this error categorization for artificial error inser-

tion.

2.1.2 L2F taxonomy

The second taxonomy we will consider is the one presented by Costa et al.[2] developed in L2F. In this

work they tried to categorize machine translation errors in several levels. We will now analyze the error

types they defined and see how these can occur. We will also provide examples for each error type

when possible, in both English (EN) and EP.

It is important to note that even though we did not create this taxonomy, the error types have been

adapted when possible to suit our tool’s purpose, which is not solely focused on machine translation

errors.

Orthography Level

The orthography level includes all errors related to misspelling and punctuation misuse. The error types

included in this level and examples for each are in Table 2.1.

Error Type Lang Intended Sentence Error Sentence

Punctuation EN I found the clowns,
Bob, and Clyde.

I found, the clowns,
Bob, and Clyde.

EP Encontrei os
palhaços, João, e
Cláudio.

Encontrei os,
palhaços, João, e
Cláudio.

Capitalization EN I think my poor
Slipper got dirty!

i think my poor Slip-
per got dirty!

EP A minha pobre
Pantufa ficou suja!

a minha pobre
Pantufa ficou suja!

Spelling EN I have three
friends.

I have htree
friends.

EP Eu fui para a casa. Eu fiu para a casa.

Table 2.1: Orthography level error examples

Punctuation errors relate to misused punctuation. Capitalization errors concern words that should

begin with a capitalized letters, but are not, and vice-versa. Spelling errors, as the name indicates,

relate to word misspellings.

Lexis Level

Lexis level errors include errors regarding the word as a whole and how its presence affects the sentence.

The error types included in this level and examples for each are in Table 2.2.

According to Costa et al.[2], a function word is a word that has little lexical meaning but provides

a way of expressing grammatical relationships with other words (e.g. he, of, it, already). Content

6



Error Type Lang Intended Sentence Error Sentence

Omission (function word) EN On his birthday he
tried a new hat on.

[ ] his birthday he
tried a new hat on.

EP Ele já recebeu um
chapéu no seu
aniversário.

Ele já recebeu
um chapéu [ ] seu
aniversário.

Addition (function word) EN He bought a hat. He bought a
(already) hat.

EP Ele comprou um
chapéu.

Ele comprou um
(já) chapéu.

Omission (content word) EN His hat was pret-
tier.

His hat was [ ].

EP O seu chapéu era
bonito.

O seu chapéu era
[ ].

Addition (content word) EN His was prettier. (suit) His was pret-
tier.

EP O seu era mais
bonito.

(chapéu) O seu era
mais bonito.

Unstranslated

From EN Boys like bugs, as
girls like dresses.

Boys like bugs, as
girls like dresses.

To EP Os meninos
gostam de
insectos, como as
meninas gostam
de vestidos.

Os boys gostam de
insectos, como as
meninas gostam
de vestidos.

From EP Os meninos
gostam de insec-
tos, as meninas
gostam de vesti-
dos.

Os meninos
gostam de insec-
tos, as meninas
gostam de vesti-
dos.

To EN Boys like bugs,
girls like dresses.

Boys like insectos,
girls like dresses.

Table 2.2: Lexis level error examples

words, according to Costa et al.[2], are words that carry the content or the meaning of the sentence

(e.g. dog, house, happy, jump). Omission and Addition errors concern the omission and addition of

content/function words respectively. Untranslated errors occur when words in a language should have

been translated, but were not.

Grammar Level

Grammar level errors include errors regarding morphological or syntactic deviation from the language

grammatical rules. The error types included in this level and examples for each are in Table 2.3.
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Error Type Lang Intended Sentence Error Sentence

Misselection (word class)
EN The cute bird is

happily on the

branch.

The cutely bird

is happily on the

branch.

EP O lindo pássaro es-

tava alegremente

na árvore.

O lindamente

pássaro estava

alegremente na

árvore.

Misselection (verb level: tense)
EN He had bought a

suitcase for his

travels.

He had buy a suit-

case for his travels.

EP Ele tinha comprado

uma mala para as

suas viagens.

Ele ter comprado

uma mala para as

suas viagens.

Misselection (verb level: person)
EN This car is de-

stroyed.

This car am de-

stroyed.

EP Come, porque a vi-

agem é longa!

Come, porque a vi-

agem são longa!

Misselection (verb level: blend)
EN They were beauti-

ful yesterday.

They am beautiful

yesterday.

EP Ele comeu en-

quanto pensava

nas alturas em que

jogaria à bola.

Ele comeriam

enquanto pensava

nas alturas em que

jogaria à bola.

Misselection (agreement: gender)
EN She tied her hair

into a knot.

She tied his hair

into a knot.

EP Ele atou os cabos

do computador por

ela.

Ele atou os cabos

da computador por

ela.

Misselection (agreement: number)
EN The wolf took care

of many cubs.

The wolf took care

of many cub.

EP O lobo já os tinha

alimentado.

Os lobo já os tinha

alimentado.

Misselection (agreement: person)
EN We learn from our

mistakes.

We learn from my

mistakes.

EP Aprendemos com

os nossos erros.

Aprendemos com

os meus errors.
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Misselection (agreement: number)
EN The wolf took care

of many cubs.

The wolf took care

of many cub.

EP O lobo já os tinha

alimentado.

Os lobo já os tinha

alimentado.

Misselection (agreement: blend)
EN All hail our many

huntresses in the

hunter’s guild!

All hail our many

hunter in the

hunter’s guild!

EP Vou àquela loja de

roupa para meni-

nas.

Vou àqueles loja de

roupa para meni-

nas.

Misselection (contraction)
EN N/A N/A

EP Ela adorava

sentar-se no

banco.

Ela adorava

sentar-se em o

banco.

Misordering
EN I like the beautiful

colors on the car.

I beautiful like the

[ ] colors on the car.

Table 2.3: Grammar level error examples

Misselection errors occur when a word was chosen incorrectly to convey the intended meaning but

still has a semantic relation to the correct word. Misselection (Word class) errors are errors that use

the the wrong class of a correct word, like a noun instead of an adjective.

Misselection (Verb level: Tense) errors are errors in which the verb tense was used incorrectly. In

the example, the word in cause is a verb which tense was chosen incorrectly, this can create a invisible

error as long as there is no other word in the sentence related to the tense.

Misselection (Verb level: Person) errors are errors in which the verb person was used incorrectly.

We could not find any error example in the English language for invisible errors regarding the verb person

due to the regularity exhibited between persons. In English, most verbs remain unchanged in the various

persons, except in the third which makes the transformation into another person either the same word or

a visible error. No example was found for this error in the English language, but if it exists, the example

lies on homograph properties between two irregular verbs.

Misselection (Verb level: Blend) errors are a combination of the previous two. In the example

provided, only the person is immediately noticeable as an error (if you do not take the semantics of the

word ’yesterday’ into account).

Misselection (Agreement: Gender) errors are errors in which two related words are not in the same

gender. In the fifth example, the wrong gender of the possessive adjective ’his’ is used instead of ’her’

when referring to a girl. In the invisible example, changing the gender of the underlined words did not

make the sentence incorrect grammatically.
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Misselection (Agreement: Number) errors are errors in which two related words are not in the

same number. Covert errors can be introduced when the related words are not required to have the

same number (e.g. when using the determinant ’the’).

Misselection (Agreement: Person) errors are errors in which two related words are not in the same

person(e.g. ’I’ and ’my’).

Misselection (Agreement: Blend) errors are a combination of the three above.

Misselection (Contraction) errors are errors relating to obligatory use of contractions. There is no

example of this in English. As an example, in EP you can not use the two words ’Em’ and ’a’ in a

sequence without contracting them into ’Na’.

Misordering errors occur when the sentence has every word needed to convey the intended mean-

ing, but the words’ ordering was done incorrectly.

Semantic Level

Semantic level errors include errors regarding the source word’s meaning on a target language. The

error types included in this level and examples for each are in Table 2.4.

Error Type Lang Intended Sentence Visible

Confusion of senses EN The box was full. The cashier was
full.

EP Ele poisou os
óculos na mesa.

Ele poisou os
copos na mesa.

Wrong Choice EN On New Year’s eve
I’m going to wear
my best suit.

On New Year’s eve
I’m going to wear
my best truck.

EP Na véspera de
ano novo vou usar
o meu melhor
chapéu.

Na véspera de
ano novo vou usar
o meu melhor
camião.

Collocation EN I want to catch the
bus and take the
pill.

I want to catch the
bus and confiscate
the pill.

EP Quero apanhar o
autocarro e tomar a
pı́lula.

Quero capturar o
autocarro e tomar a
pı́lula.

Idioms EN It’s raining cats and
dogs today!

It’s raining pots to-
day!

EP Está a chover a
potes hoje!

Estão a chover
cães e gatos hoje!

Table 2.4: Semantic level error examples

Confusion of Senses errors occur when a source language word has homonyms and is translated

to the wrong meaning in a target language. In the example, the EP word ‘caixa’ was mistranslated into

one of its homonym meanings, the cashier, instead of ‘box’.

Wrong Choice errors occur when a source language word is translated to a non-related word in the

target language.
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Collocations as defined by James[3] according to Costa et al.[2] “[. . . ] are the other words any

particular word normally keeps company with”. In other words, any sequence of words that together do

not mean the composition of their constituting words(e.g. ’Get’ and ’on’, ’get’ and ’up’). Collocation*

errors occur when a collocation’s constituting words are translated literally.

Idiom errors are the same as collocation errors but regarding language idioms.

Discourse Level

Discourse level errors do not necessarily break grammatical rules nor the meaning of the sentence but

are not written in an expected way. The error types included in this level and examples for each are in

Table 2.5.

Error Type Lang Intended Sentence Visible

Style EN I need permission
to be authorized to
improvise.

I need
authorization to
be authorized to
improvise.

EP Preciso de
autorização para
permitir tal loucura.

Preciso de
permissão para
permitir tal loucura.

Variety EN I’m seeing the most
beautiful colors.

I’m seeing the most
beautiful colours.

EP No seu discurso,
João. . .

Em seu discurso,
João. . .

Should not be translated EN Have you ever read
a book written by
Fernando Pessoa?

Have you ever read
a book written by
Ferdinand Person?.

EP Já alguma vez
provaste uı́sque
Johnny Walker?

Já alguma vez
provaste uı́sque
João Andante?

Table 2.5: Discourse level error examples

Style errors are errors that occur when the intended is conveyed but there was a bad stylistic choice

of words (e.g. word repetition).

Variety errors are errors that occur when the intended meaning is conveyed and the sentence is

grammatically correct in a variety of the target language (e.g. Brazilian Portuguese (BP) and EP).

Should not be translated errors are errors that occur when a word has been translated but it should

not have been (e.g. movie title).

2.1.3 Unbabel Taxonomy

What Unbabel currently uses as their taxonomy mostly overlaps with the taxonomy described in 2.1.2.

