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Abstract

Machine learning classification and data mining tasks are used in numerous