The main difference is that Unbabel also uses some error types relating to the translation job require-

ments, being more precise in some error types.
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Accuracy errors

Accuracy errors are errors relating to word misplacement, misuse and absence. Mistranslation errors

include errors regarding wrongly translated words and their cause. Mistranslation errors relate to the

L2F taxonomy according to Table 2.6.

Unbabel Taxonomy L2F Taxonomy

Mistranslation
Overly Literal Collocation, Idioms and Confu-

sion of Senses
False Friend Wrong Choice
Should not have been translated Should not be translated
Lexical selection Style

Table 2.6: Mistranslation errors

Overly Literal errors occur when a word in a source language is translated literally into another in a

target language, like when included in a collocation, idiom or just a wrong translation of a word that has

a homonym.

False friend errors occur when a word in a source language is similar to a word in a target language,

resulting in a mistranslation. E.g English: ’eventually’, and EP: ’eventualmente’. ’Eventually’ means that

something will happen, while ’eventualmente’ means that something might happen. A ’False friend’ error

can be classified as ’Wrong choice’ error in the L2Ftaxonomy even if the ’Wrong choice’ is more generic

than ’False friend’.

Should not have been translated errors occur when a word in source language was translated

when it was not meant to.

Lexical selection errors occur when a word or expression is translated, albeit in an unusual way.

E.g: Translating the English term ’Artificial Intelligence’ into ’Esperteza Artificial’ in EP (which roughly

back translates to ’Artificial Smartness’).

Mistranslation errors are not the only errors that are included in Accuracy errors. Other accuracy

error types and their corresponding error types in the L2F taxonomy can be found in Table 2.7.

Unbabel Taxonomy Type L2F Taxonomy
Omission Omission (function word) and

Omission (content word)
Untranslated Untranslated

Addition Addition (function word) and Ad-
dition (content word)

Table 2.7: Other accuracy errors

Omission errors occur when a word is missing from a translation.

Untranslated errors occur when a word should have been translated but it was not.

Addition errors occur when a word should not be there but is.
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Fluency errors

Fluency errors are errors that are not directly related to the text in the source language, but to the overall

target language text correctness.

Unbabel Taxonomy Type L2F Taxonomy

Inconsistency Word selection -
Tense selection Misselection (verb level:tense)

Coherence -
Duplication Addition (function word) and Ad-

dition (content word)

Spelling
Orthography Spelling
Capitalization Capitalization
Diacritics Spelling

Typography

Punctuation Punctuation
Unpaired quote marks and
brackets

Punctuation

Whitespace -
Incosistency in character use -

Table 2.8: Fluency errors

In Table 2.8 are the types of Fluency errors and their corresponding errors in the L2F taxonomy.

Inconsistency errors occur when two identical words or expressions in the same text are not translated

the same way. In word selection inconsistency, two equivalent expressions are not translated the same

way. E.g: ’Mourning Tour’ can be translated into both ’Passeio Matinal’ and ’Volta Matinal’ in EP. In

tense selection inconsistency, two verbs meant to be in the same tense, are not.

Coherence errors are the most subjective of errors, occurring when the text is not clear to the

interlocutor. Applies only to the text as a whole.

Duplication errors are a special case of the addition errors in section 2.1.3 which add a word or

expression already present next to that same word or expression.

Spelling errors occur when a word is written incorrectly. Orthography spelling errors are those in

which a letter or hyphen is added, removed, moved or substituted erroneously in a word. Capitalization

spelling errors occur when a word has either a letter that should be a capital letter, but is not, or the

inverse, a letter that should not be a capital letter, but is. Diacritics spelling errors are those in which a

word has a missing diacritic, an extra diacritic or a combination of both.

Typography errors are those that affect the sentence structure. Punctuation typography errors

occur when a sentence has misused punctuation, like a misplaced comma, a wrongly used question

mark or even the lack of any punctuation. Unpaired quote marks and brackets typography errors occur

when a sentence has either a quote mark lacking another quote mark or a bracket lacking an inverse

bracket. Whitespace typography errors happen when a sentence has the either a lack of whitespaces

or a surplus. Inconsistent character use typography errors are errors exclusive to languages that have

a logographic writing system. The inconsistency lies in two equivalent words or expressions having a

different character representing them.

Fluency Grammar errors are errors in which the used words have a semantic relationship to the
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correct words but are still wrong. Types of grammar errors and their corresponding L2F taxonomy error

types can be found on Table 2.9.

Unbabel Taxonomy Type L2F Taxonomy

Function Words
Prepositions Addition (function word), Omis-

sion (function word), Misselec-
tion (agreement: gender), Mis-
selection (agreement: number)
and Misselection (agreement:
blend)

Determiners Addition (function word), Omis-
sion (function word), Misselec-
tion (agreement: gender), Mis-
selection (agreement: number)
and Misselection (agreement:
blend)

Conjunctions Addition (function word), Omis-
sion (function word), Misselec-
tion (agreement: gender), Mis-
selection (agreement: number)
and Misselection (agreement:
blend)

Word Form
Part-of-Speech Misselection (Word Class)
Agreement Misselection (verb level: per-

son), Misselection (agreement:
gender), Misselection (agree-
ment: number), Misselection
(agreement: person) and Miss-
election (agreement: blend)

Tense/Mood/Aspect Misselection (verb level: tense)
Word Order Misordering

Sentence Structure Style

Table 2.9: Fluency grammar errors

Function word errors occur when a preposition, determiner or conjunction is missing, misplaced,

misused or in excess.

Word form errors occur happen when a word is translated correctly in semantic terms but nonethe-

less in a wrong way. Part-of-speech word form errors are those in which the word is in the wrong

class, like an adjective instead of a noun. Agreement word form errors are errors in which two related

words should share, but do not, the same number, gender, person or a combination of the previous.

Tense/Mood/Aspect word form errors are errors that to not make the sentence grammatically incorrect

but contradict the rest of the text in of those three terms.

Word Order errors are those in which the words have been misplaced within the same sentence.

Sentence Structure errors are similar to word order errors but do not make the sentence grammati-

cally incorrect.
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Style errors

Style errors are errors involving text formality and overall quality. Style error types and their correspond-

ing types in the L2F taxonomy can be found in Table 2.10.

Unbabel Taxonomy Type L2F Taxonomy
Register -

Incosistent Register -
Repetitive Style Style
Awkward Style Style

Table 2.10: Style errors

Register style errors occur when a text needs to be formal but is informal or vice-versa. Inconsistent

register style errors happen when the text contains both informal and formal writing.

Repetitive style errors are those in which the text does not have varied vocabulary.

Awkward style errors are a last resource classification given to errors that do not fit any other

possible errors but still make the sentence unfit for the desired end result.

Terminology errors

Terminology errors include errors related to vocabulary and/or style used in the text that do not meet

the requirements provided by the entity that requested the translation job. None of the errors in this

category have have a correspondence with any error type in the L2F taxonomy, being ’Style’ the closest

error type. There are only two errors in this category:

• Noncompliance with client or company style guide

• Noncompliance with the glossary and vocabulary

Other error types

Here we cover errors that did not fit in the previous categories. Named entities errors are comprised of

errors regarding writing conventions of various entities. The errors covered are:

Person errors when referring to people.

Organization errors when referring to organizations (e.g. political, educational, governmental, etc.).

Location errors when referring to places.

Function errors when referring to professions.

Product errors when referring to products (e.g. car model, toy line).

Amount errors when referring to measurements (e.g. kilograms, pounds, centimetres, miles, etc.).

Time errors when referring to dates and time.
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Wrong Language Variety errors are errors related to the usage of the wrong language variety in

the translation, like using BP instead of EP or vice-versa. These fit into the ’Variety’ errors in the L2F

taxonomy explained in 2.1.2.

Lastly, Formatting and Encoding errors cover errors regarding text encoding(for incompatible char-

acters) and formatting (e.g. tabs instead of spaces).

2.1.4 MQM Taxonomy

MQM[4] is short for ”Multidimensional Quality Metrics”, a framework for describing translation quality

metrics. MQM is able to describe, coherently and consistently, translation quality metrics while tying

them to specific project requirements.

While MQM is not limited to identifying translation quality issues, as it also measures design quality

and formatting, it has a good coverage of diverse translation errors. In this section we will describe the

parallelism between the previously discussed taxonomies and peculiar error types specific to the MQM

taxonomy.

Similarly to the L2F taxonomy and the Unbabel taxonomy, the MQM taxonomy is sub-divided. The

sub-divisions are called dimensions. Some of these dimensions, the Design dimension, the Interna-

tionalization dimension, Locale convention and Verity dimension are not related to linguistic errors. The

Design dimension concerns the presentation of text, including issues with fonts, graphics, alignment

and overall layout of the text. The Internationalization dimension include multiple issues concerning a

product’s internationalization, including inadequate forms for a country’s language, inadequate secu-

rity for encodings or even mentions to products unavailable in a given country. The Locale convention

dimension includes issues concerning locale formatting, like phone number formatting, currency format-

ting and date formatting. The Verity dimension regards issues relating to inappropriate content for the

target locale/audience, like unavailable options for a product in the given locale or the text includes un-

necessary legal information for the target locale. These dimensions will not be further discussed in this

document as they are not within the scope of this work.

Accuracy

Some of the errors types in the Accuracy dimension can be categorized in the Lexis Level of the L2F

taxonomy, as can be seen in Table 2.11.

MQM Taxonomy L2F Taxonomy
Addition Addition(Function), Addition

(Content)
Omission Omission(Function), Omis-

sion(Content)
Untranslated Untranslated

Table 2.11: Accuracy errors in the MQM taxononmy

An Addition error consists of the addition to the text of a word that was not in the original text.
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Omission errors occur when content present in the original text is not present in the translation. Omis-

sion errors can be further specified into Omitted Variable errors, which are non-linguistic in nature as it

concerns omitted placeholder variables. Untranslated errors consist of the presence of non translated

content that should be translated in the translated text. Untranslated errors can be further specified as

Untranslated graphic when parts of a graphic were not translated when they should have been.

Mistranslation errors are also present in the Accuracy dimension. They occur when wrongly trans-

lated content is present. Mistranslation errors can be further specified into:

• Ambiguous Translation consisting of ambiguous translations the translated content.

• Date/Time, consisting of dates or time not matching between the original and translated text.

• Entity, consisting of entities (e.g a city or name) that do not match between the original and

translated text.

• False Friend, consisting of mistranslating a word into a similar, yet wrong, in the target language.

These are identical to False Friend errors present in the Unbabel taxonomy.

• Technical Relationship, which is related to inaccurately translated relationships respecting tech-

nical knowledge.

• Number, consisting of inconsistencies in numbers between the original text and its translation.

• Overly Literal, which can also be found in the Unbabel taxonomy, consist of translations that are

overly literal.

• Should have not been translated, which is the presence of translated content that should have

not been translated in the translated text. Also present in the Unbabel taxonomy and L2F taxonomy

(as Should not be translated error in the Discourse level).

• Unit Conversion, consist of wrongly converted units of measure between the original and trans-

lated text (e.g miles and kilometers).

Most of these Errors can be found in the Unbabel taxonomy, albeit in different categories, as seen in

Table 2.12.

MQM Taxonomy Unbabel Taxonomy

Mistranslation

Date/Time Time errors
Entity Person, Organization, Location,

Product
False Friend False Friend
Number Amount
Overly literal Overly literal
Unit Conversion Amount Errors

Table 2.12: Accuracy errors in the MQM taxonomy and in Unbabel’s taxonomy
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Also in the accuracy dimension are the Over Translation and the Under Translation in which a

translation is either more specific than the original text or less specific, respectively.

Also in the Accuracy dimension are the Improper exact TM match issues, which are non-linguistic

in nature, as they relate to wrong translations provided by a specific translation technology (Translation

Memory system) is used.

Fluency

The Fluency dimension includes issues related to the form or content of a text. In Table 2.13 are the

relevant errors in the Fluency dimension and their parallel errors in either the Unbabel taxonomy or L2F

taxonomy, as is most appropriate for each case.

MQM Taxonomy Error Type Taxonomy Error Type
Ambiguity -
Ambiguity (Unclear Reference) - -
Character Encoding Unbabel Formatting and Encoding
Coherence Unbabel Coherence
Cohesion Unbabel Function Words
Duplication Unbabel Duplication
Grammar Unbabel Function Words, Misselection,

Tense/Mood/Aspect
Grammar (Function words) Unbabel Function Words
Grammar (Word Forms) L2F Misselection
•Word Forms (Agreement) L2F Misselection(Agreement), Miss-

election (Verbs)
•Word Forms (Part of Speech) L2F Misselection(Word Class)
•Word Forms
(Tense/Mood/Aspect)

Unbabel Tense/Mood/Aspect

Grammar (Word Order) L2F Misordering
Grammatical Register Unbabel Register
Inconsistency Unbabel Inconsistency
Non-allowed characters Unbabel Formatting and Encoding
Offensive Unbabel Awkward Style
Sorting L2F Misordering
Spelling L2F Spelling
Spelling (Capitalization) L2F Capitalization
Spelling Unbabel Spelling (diacritics)
Typography L2F Punctuation
Typography (Punctuation) L2F Punctuation
Typography (Unpaired quote
marks or brackets)

Unbabel Unpaired quote marks and
brackets

Typography (Whitespace) Unbabel Whitespace
Unintelligible -

Table 2.13: Fluency errors in the MQM taxonomy

Ambiguity errors are similar to Ambiguous Translation errors but differ on their cause, as Am-

biguous errors are monolingual in nature. Ambiguity (Unclear Reference) issues occur when the text

referential mechanisms (like pronouns) with an unclear reference. Character Encoding issues are re-

lated to garbled characters caused by the incorrect application of an encoding. Coherence issues are

not dependent on a single sentence or word, but occur when the text as a whole is either inconsistent
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or does not make sense. Cohesion errors are the omission/non-correctness of text portions needed

to connect the text as an understandable whole. Duplication errors occur when words, expressions or

whole paragraphs are repeated unintentionally. Grammar issues are related to grammar or syntax and

do not include punctuation or spelling errors. Grammar (Function Words) errors occur when function

words are misplaced, omitted or misused. Grammar (Word Forms) errors are present when a word is

malformed even when semantically related to the correct word. Word Form (Agreement) issues are

present when a multitude words that are required to agree, (in either case, number, person or gram-

matical features), do not. Word Form (Part of Speech) errors occur when a word is wrongly classified

as to their Part of Speech (POS). Word Form (Tense/Mood/Aspect) errors happen when a verb form

is in the wrong mood, tense or aspect. Grammar (Word Order) issues occur when words are in the

in the incorrect order. Grammatical Register errors happen when informal wording is used instead of

formal wording and vice-versa. Inconsistency issues are present when the same entity is referenced

as two different words or expressions in the text. Non-allowed characters issues are present when

non allowed characters are in use. Offensive errors are related to the presence of offensive words,

expressions or symbols in parts where there are meant to be none. Sorting issues occur when lists

are not in the sequence they should be. Spelling errors are present when words are not in their cor-

rect spelling. Capitalization errors are those in which words begin with capitalized letters when they

should not and vice-versa. Diacritics errors occur when words have either omitted, extra or misplaced

diacritics. Typography issues are present when the mechanical representation of text if incorrect, not

including spelling. Typography (Punctuation) errors are those where punctuation marks are used in-

correctly. Typography (Unpaired quote marks or brackets) issues are self explanatory. Typography

(Whitespace) errors are related to misused whitespace characters. Unintelligible errors are present

when the error type cannot be determined as the text suffers from an major lack of fluency.

Corpus Conformance, Index/TOC, Link/cross-reference, Pattern problem are non-linguistic is-

sues. Corpus Conformance occur when the text does not conform to a reference corpus. Link/cross-

reference occur when links or or other non-linguistic references point to an erroneous or non-existent

location. Index/TOC occur when there are errors in the index or table of contents. Pattern problem

issues are present text conforms to a regular expressions that is not allowed.

Style

In the Style dimension the errors, as the implies, are related not to real errors that change the sentences’

meaning but errors related to stylistic choices. In Table 2.14, we can find each Style error and their

parallel in either the Unbabel taxonomy or the L2F taxonomy, as is most appropriate.

Register errors occur when the text is in formal language instead of informal and vice versa. Reg-

ister (Variants/slang) errors occur when inappropriate slang for the register is used. Awkward issues

exist when the wording is awkward. Company style errors are present when the style goes against

company/organization guidelines. Inconsistent style errors exist when the style is inconsistent in a

text. Third-party style issues exist when the text violates a third-party style guide. Unidiomatic errors

are present when translations are grammatical but not idiomatic.
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MQM Taxonomy Error Type Taxonomy Error Type
Register Unbabel Register
Register (Variants/slang) Unbabel Register
Awkward Unbabel Awkward style
Company style Unbabel Noncomplicance with client or

company style guide
Inconsistent style Unbabel Awkward style
Third-party style -
Unidiomatic Unbabel Overly Literal, Lexical selection

Table 2.14: Fluency errors in the MQM taxonomy

Terminology

The Terminology dimension is related to the use of domain or organization specific terminology.

MQM Taxonomy Error Type Taxonomy Error Type
Inconsistent with termbase Unbabel Noncompliance with the glos-

sary and vocabulary
Inconsistent with termbase
(Company terminology)

Unbabel Noncompliance with glossary
and vocabulary

Inconsistent with termbase
(Third-party termbase)

Unbabel Noncompliance with glossary
and vocabulary

Inconsistent with domain Unbabel Noncompliance with the glos-
sary and vocabulary

Inconsistent use of terminology Unbabel Inconsistency (Word selection)
Inconsistent use of terminology
(Multiple terms for concept in
source)

Unbabel Inconsistency (Word Selection)

Inconsistent use of terminol-
ogy (Multiple translations for the
same term)

Unbabel Inconsistency (Word selection)

Table 2.15: Terminology errors in the MQM taxonomy

Inconsistent with termbase issues are present when a term is not consistent with the termbase.

Inconsistent with termbase (Company terminology) errors are present when the text violates

company/organization terminology guidelines.

Inconsistent with termbase (Third-party) issues occur when the text violates third-party terminol-

ogy guidelines.

Inconsistent with domain errors exist when a term is used contrary to the general domain expec-

tations.

Inconsistent use of terminology issues are present when the same term is referred to in different

ways.

The child issues of the latter error, Multiple terms for concept in source and Multiple translations

for the same term, regard the same issue but refer to concepts and translated terms respectively.
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2.2 Error Generation Systems

In the past decade there have been some error generation tools like GenERRate[1], Missplel[5] and

Antispell[6]. Unfortunately Antispell is only briefly referred to in Agirre et al.[6] and as such will not

receive the same focus as the other two systems in the following sections.

2.2.1 GenERRate system

GenERRate[1] is a language neutral, taxonomy neutral error insertion tool. It classifies every error as

either an Insertion, Omission, Substitution or Move (as in Section 2.1.1) and lets the user customize

error insertion through a configuration file. It allows to insert errors depending on POS-tags which

permits a more precise way of inserting errors since we can place errors within specific word classes.

In each of the four error insertion types they provide the option of generating the error at random

(e.g. omitting a random word in a sentence), considering a specific POS tag (e.g. moving a word tagged

as a noun to another position) or considering a specific POS tag with specific POS tagged neighbors to

the left and/or right. Move type errors are exceptions to the latter option.

Omission errors, as previously explained, can be generated by deleting a random word (e.g. deleting

‘bus’ from ‘Get on the [bus].” ), deleting a word with a specific POS tag (e.g. omitting a verb from “[Get]

on the bus”’) or by deleting a word with a specific POS tag neighboring words with specific POS tags

(e.g. deleting a noun that has an article on its left from “Get on the [bus]).

Insertion errors are generated similarly to omission errors, but the POS specified is the tag the new

word is going to have. Also, the user has the liberty to choose between inserting a word from a word list

or from the sentence itself (e.g. inserting a word from the sentence after an article “Bob’s burguers are

the burguers best!”).

Substitution errors, similarly to insertion and omission errors, can be generated while specifying

both a POS tag for the removed word and the new word. The new word can either be specified or

randomly picked from a word list. The removed word can also be specified (e.g. replacing ‘car’ with

‘truck’ in “I drove my spouse to the hospital in my car.” resulting in “I drove my spouse to the hospital in

my truck.”). There is a different substitution error insertion method that is unlike the others and consists

in replacing a word at random with the same word but in the wrong form when given a pair of two related

POS tags (e.g. Noun Singular & Noun Plural, Adjective & Adverb... etc.). GenERRate changes the

words through a series of rules. As an example, to transform an adverb into adjective, they have a rule

that removes the suffix ‘ly’ from the word and verifies if it ends in ‘i’. If so, the ‘i’ is then transformed to

a ‘y’ (e.g. ‘deeply’ → ‘deep’, ‘wearily’ → ‘weari’ → ‘weary’). These rules have exceptions, like ‘simply’,

these are predicted in GenERRate. Wrong form substitution is the only insertion method in GenERRate

that is not language independent.

Move errors can be generated by moving a word to random position. This word is either a random

word from the sentence or a word with a specified POS tag. In these errors, instead of letting the user

specify the neighboring words’ tags, GenERRate accepts a number and a direction (left/right) as input

that will define how the word will be moved (e.g. moving a noun two positions to the right in “My daughter
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thinks I am the best dad in the world.” can result in “My [] thinks I daughter am the best dad in the world.”).

The configuration file supplied to GenERRate must have a probability associated to each error type

that will determine how often that specific error is inserted. Error insertion methods proposed in Gen-

ERRate are still valid whilst inserting error types in the L2F taxonomy referred to in Section 2.1.2, namely

addition, omission and misselection errors (through wrong word form replacement errors). Every other

error type in Section 2.1.2 falls into substitution errors or move errors in GenERRate, which means that

these errors can not be added into text without deliberate user manipulation.

GenERRate views errors that are invisible as something undesirable and therefore, prevent some

invisible errors by excluding tense errors in the wrong form substitution errors. In ErrorIST, we want to

insert invisible errors, but we do not wish to do so inadvertently, which means this is a concern in visible

error generation.

GenERRate’s source code is publicly available.

2.2.2 Missplel system

Missplel[5] is an error generation tool that was created to aid the creation of error annotated corpora.

Missplel has four main modules for error introduction. The Damerau module, which introduces Damerau

type errors as described in Damerau[7]. These errors are Spelling errors (as explained in 2.1.2) resulting

from keyboard mistypes (e.g. ‘board’ and ‘borad’). Missplel, unlike GenERRate, has a flag that limits

these errors, used in the Damerau module, giving the user control whether they wish to potentially insert

invisible errors in the text by accidentally creating other plausible words. The second module is the Split

Compound Module. This module, as the name implies, creates errors related to compound words like

transforming ‘blackboard’ into ‘black board’. The third module is the Sound Error module, that fetches

sound errors from a file and uses them as regular expressions to introduce them in text (e.g. transforming

’bee’ into ’be’). The fourth, the Syntax module, uses regular expressions which may take into account

tags and words. The Syntax module can also be used for introducing word order errors, agreement

errors, verb tense errors, repetition errors or omission errors. Unfortunately, due to the original paper’s

lack of detail in the modules’ explanation, and the lack of comments in the code we cannot tell much

more of the system’s error insertion methods. Unlike GenERRate[1], all these errors are only introduced

randomly.

2.3 Replicating natural errors for Machine Learning

Most of the systems that used artificial error generation, used them for creating corpora to use with

machine learning in order to either detect or correct errors. Izumi et al[8] inserted article errors in order

to enlarge the corpus they were using. Sjöbergh[9] inserted compound errors (like the Split Compound

module in Missplel) and word order errors in unnannotated corpora to improve their machine learning

model. Foster[10] inserted spelling errors, omission errors, addition errors, agreement errors and verb

errors in an existing treebank to create a treebank of ungrammatical sentences to provide training and
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test data for parsers. Wagner[11] also inserted the previous error types on a grammatical corpus to

create training data for a classifier capable of distinguishing a grammatically correct sentence from an

incorrect one. Rozovskaya and Roth[12] inserted errors in Wikipedia text in order to train error correction

systems. Imamura et al[13] inserted errors in error prone text in order to improve features on the training

set for an error correction machine learning application. Felice[14] also inserted errors on Wikipedia text

using various errors and error distributions in real error annotated corpora. In machine learning one of

the desired characteristics of training corpora is the similarity between it and the type of text it is going to

be used on, in this case wrongly written text. Therefore, one of the concerns is to make training corpora

as similar as possible to real error prone text.

In the following sections we will detail some systems that introduced artificial errors for machine

learning applications. In the first section, we detail systems that introduce errors randomly (unguided er-

ror insertion) and in the second section, we detail systems that introduce errors following a methodology

(guided error insertion).

2.3.1 Unguided artificial error insertion

Izumi et al.[8], trained a maximum entropy model for error detection on an error annotated corpus con-

sisting of 1,300 transcribed audio-recordings of English oral proficiency interview tests called the Stan-

dard Speaking Test (SST). The tests were taken by Japanese English learners and the transcriptions

were tagged for forty five different types of errors. However, in their experiment, they reduced their scope

to the detection of 8 different error types. When faced with less than ideal results, Izumi et al.[8] tried

to enlarge the corpus with errors in order to retrain the maximum entropy model. Noticing that, in the

corpus, most errors resulted from article confusion, they decided to focus on article errors of the three

modalities explained in Section 2.1.1, that is, article omission, article addition and article replacement.

Introducing article errors provided mixed results: precision in detecting general omission errors (not only

articles omissions) went down, but overall precision and recall went up, specially for article errors. These

results proved that artificial error insertion can improve results. Motivating research further, errors were

introduced randomly and were restricted to article errors.

2.3.2 Guided artificial error insertion

Rozovskaya and Roth[12] created an error correction system for articles. Their objective was to in-

vestigate whether artificial error generation could benefit automatic error correction. In the authors’

perspective, the improvement obtained by Izumi et al.[8] could be due to the corpus size boost and not

due to artificial error insertion. Furthermore, the error insertion was done randomly, which is not desir-

able, since the resulting training data will not resemble the test data. As such, Rozovskaya and Roth, in

order to test the true benefits of artificial error insertion, tried artificial error insertion whilst following an

error distribution resembling naturally occurring errors. One of the methods they used for error insertion,

General, consists of error insertion at random with a probability of (1 - x), where x is defined manually.

Another method, ArtDistrBeforeAnnot, consists of replicating article distribution in error annotated cor-
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pora. In this method, Rozovskaya and Roth [12] also impose a manually defined minimum error rate for

each different article. The third method, ArtDistrAfterAnnot is equivalent to the previous method, Art-

DistrBeforeAnnot, but uses corrected error annotated corpora. The fourth method, ErrorDistr uses the

distribution of errors for each article and attempts to replicate it. The annotated error corpora used for

distribution analysis is composed from essays of English language learners from 3 different nationalities:

Czech, Chinese and Russian. It is important to note that none of these languages has an article system,

i.e a word class specifically used before a noun to indicate the type of reference the noun is making.

Czech and Russian data is from the ICLE corpus[15] which is composed of essays written by advanced

learners of English. Chinese data comes from the CLEC corpus which is composed of essays written by

learners of English from all levels (unfortunately we could not find the corresponding publication for the

CLEC corpus and therefore we could not cite it either). Errors were annotated and corrected in a por-

tion of the data of each language by native speakers. Errors covered by this process are article errors,

preposition errors, noun number errors, spelling errors, verb form errors and word form errors. When

errors did not fit the previous categories, they fell into a category that includes word insertion/deletion

and replacement errors (which, as explained in Section 2.1.1, accommodates every error type).

Rozovskaya and Roth extracted text from Wikipedia and inserted errors using the methods previously

described, creating 4 different sets of training data, including the error free data. Using the Averaged

Perceptron Algorithm[16] they trained 5 classifiers, one for each of the training sets. As testing set they

used a different one for each language because the distributions were inserted differently in each of

them. The best results coming from this approach are in Table 2.16. Results from article distribution

methods (before and after annotation) were merged since the distributions were very similar.

Language Classifier Training Data Error Reduction
Chinese ArtDistr 8.33%.
Russian ErrorDistr 16.05%.
Czech General 14.69%.

Table 2.16: Rozovskaya and Roth’s[12] best results

The achieved results proved not only that training with artificial error corpora is useful but that taking

into account error distribution is positively meaningful as well. With ERRORIST we aim to introduce

realistic errors. Machine learning applications benefit from this realism as well since it makes the training

data similar to data the application is going to be used on. It is our hypothesis that, if this approach

benefited a machine learning application, it was because the errors inserted were similar to real errors.

Taking this into account, we hope to create realistic errors by introducing errors in a similar way, by

following error distributions of real error prone data during error insertion.

Rozovskaya et al[17] tried creating an article error correction system with a novel approach. Since

most English speakers, native or not, use articles correctly 90% of the time, which means article errors

are sparse. This sparsity, present in the training data for article error detection/correction systems, leads

to a strong reliance on a feature always present in the article examples, the source word. In correct

usages the source word always has the corresponding tag (e.g. ‘A’ is the label of ‘the’ in “Bob is a doctor.”
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and ‘A’ is also the label for ‘the’ in “I took the shower.”). In order to solve this overfitting problem, these

authors propose the error inflation method. Error inflation reduces the proportion examples in which

the source word and the label are identical (reducing the number of correct examples) and distributes

the extra probability among typical occurring errors, boosting their numbers. According to Rozovskaya

and his team: “This method causes the classifier to rely on the source feature less and increases the

contribution of the features based on context.” Training the Averaged Perceptron algorithm[16] in an

error inflated training set and subsequent testing lead to an overall increase in recall.

Felice and Yuan[14] tried to take controlled artificial error insertion even further, using distributions

based on semantics, i.e PoS tags. Like Rozovskaya and Roth, they used Wikipedia articles for artificial

error insertion. However, Felice and Yuan, unlike Rozovskaya and Roth, try to introduce open class

errors. Open class errors are errors relating to open classes, like the noun or verb class1.

Inserting open class errors in a controlled manner needs careful consideration that article error in-

sertion did not. Nouns and verbs can often be used as one or another for example (e.g. verb ‘play’

and noun ‘play’), distributions used in error insertion must take the PoS information into account in order

to prevent the errors meant for verb forms, from being inserted into nouns, representing inadequately

naturally occurring errors.

Using the NUCLE[18] corpus, a corpus consisting of about 1,400 student essays from undergraduate

university students at National University of Singapore (NUS) with a total of over one million words

annotated with error tags and corrections, Felice and Yuan[14] obtained error distributions according to

5 interpretations.

• Error Distribution: probability of an error occurring within a relevant instance (the authors are not

very clear as to what qualifies as a relevant instance besides a noun phrase).

• Morphological Distribution: distribution of words in a morphological context, like noun number or

PoS tag (e.g. how many singular head nouns requiring the article ’an’ use other articles).

• PoS Disambiguation Distribution: distribution of words used in specific PoS tag disambiguation, like

when dealing with the word ’play’ used as a verb or noun (useful for open class error insertion).

• Semantic classes Distribution: distribution of words used in a specific meaning context, like prepo-

sitions used while referring to a location or person.

• Word Sense Distribution: distribution of words used in a polysemous word context, like prepositions

when referring to a bank as an institution or river bed.

Felice and Yuan tried creating a Statistical Machine Translation (SMT) system for error correction by

training on 11 different sets of data: the aforementioned NUCLE corpus, a training set for each of the

error insertion methods in Wikipedia, and every combination of the NUCLE[18] with one of the previous

artificial error insertion sets. Error insertion used the error inflation method explained previously.

They trained a PoS-factored phrase-based model[19] on the different 11 training sets and tested

them on the testing set of the NUCLE[18] corpus. The results varied depending on the training sets.
1Open classes. https://en.wikipedia.org/wiki/Part_of_speech Accessed last in 2016-01-08
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Systems that just used either Error Distribution or PoS disambiguation for training improved precision

at the expense of recall. This recall drop contradicts Rozovskaya et al, which demonstrate a recall

improvement when using error inflation. Felice and Yuan state that this contradiction might be justified

by differences in training paradigms and data. Systems that used hybrid datasets improved results

overall, which suggests that artificial and natural occurring errors are not alternative, but complementary

elements desired in corpora.

In ErrorIST, we want to provide plausibility to the errors generated through controlled error insertion.

Desired error frequency is provided by the user.

2.4 Visible vs Invisible

Artificial error insertion that does not take into consideration the whole sentence, or at least some con-

text, can create a covert error. Foster et al. [10] cited James [3] for his definition of covert errors. Un-

fortunately we could not acquire this book and verify it ourselves, but according to Foster et al., James

defined covert errors as errors that result in a well-formed sentence under some interpretation different

from the intended one. Covert errors can only be detected if some context is taken into account, like the

remaining text or the translation source. For instance, if the word ‘three’ is misspelled as the word ‘tree’

in “I love my tree friends.”, the sentence remains grammatically correct, which means that, to detect this

error, an editor must have prior knowledge that the friends the sentence is referring to, have no relation

to trees. Examples for both these errors can be found on Table 2.17.

For the purpose of this work we will also define types of errors:

Visible Errors ; that is, artificial errors that are noticeable by making the sentence grammatically incor-

rect;

Invisible Errors ; that is, artificial errors that are intentional covert errors, i.e not noticeable unless a

context is provided, because they only make the sentence incorrect semantically.

Intended Sentence Visible Error Example Invisible Example
Receiving presents is delightful! Recieving presents is delightful! Receiving presents is awful!
I like my new pants! I like my new pamts! I like your new pants!
I am a great person! I are a great person! I am a great beautiful person!

Table 2.17: Visible/Invisible error examples

GenERRate (described in Section 2.2.1) views errors that are invisible as something undesirable and

therefore, prevent some invisible errors by excluding tense errors in the wrong form substitution errors.

One of the initial attempts of this Thesis was to automatically create Invisible errors but, since then,

its aim has shifted to an accurate error insertion and correction retrieval tool. Examples for this concept

in the L2F taxonomy can be found in Annex A.
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2.5 Discussion

Artificial error insertion has been done before, but mostly for creating error prone corpora to be used

in machine learning applications. None were used for linguistic evaluation, even if the generated errors

aimed to be realistic. Currently available error insertion tools are generic and are limited regarding the

error types they insert currently. With the exception of the English verb modifications made in Gen-

ERRate, the available error types fit best with the simple taxonomy described in Section 2.1.1. While

there are many error taxonomies, each of the error types can be matched with the error types in the L2F

taxonomy (with few exceptions) which is a taxonomy oriented towards machine translation errors. Errors

that editors in Unbabel deal with, since they have to edit out the errors made by Unbabel’s machine

translation system, mostly reside in the error types described in the L2F taxonomy.

ERRORISTwill then both aim to create a wider variety of errors, beginning with those in Section 2.1.2,

and to retrieve them for correction detection. While ERRORISTis meant to be a language neutral error

generation tool, since no other system has done it, the currently implemented error types are refined for

the EP language.
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Chapter 3

Implementation

ERRORIST is composed of three modules: the Error Generator, the Tracer, and the Evaluator (Fig-

ure 3.1).

Figure 3.1: ERRORISTGeneral Architecture

Error Generator generates the errors, Tracer analyse how the generated errors were corrected

and Evaluator grades the modifications detected by the Tracer. In the following sections we describe

these modules. A detailed presentation of the generated errors is presented in Section 3.5.

Each and every module is extensible. Error insertion is not restricted to the methods already im-

plemented in ERRORIST, which means the Error Generator should be extensible in order to accom-

modate new error types and the Tracer should be able to accommodate the new error types’ relevant

information and verification processes. A similar process can be applied to the Evaluator, as different

purposes for ERRORIST’s use may require distinct classification methods.

3.1 Error Generator

The Error Generator is able the generate errors from most of the L2F taxonomy’s error types. Each

error type has its own specialized Error Generator module in order to insert errors of that type, as can

be observed in Figure 3.2.
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Also seen in Figure 3.2, the Error Generator receives multiple arguments as input:

• a Sentence File, with a sentence per line, where errors will be inserted;

• a POS tagger for the appropriate language;

• a Word File, with words that will be used by Addition Errors;

• a Sound Confusion File, containing potential sound misinterpretations to be inserted by Addition

Errors;

• a set of Affix Files with the suffix changes needed for Misselection Errors.

Error Generator can also receive additional arguments:

• Save file path, where the Error data will be stored, if none is provided, it will be stored in the

program’s execution folder by default;

• Error file path, where the file with errors will be stored, if none is provided, it will be stored in the

program’s execution folder by default.

Figure 3.2: Error Generator Architecture

The Error Generator inserts an error per sentence and to do so, it distributes sentences to its spe-

cialized error generation objects in order to insert errors in them, also providing the necessary resources

for that specific error’s insertion. The specialized Error Generators then proceed to insert their specific

error, producing two different outputs:

• The incorrect sentence

• A Verification object
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If a certain error, for some reason, cannot be applied to the current sentence, it moves to the next

sentence and that event is reported.

After producing the desired errors, the Error Generator stores all of the incorrect sentences and

Verification objects as the Error Data, a structure to be used later by Tracer. While Verification

objects are created by the Error Generator, they are further explained in Section 3.2, due to their

importance in the Tracer’s functioning.

Besides this, two files are also created. The first file’s purpose is to be corrected by the editor. It

contains every sentence modified by the Error Generator. The sentences are numbered as to identify

which Verification object is linked to them.

The second file’s purpose is to be used as a reference. It contains the same content as the previous

file with the addition of each error’s type and the original sentence.

3.2 Tracer

The Tracer receives as input the Correction File (a file containing all the sentences modified by

the editor) and uses the Error Data created by the Error Generator in order to identify changes in

the sentence made by the editor. When an error is created, the relevant information is stored within

a Verification object. What information is considered relevant varies from error type to error type,

although most error types store the error placement, the original sequence, and the altered sequence.

As an example, Spelling Verification objects contain the original word, the misspelled word and

the word’s placement in the sentence. The misspelling in “Bobby cried **wlof**!” would result in a

Verification object storing “wolf”, “wlof” and ‘2’ as it is its position in the sentence (counting from 0).

Due to their varying nature, each error type also has a specialized Verification module, much like the

Error Generator, as can be observed in Figure 3.3.

Figure 3.3: Tracer Architecture
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The Tracer uses the Verification objects stored in the Error Data in order to identify changes

in the sentence. As of now, the Verification objects identify the changes by checking the modified

sentence for three aspects:

Changed? Did the editor modify the inserted error?

Expected? Did the editor modify the inserted error to its correct, original form?

Other? Did the editor modify the sentence in a way that does not directly affect the error?

As an example, consider the sentence ”Mary chased a lamb.”, which was modified by ERRORIST

into the following sentence, ”ary chased a lamb.” through a Spelling error in the word ’Mary’.

If the editor modifies it back to ”Mary chased a lamb.”, the error has been Changed and the modifi-

cation was Expected. No Other modification has been made.

If the editor modifies it further to ”Mary chased a little lamb.”, the error has been Changed and the

modification was Expected. Other modifications have been made, as the word ’little’ was added.

If the editor modifies it to ”Gary chased a lamb.”, the error has been Changed and the modification

was Not Expected. No Other modification has been made.

If the editor does not modify it, leaving the sentence as ”ary chased a lamb.”, the error was Not

Changed. No Other modification has been made.

3.3 Evaluator

The Evaluator’s purpose is simple: to consider the modifications identified by the Tracer and to produce

an adequate evaluation according to them. As such, its behavior can be summarized in the following

input/output table (Table 3.1).

Changed? Expected? Other? Result
Yes Yes No Ok
Yes Yes Yes Undef
Yes No No Undef
Yes No Yes Undef
No – No Ko
No – Yes Undef

Table 3.1: Evaluator behavior

An Ok evaluation means that the correction does not need no further human verification as it is

unquestionably Correct. A Ko evaluation means that the correction does not need further human

verification as it is unquestionably Incorrect. An Undef evaluation means that the correction needs

further human verification as the Evaluator could not determine if the correction was correct or incorrect.

For example, if the sentence “Mary chased a lmb.” is corrected to “Mary chased a lamb.”, it is

classified as Ok as it was both Changed and Expected, having no Other modifications made to it. If

it was corrected to “Mary chased a lion.” It would be classified as Undef because, even though it was

Changed and no Other modification was made to it, the change was not the Expected one. In another
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correction attempt, “Mary chased a little lamb.”, the sentence is classified as Undef as well, because

even though the error was Changed and the change was Expected, there were Other modifications

made.

3.4 Resources

While some errors can be introduced without the addition of any new content(e.g Omission Errors,

Misordering Errors), others require either non-trivial modifications to words or new words altogether(e.g

Misselection: Verb Tense Errors, Misselection: Gender Agreement, Addition Errors). For this

reason, ERRORISTrequires some resources to properly introduce errors in the L2F taxonomy. In this

section, we will discuss the motivation behind each of the resources used in ERRORIST.

3.4.1 POS tagger

One of the resources used is the POS tagger. The POS tagger is essential to most error types. Whilst no

POS tagger is provided with ERRORIST, it uses one provided by the user. The POS tagger should be a

variation of NLTK’s[20] POS tagger and the tag set used should be provided to ERRORIST. ERRORIST

will later use the tagger in order to identify relevant word types during error insertion.

The necessary variety of the tags is the following:

Adverb, Noun, Adjective, Verb, Pronoun, Article/Determiner, Preposition and Conjunction.

Unfortunately, due to time limitations, this tag set is hard coded into ERRORIST. However, it was

limited to one file, which means it can be easily refactored to accept it as user input.

3.4.2 Affix Files

Most Misselection errors are inserted by altering the word’s suffix according to rules provided by the

user according to Ispell[21] entries. These entries are comprised of a regular expression, a removal

sequence, a substitution sequence and information regarding the suffix change (like word number or

verb tense).

regex > -removal, substitution ; "info a=x, info b=y"

ERRORIST also creates a reverse entry for each and every rule in order allow suffix changing in

both directions. For example, if the file only contains entries regarding suffix changes when turning a

verb from the infinitive to each possible tense, changing the verb’s tense would be impossible. Creating

reverse entries allows ERRORISTto generate transition points that can be used to further alter the word.

For example

I R > -R,AM # "P=3,N=p,T=pi"

It means that, to use this rule, the word must match “I R” at its end. Then, to alter it, the letter ’R’

must be removed and replaced with the letters “AM”. Using the rule to alter the word ”dormir” (to sleep),

which is possible because it ends in “I R”, we remove the letter ’R’ from its end and replace it with “AM”

which finally results in “dormiam” a past variant from the verb “dormir” (to sleep).
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While these entries permit ERRORISTto alter verbs in tense and person, it does so using only the

infinitive form, which is not ideal since most verb forms present in sentences are not in the infinitive form.

For this reason, ERRORISTalso creates a reverse entry for each of these rules in order to make sure

each verb form can return to its infinitive form.

As an example the reverse entry for the entry above would be:

A M > -AM, I # "P=3,N=p,T=pi,Reverse=yes"

Using the infinitive form as middle ground through these reverse entries, ERRORISTcan change a

verb tense or person through its infinitive form. Using this reverse entry to transform “dormiam” into

“dormir”, the verb’s infinitive form, and then using another entry like:

I R > -R,STE # "P=2,N=s,T=pp"

We successfully transformed “dormiam” into “dormiste”(second person singular form of the past per-

fect) using the verb’s infinitive form as a middle point.

As stated previously, most Misselection errors depend on affix files. These files have entries, like

the ones above, that allow the modification of words through their suffixes. Despite this fact, not every

modification is adequate for every word. It makes no sense to use an entry designed to transform adjec-

tives into nouns if the word is already a noun for example. To cope with this situation, ERRORISTdoes

not use a single affix file, but a set of affix files made out of the original, separated by purpose. ERROR-

ISTuses a different file for: Misselection: Verb, Misselection: Number, Misselection: Gender,

Misselection: Word Class.

This permits ERRORISTto apply the correct rules to the correct words. Each error that needs so,

uses the POS tagger in order to distinguish which words should be considered candidates for error

generation. For example, Misselection: Verb Tense chooses a random verb from the sentence and

applies the entry as described above.

Misselection: Word Class works a bit differently, as its whole purpose is to be utilized on multiple

word classes. By separating the affix files in categories and reading the categories’ headers ERROR-

ISTcan use the appropriate rule to alter the a candidate word’s class (assuming it was correctly tagged).

An example category looks like this:

flag *C:; "CAT=v,T=inf" #cao

T A R > -TAR,Ç~AO;

"CAT=nc,G=f,N=s,FSEM=cao"

CIONAR > -IONAR,Ç~AO;

"CAT=nc,G=f,N=s,FSEM=cao"

AIR > -IR,CÇ~AO;

"CAT=nc,G=f,N=s,FSEM=cao"

UIR > -IR,Ç~AO;

"CAT=nc,G=f,N=s,FSEM=cao"

By interpreting the first line we conclude that this category’s purpose is to alter words from verb to

another class. Unfortunately, the file is static which means the tag here should be in accordance with
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the tags used by the POS tagger.

Categories do not exempt Misselection: Word Class errors from filtering the words in order to

prevent erroneous modifications (e.g changing an article’s class), even if they are unlikely to occur.

3.4.3 Sound Confusion File

Spelling errors are not restricted to simple letter misplacements, omissions or repetitions. Homophone

sequences are also a probable cause for erroneous spelling, caused by either similar sounding se-

quences (e.g confusing “ch” with “sh”) or Qwerty keyboard mistypes (e.g typing an extra ‘t’ when press-

ing ‘y’, due to its proximity). For this reason, ERRORIST accepts a Sound Confusion File for useful

sequence modifications. If such a sequence is present in a sentence during the insertion of a Spelling

Error, ERRORIST will use the file to replace the sequence with its homophone. The resource must be

provided by the user and the format should be two homophone sequences per line, separated by any

number of whitespace characters, as an example:

’ss’ ’ç’

’c’ ’k’

While this confusion file was made with homophones in mind, any two sequences the user considers

adequate can be used. Such as ’hgt’ and ’ght’.

3.4.4 Word File

For both Addition Errors, ERRORIST needs to introduce new words to the sentence. For this pur-

pose, ERRORIST needs a Word File, a file composed of numerous words to introduce in a sentence.

Each line of this file should have a tag (one of those used by the aforementioned POS tagger) as its first

element and then all the words that can be classified as belonging to that tag. As an example:

ART a the an

NOUN dog cat car log

VERB bark wait comb

3.4.5 Contraction file

As mentioned in Section 3.5.3, Misselection: Contraction errors need a file composed of decom-

posed contractions in order to be inserted in a sentence. These files are be provided by the user and

should have a contraction followed by its composing parts per line, as such:

contraction part1 part2

As an example, the EP contraction word ”dessas” is formed by a contraction of “de” and “essas”. In

the file it should be written as:

dessas de essas
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3.4.6 Person Agreement File

Since word candidates for Misselection: Agreement Person errors are not very diverse, its insertion

relies on a small file containing potential changes to these words. Each line should contain all the can-

didate replacements in each number. As an example, take these two lines from the EP file:

meus teus seus nossos vossos

meu teu seu nosso vosso

3.4.7 Wiktionary

Wiktionary [22] is a collaborative project which aims to create a free multilingual dictionary. The purpose

is to have all words of all languages described in a given language. There are currently ten different

“Wiktionaries”: English, Russian, Polish, Spanish, Italian, French, German, Greek, Japanese and Por-

tuguese. As an example, the English Wiktionary should have a page not only for “dog” but for “cão” (dog

in EP) and “chien” (dog in French), even if they are not words in the English language. These foreign

words are described in English, which permit the user to associate both “cão” and “chien” to “dog”.

Wiktionary is more of a dictionary than a translator, as its name implies. Nonetheless, its pages

provide translations in numerous languages for each native word available. These translations, foreign

words, also have pages of their own with their meaning written in the Wiktionary ’s native language. For

the purpose of ERRORIST, it will be used as a translator in order to produce Confusion of Senses

errors. As an example, using the English Wiktionary, the English word ’chocolate’ is translated to the

French word ’chocolat’ which, in turn, can be translated back to English as either ’chocolate’, ’deceived’

or tricked. By replacing the original English word, ’chocolate’, by either ’deceived’ or ’tricked’, we can

successfully create a Confusion of Senses error.

3.5 Error Insertion

In this section is detailed each error type’s insertion method, limitations and resources used.

3.5.1 Orthography level

Considering orthographic errors, capitalization errors are inserted by changing a word’s initial

letter (from capitalized to non-capitalized and vice-versa), and punctuation errors are created by sim-

ply replacing a punctuation mark with another punctuation mark. The latter method proved to be inad-

equate according to Unbabel, as, according to them, they did not represent actual punctuation errors.

For this reason, punctuation errors were further refined into other generation methods. One method

generates Punctuation errors by adding a comma or a semicolon between a subject and predicate or

between a verb and its complements. To introduce the latter, ERRORIST uses the POS tagger, identifies

nouns or pronouns (the subject) and then identifies a verb (the predicate) placing a comma before it.
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The same logic is applied when inserting a comma between the verb and its complements, where the

verb is identified and if any adjective, noun, pronoun or article is found after it, a comma is placed after

the verb. ERRORIST also inserts punctuation errors by removing a comma after an adverb. This is made

possible by the POS tagger as well. ERRORIST first identifies an adverb and then checks the succeed-

ing character for a comma, if found, it removes it. Finally, spelling errors are inserted by omitting,

replacing, adding, or misplacing letters from a word. Considering that some errors are more plausible

than others, either due to the involved language, or the used keyboard, ERRORIST also allows the user

to add rules that will trigger specific spelling errors. This is possible through the Sound Confusion File,

described in Section 3.4.3.

3.5.2 Lexis level

Omission errors are created by removing a word from the sentence; Addition errors are created

by adding a word to the sentence. Both of these errors can be further specified, regarding whether a

function word (e.g a conjunction) or a content word (e.g a noun or verb) should be omitted/added. To

identify a word’s class ERRORISTuses a POS tagger (described in Section 3.4.1). To add a word, ER-

RORISTuses the word’s POS tag and searches the Word File (as described in Section 3.4.4) provided

by the user for an adequate addition.

As an example of an Addition error (function), take into account the sentence “ I bought a house.”.

ERRORIST will first search the Word File for a line with an appropriate tag, “ART”, and, then, choose a

random word from that same line. Choosing the word “the”, ERRORIST would then add it to a random

position like so: “I the bought a house.”.

3.5.3 Grammar level

Misselection: verbs

Verb Misselection errors use the Affix File described in Section 3.4.2. During their insertion,

ERRORISTuses the information provided in each entry (tense and/or person) to choose an appropriate

entry to change the suffix.

Verb Tense errors make sure to change suffix using entries that maintain its person. Verb Person

errors change suffix using entries that maintain its tense and, finally, Verb Blend errors change suffix

using entries that keep neither tense, nor person.

An unfortunate limitation of using affix files to alter verbs, is its incapability to modify irregular verbs

correctly. While there are entries regarding irregular verbs, ERRORISThas no way to distinguish them

from regular verbs.

As an example, the verb “ir” (to go), is an irregular verb but the following entry could still be applied:

I R > -R,STE # "P=2,N=s,T=pp"

This would result in the word “iste” which is not a word in EP
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Misselection: word class

Word Class errors depend on the categories provided on the affix file, as described in Section 3.4.2.

Each category corresponds to a possible word tag. A word with a matching tag will be changed to

another category using an entry from that category.

Some examples of a word class entry are:

flag *n: ; "CAT=v,T=inf"

I R > -IR,ENTE ; "CAT=adj,N=s,FSEM=nte"

O R > -R,NENTE ; "CAT=adj,N=s,FSEM=nte"

From the first line, this section comprises transformations applicable to verbs. Each entry has its own

category with the word class from the resulting word as its value. As an example, using the first entry

we can turn the verb “aderir” (to adhere) into the adjective “aderente” (adherent).

Misselection: agreement

Agreement Number errors are inserted by finding an appropriate entry to change the word’s number,

as described in Section 3.4.2. Agreement Gender errors, due to the lack of entries related to gender

switches in plural words, first turn the word to singular (if needed), then change the word’s gender, and

finally back to plural form. Using as an example, the word “pato” (duck) and the following entry:

[^~A][^LSMRNZX]> S # "N=p"

By adding the letter ‘s’, it would become “patos” (ducks). If there was the need for changing this

word’s gender, ERRORIST would first turn into singular by using the above entry’s reverse entry. Then,

using the following rule to change its gender:

[^~A] O > -O,A # "G=f"

The word becomes “pata” (female duck). In order to maintain the word’s original number, ERRORIST

uses the first entry again, turning “pata” into “patas” (female ducks).

Agreement Person errors, unlike the above Misselection errors, does not rely upon affix files but

instead relies on a Person Agreement File since the potential word changes are very few. The file

should be provided by the user and each line like the following example:

meus teus seus nossos vossos

meu teu seu nosso vosso

Where each line has every variation possible for a possessive determiner.

Misselection: contractions

Contraction errors are inserted by finding a contracted word and separating it using a file composed of

contractions and their respective composing parts. The file’s formatting is described in Section 3.4.5.
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Misordering

Misordering errors are inserted by misplacing a word, randomly chosen, within the sentence. Two

positions are randomly chosen, and the word in the first position is switched to the second. If, for some

reason, the sentence remains unchanged (repeated consecutive words for example), the positions are

picked again until the sentence is altered.

3.5.4 Semantic level

While the Costa taxonomy is aimed towards translation errors, most of its error types do not necessarily

have a bad translation as their cause. As an example, the misspelling of the word “dog”, “dawg”, does

not have to be the result of a mistranslation of the EP word “cão”, it can happen by misspelling the word

“dog”. Conversely, a Confusion of Senses error can not happen outside of a translation context. As

an example, using the word “cashier” instead of the “box” can only be considered as a Confusion of

Senses error if you also consider its original wording in EP, “caixa”. Until now, every error type discussed

is inserted without taking into account a secondary language, but in Semantic level, this is not possible.

With the exception of Wrong Choice errors, every other error in the Semantic level has a bad translation

as its cause, which means we have to take into account the source language. To this end, we used

Wiktionary[22]. Wiktionary is not a translation tool, but it serves the purpose of inserting these types of

errors adequately. In Confusion of Senses errors, ERRORISTuses a language provided by the user

in order to search for an adequate translation in the corresponding Wiktionary page. Then, it uses the

translated word’s page to fetch all its meanings and returns one of the non-intended meanings. As an

example, the English word ’chocolate’ is translated to the French word ’chocolat’ which, in turn, can be

translated back to English as either ’chocolate’, ’deceived’ or tricked. By replacing the original English

word, ’chocolate’, by either ’deceived’ or ’tricked’, we can successfully create a Confusion of Senses

error.
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Chapter 4

Evaluation

Error insertion is a simple task if quality is not a concern. As it is, ERRORIST must submit itself to

evaluation, quantifying the quality of its error insertion and its ability to retrieve error corrections. Each

correction classification follows the rules described in Section 3.3. In order to evaluate ERRORIST’s

quality, we must submit it to various tests. In the following sections we discuss the methods used for

ERRORIST’s testing, their reasoning, and, finally, their results. Every error in this chapter was generated

as described in Section 3.5.

4.1 Error Quality

ERRORIST inserts errors through insertion methods aiming to replicate error types found in the L2F

taxonomy described in Section 2.1.2. Whether ERRORIST is able to perform such insertions correctly

or not, needs to be ascertained.

As an example, a Misselection: Verb Tense error inserted in the verb “ter” (to have) could be inserted

successfully by transforming it into “tinha” (had), which can be inserted by ERRORIST. Also inserted

by ERRORIST is the transformation into ’te’, which, while a word in the EP language, is not a tense

variation of “ter”.

In order to evaluate ERRORIST’s error insertion methods, we asked one of the L2F taxonomy article

writers, Ângela Costa, to classify 6 ERRORIST generated errors of each error type regarding whether or

not they were according to the taxonomy described in Section 2.1.2.

As observed in Table 4.1, most errors accurately represent the L2F taxonomy error types at least

66.67% of the time (at least 4 out of 6 errors). Half of the Word Class and Verb Tense errors accurately

represent their error typing. And Verb Blend, Agreement: Gender, Agreement: Blend and Confusion

of Senses errors fail to represent their error typing accurately more than 33.33% of the time (2 out of 6).
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According Not According
Punctuation 6 0
Punct Add 6 0
Punct Omit 6 0
Capitalization 6 0
Spelling 6 0
Omission F 6 0
Omission C 5 1
Addition F 6 0
Addition C 6 0
Word Class 3 3
Verb Tense 3 3
Verb Person 4 2
Verb Blend 1 5
Gender 1 5
Number 4 2
Person 6 0
Blend 2 4
Contraction 6 0
Misordering 6 0
Confusion 1 5

Total 84 42

Table 4.1: Error Quality

4.2 Traceability

In order to ascertain whether the error corrections can be detected automatically we used two different

texts for error insertion.

The first text is a story written in EP, and the second text is composed of translated film subtitles, each

of the EP sentences was accompanied by the correct sentence in its native language, English. In order

to provide varied errors for correction, we inserted 6 errors of each of the 21 types in the text, totaling

126 error prone sentences.

We extracted 126 sentences of each text to insert errors. Each of these sentences was automatically

tagged using a bigram tagger from NLTK[20] trained on the Floresta Corpus[23]. Each file had 126

error-prone sentences, each of the sentences was accompanied with a number identification and, in

the Subtitle file, the original error-free sentence in English. We then assembled 10 persons and divided

them randomly into to two groups of 5, one for each file. Every one of them is a native EP speaker with

and has a good understanding of the English language. They were provided with instructions to correct

the sentences in order for them to make sense. A breakdown for each error type in each file can be

found in Table 4.3 and Table 4.4 for the Story file and the Subtitle file respectively.

Changed? Expected? Other? Ok Ko T(%)
Story 454 411 163 334 110 70.48
Subtitle 489 386 210 325 73 63.17
Total 943 797 373 659 183 66.83

Table 4.2: Total scores
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Changed? Expected? Other? Ok Ko T(%)
Punctuation 29 25 5 23 0 76.67
Punct Add 14 14 5 12 13 83.33
Punct Omit 14 14 8 13 9 73.33
Capitalization 20 20 6 19 5 80.00
Spelling 26 24 9 17 2 63.33
Omission F 13 8 10 6 14 66.67
Omission C 15 8 10 8 9 56.67
Addition F 30 30 2 28 0 93.33
Addition C 25 25 4 23 3 86.67
Word Class 25 25 5 22 3 83.33
Verb Tense 27 24 2 23 2 83.33
Verb Person 28 27 7 21 2 76.67
Verb Blend 21 14 10 12 2 46.47
Gender 20 18 4 16 9 83.33
Number 14 14 7 10 13 76.67
Person 16 15 10 13 7 66.67
Blend 21 21 12 13 5 60.00
Contraction 22 21 14 11 5 53.33
Misordering 30 20 12 12 0 40.00
Confusion 14 14 14 9 7 53.33
No Error 30 30 7 23 - 76.67

Table 4.3: Story file scores

Changed? Expected? Other? Ok Ko T(%)
Punctuation 26 16 8 15 4 63.33
Punct Add 23 21 6 19 5 80.00
Punct Omit 12 11 6 9 15 80.00
Capitalization 14 14 10 10 10 66.67
Spelling 27 22 9 20 0 66.67
Omission F 25 16 12 13 4 56.67
Omission C 25 19 11 19 0 63.33
Addition F 30 27 10 18 0 60.00
Addition C 30 22 13 17 0 56.67
Word Class 25 22 10 20 0 66.67
Verb Tense 27 19 9 18 1 63.33
Verb Person 19 5 12 4 6 33.33
Verb Blend 22 20 13 16 1 56.67
Gender 28 23 7 21 2 76.67
Number 19 17 15 14 1 50.00
Person 14 11 10 9 11 66.67
Blend 26 19 6 19 3 73.33
Contraction 19 16 13 12 4 53.33
Misordering 27 19 12 15 3 60.00
Confusion 21 17 12 13 3 53.33
No Error 30 30 6 24 - 80.00

Table 4.4: Subtitle file scores

4.2.1 Evaluation with Unbabel

In order to ascertain ERRORIST’s capabilities as an evaluation tool we submitted it to an actual business

environment test. To accomplish this, with Unbabel’s support and cooperation, we assigned a fake

editing task to 17 editors with some errors Unbabel’s professionals deemed adequate in representing a

43



good coverage of frequent errors their editors face while correcting translation tasks.

The text sample in which the errors were generated, kindly provided by Unbabel, was constituted by

an e-mail letter translation with an error of each of 6 error types in ERRORIST:

Punctuation, Agreement: Verb Tense, Confusion of Senses, Capitalization, Contraction and Spelling.

The sample had 7 sentences, in which one was deliberately made to have no error. This sentence is

included in order to ascertain how much editors edit a sentence even if it has no error.

While the errors were created by ERRORIST, 7 samples were created until one demonstrated ade-

quate quality for Unbabel’s needs. In Table 4.5, we can observe the quality of the corrections made by

the editors.

Changed? Expected? Other? Ok Ko T(%)
Punctuation Addition 12 12 4 9 4 76.47
Capitalization 12 12 7 8 2 58.82
Spelling 10 10 8 9 0 52.94
Verb Tense 12 9 7 9 1 58.82
Contraction 13 13 8 9 0 52.94
Confusion 11 11 9 7 1 47.06
No Error 17 17 6 11 0 64.71
Total 87 84 49 62 8 58.82

Table 4.5: Unbabel scores

While the traceability is lower than the evaluation in Section 4.2, it still means more than half of the

corrections (58.82%, as seen in Table 4.5) can be detected automatically.

4.2.2 Discussion

As we can observe in Table 4.2, only around 66.83% of corrections can be labelled as either correct or

incorrect in a straightforward way.

We can interpret Changes as the number of times the inserted error was actually noticed, since it

was modified (correctly or not). In the subtitle file the number of Changes corrections is slightly higher,

probably due to the added context the original sentence provides. Conversely, the number of Expected

corrections is lower for the same reason. Every translation presented was correct, still, the editors

sometimes disagreed with the present translation and refined it to their terms, reducing the number of

Expected corrections and raising the number of Other changes made in the sentences (as can be seen

in Table 4.4).

The context, however, raised the number of both Changed and Expected significantly in Omission

errors, as seen in Table 4.3 and 4.4, which indicates the error type’s difficulty of detection outside of

translation scenarios.

As we can observe in Table 4.2, the values on the tables for both files are very similar. The number

of Changed and Other is slightly higher for the subtitles file. The traceability, the number of corrections

ERRORIST can confidently determine as either correct or incorrect, for these errors (T(%)) is higher in

the Story file, as well as the number of Ko. The number of Expected corrections for Verb Person errors

in the Subtitle file is severely lower compared to the story file, again due to disagreements regarding the
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correct translation. They also differ in Omission errors, that have less Corrected instances, most likely

due to the lack of context, the word was not guessed accurately.

In Unbabel’s evaluation the results were similar to the Subtitle file’s results, except for the No Error

which proved to be over-edited by Unbabel’s crowd editors.

Regarding error quality, as expected, the errors belonging to more complex error types have a lower

reliability in their generation methods, as seen in Table 4.1. Verb Tense, Verb Person and Verb Blend

all rely on Affix files for their generation methods. While Affix files are expressive regarding their

suffix changes, they can also be used wrongly.

An unfortunate limitation of using this approach to alter verbs, is its incapability to modify irregular

verbs correctly. While there are entries regarding irregular verbs, ERRORIST has no way to distinguish

them from regular verbs.

As an example, the verb “ir” (to go), is an irregular verb but the following entry could still be applied:

I R > -R,STE # "P=2,N=s,T=pp"

This would result in the word “iste” which is not a word in EP.

Another probable cause is the ambiguity regarding which affix entry to use. If there is more than

one entry fitting the suffix needed, ERRORIST chooses one them randomly, with the possibility of using

a non ideal entry, resulting in less than adequate changes to regular verbs. Agreement: Blend errors

also suffer from the same ambiguity regarding which affix entry to use.

Confusion of Senses errors rely on Wiktionary [22] to generate them. The current implementation

has 2 major issues. One being the randomness with which ERRORIST chooses the candidates for this

error type’s insertion. While Content words normally have different meanings to them, this is not the

case with Function words, and they can be chosen just as easily. As an example, the EP article “o” is

translated to “the”. Translating it back to EP results in either “o”, “os”, “a” or “as”, which are (excluding

the original word), in fact, gender/number agreement errors of the same word.

If this amount of evaluations could lead to an accurate representation of the editor’s quality or not,

remains to be ascertained in the future.
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Chapter 5

Conclusions and Future Work

Even though artificial error insertion systems have been made in past, none of them were made with

human evaluation as their main goal. For this purpose, we created configurable artificial error insertion

tool, aiming to create errors adequate for editor/student evaluation. To accomplish this, ERRORIST is

able to introduce errors according to an extensive error taxonomy. By using real error data provided by

Unbabel, we fine-tuned the error types for editor evaluation. As there are more error types and methods

of introducing any one error type, ERRORIST is extensible by nature, on both error types and their

verifiers.

While many error types proved to be generated adequately according to the Costa taxonomy, others

proved to be somehow unreliable in their generation.

Despite ERRORIST’s shortcomings regarding error quality, it can both be used for automated er-

ror insertion and correction detection. It does not replace a human evaluator but it does reduce their

work, since 66.83%, (Ok +Ko)/Total, of editor corrections can be detected automatically, even further

(70.48%) if you consider non-translation editing. Even in a business environment, ERRORIST proved its

usefulness by creating adequate errors for editor evaluation and by tracing 58.82% of those errors.

ERRORISTprovides a way to evaluate grammatical skills of anyone who might benefit from doing

so. This includes English/Portuguese learners of any nationality (including native English/Portuguese

speaking children), publication editors (book editors, magazine editors, etc.) and of course, translation

editors.

ERRORIST and all the data gathered in this work will be made available upon publication.

5.1 Future Work

While ERRORIST provides a great variety of errors they are not as reliable as they should be. Error in-

sertion would highly benefit from an additional verification step, where inserted errors would be classified

as either visible or invisible. This classification would sanitize the produced errors greatly.

ERRORIST should be able to prioritize some error types over others since some are easier to insert

than others. For example Contraction errors have a somewhat limited number of candidates in order
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to be introduced, in contrast to Omission errors, which any word can be considered as a candidate in

order to introduce. Contraction errors should be considered first for insertion as they are more difficult

to insert.

ERRORIST’s error generation could also be improved in general, as some errors’ generation methods

are still unreliable regarding their intended error type. Some cases could be improved with some further

refinement, like Confusion of Senses disregarding articles as candidates for error generation, while

others would prove more difficult to improve, like Misselection: Verb errors due to requiring a more

precise generation method both in verb type identification (regular vs irregular) and entry selection for

suffix change.

Error Tracing would greatly benefit from paraphrase detection as adequate synonyms or paraphrases

should also be considered a good correction. While this could be achieved somewhat directly in simpler

errors, like Omission errors, it would require significant research for other errors. The Tracing would also

benefit from using an alignment tool as the currently used methods are very rudimentary.

As one of the goals for ERRORIST is its extensibility, a further variety of errors would diversify ER-

RORIST’s error type variety and, therefore, provide a better coverage in editor evaluation.

As of now, ERRORIST supports EP errors as well as some English errors. It could be extended to

fully support English and other languages as well.
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Appendix A

The L2F taxonomy and Invisible errors

Error Type Lang Intended Sentence Visible Invisible

Punctuation EN I found the clowns,
Bob, and Clyde.

I found, the clowns,
Bob, and Clyde.

I found the clowns,
Bob[ ] and Clyde.

EP Encontrei os
palhaços, João, e
Cláudio.

Encontrei os,
palhaços, João, e
Cláudio.

Encontrei os
palhaços, João[ ] e
Cláudio.

Capitalization EN I think my poor
Slipper got dirty!

i think my poor Slip-
per got dirty!

I think my poor
slipper got dirty!

EP A minha pobre
Pantufa ficou suja!

a minha pobre
Pantufa ficou suja!

A minha pobre
pantufa ficou suja!

Spelling EN I have three
friends.

I have htree
friends.

I have tree friends.

EP Eu fui para a casa. Eu fiu para a casa. Eu fui para a caça.

Table A.1: Orthography level invisible error examples

Consider the invisible error in the Punctuation example, the lack of a comma turned ‘Bob’ and ‘Clyde’

into clowns. The introduced punctuation error maintains grammatical correctness but changes the sen-

tence’s meaning. The same can be said for the Capitalization example, ’Slipper’ (or ’Pantufa’ in EP) is a

cat’s name but in the altered sentence those names are now read as their common noun counterparts,

changing the sentence’s meaning but not their grammatical correctness. In the Spelling example, in

English the word ’three’ was misspelled and transformed into another existing word ’tree’. In EP, the

word ’casa’ (house) was misspelled as ’caça’ (hunt), changing the sentence’s meaning from ’I went to

the house.’ to ’I went hunting.’

Omitting the function word ’already’ in the example, changes the sentence’s meaning but not its

grammatical correctness. Inversely, adding a function word can create a invisible error just as well.

Omitting the word ’hat’ in the example creates a invisible error transforming ’his’ from a determinant into

a pronoun. Once again, inversely the addition can create an invisible error in the same way.

Untranslated errors creates a invisible error by not translating a word that has an adequate homograph

in a target language.
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Error Type Lang Intended Sentence Visible Invisible

Omission (function word) EN On his birthday he
tried a new hat on.

[ ] his birthday he
tried a new hat on.

On his birthday he
tried a new hat [ ].

EP Ele já recebeu um
chapéu no seu
aniversário.

Ele já recebeu
um chapéu [ ] seu
aniversário.

Ele [ ] recebeu um
chapéu no seu
aniversário.

Addition (function word) EN He bought a hat. He bought a
(already) hat.

He bought a hat
(already).

EP Ele comprou um
chapéu.

Ele comprou um
(já) chapéu.

Ele (já) comprou
um chapéu.

Omission (content word) EN His hat was pret-
tier.

His hat was [ ]. His [ ] was prettier

EP O seu chapéu era
bonito.

O seu chapéu era
[ ].

O seu [ ] era bonito.

Addition (content word) EN His was prettier. (suit) His was pret-
tier.

His (suit) was pret-
tier.

EP O seu era mais
bonito.

(chapéu) O seu era
mais bonito.

O seu (chapéu) era
mais bonito.

Unstranslated

From EN Boys like bugs, as
girls like dresses.

Boys like bugs, as
girls like dresses.

Boys like bugs, as
girls like dresses.

To EP Os meninos
gostam de
insectos, como as
meninas gostam
de vestidos.

Os boys gostam de
insectos, como as
meninas gostam
de vestidos.

Os meninos
gostam de
insectos, as meni-
nas gostam
de vestidos.

From EP Os meninos
gostam de insec-
tos, as meninas
gostam de vesti-
dos.

Os meninos
gostam de insec-
tos, as meninas
gostam de vesti-
dos.

Os meninos
gostam de insec-
tos, as meninas
gostam de vesti-
dos.

To EN Boys like bugs,
girls like dresses.

Boys like insectos,
girls like dresses.

Boys like bugs, as
girls like dresses.

Table A.2: Lexis level invisible error examples

Error Type Lang Intended Sentence Visible Invisible

Misselection (word class)
EN The cute bird is

happily on the

branch.

The cutely bird

is happily on the

branch.

The cute bird

is happy on the

branch.

EP O lindo pássaro es-

tava alegremente

na árvore.

O lindamente

pássaro estava

alegremente na

árvore.

O lindo pássaro

estava alegre na

árvore.
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Misselection (verb level: tense)
EN He had bought a

suitcase for his

travels.

He had buy a suit-

case for his travels.

He [ ] bought a suit-

case for his travels.

EP Ele tinha comprado

uma mala para as

suas viagens.

Ele ter comprado

uma mala para as

suas viagens.

Ele comprara uma

mala para as suas

viagens.

Misselection (verb level: person)
EN This car is de-

stroyed.

This car am de-

stroyed.

N/A

EP Come, porque a vi-

agem é longa!

Come, porque a vi-

agem são longa!

Comei, porque a

viagem é longa!.

Misselection (verb level: blend)
EN They were beauti-

ful yesterday.

They am beautiful

yesterday.

N/A

EP Ele comeu en-

quanto pensava

nas alturas em que

jogaria à bola.

Ele comeriam

enquanto pensava

nas alturas em que

jogaria à bola.

Ele comeu en-

quanto pensava

nas alturas em que

jogavam à bola.

Misselection (agreement: gender)
EN She tied her hair

into a knot.

N/A She tied his hair

into a knot.

EP Ele atou os cabos

do computador por

ela.

Ele atou os cabos

da computador por

ela.

Ele atou os cabos

do computador por

ele.

Misselection (agreement: number)
EN The wolf took care

of many cubs.

The wolf took care

of many cub.

The wolves took

care of many cubs.

EP O lobo já os tinha

alimentado.

Os lobo já os tinha

alimentado.

O lobo já o tinha al-

imentado.

Misselection (agreement: person)
EN We learn from our

mistakes.

N/A We learn from my

mistakes.

EP Aprendemos com

os nossos erros.

N/A Aprendemos com

os meus errors.

Misselection (agreement: number)
EN The wolf took care

of many cubs.

The wolf took care

of many cub.

The wolves took

care of many cubs.

EP O lobo já os tinha

alimentado.

Os lobo já os tinha

alimentado.

O lobo já o tinha al-

imentado.
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Misselection (agreement: blend)
EN All hail our many

huntresses in the

hunter’s guild!

All hail our many

hunter in the

hunter’s guild!

All hail our many

huntresses in the

huntresses’ guild!

EP Vou àquela loja de

roupa para meni-

nas.

Vou àqueles loja de

roupa para meni-

nas.

Vou àquela loja de

roupa para menino.

Misselection (contraction)
EN N/A N/A N/A

EP Ela adorava

sentar-se no

banco.

Ela adorava

sentar-se em o

banco.

N/A

Misordering
EN I like the beautiful

colors on the car.

I beautiful like the

[ ] colors on the car.

I like the [ ] colors

on the beautiful car.

Table A.3: Grammar level invisible error examples
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Error Type Lang Intended Sentence Visible Invisible

Confusion of senses EN The box was full. N/A The cashier was
full.

EP Ele poisou os
óculos na mesa.

N/A Ele poisou os
copos na mesa.

Wrong Choice EN On New Year’s eve
I’m going to wear
my best suit.

N/A On New Year’s eve
I’m going to wear
my best truck.

EP Na véspera de
ano novo vou usar
o meu melhor
chapéu.

N/A Na véspera de
ano novo vou usar
o meu melhor
camião.

Collocation EN I want to catch the
bus and take the
pill.

N/A I want to catch the
bus and confiscate
the pill.

EP Quero apanhar o
autocarro e tomar a
pı́lula.

N/A Quero capturar o
autocarro e tomar a
pı́lula.

Idioms EN It’s raining cats and
dogs today!

N/A It’s raining pots to-
day!

EP Está a chover a
potes hoje!

N/A Estão a chover
cães e gatos hoje!

Table A.4: Semantic level invisible error examples

Error Type Lang Intended Sentence Visible Invisible

Style EN I need permission
to be authorized to
improvise.

N/A I need
authorization to
be authorized to
improvise.

EP Preciso de
autorização para
permitir tal loucura.

N/A Preciso de
permissão para
permitir tal loucura.

Variety EN I’m seeing the most
beautiful colors.

I’m seeing the most
beautiful colours.

N/A.

EP No seu discurso,
João. . .

Em seu discurso,
João. . .

N/A.

Should not be translated EN Have you ever read
a book written by
Fernando Pessoa?

N/A Have you ever read
a book written by
Ferdinand Person?.

EP Já alguma vez
provaste uı́sque
Johnny Walker?

N/A Já alguma vez
provaste uı́sque
João Andante?

Table A.5: Discourse level invisible error examples
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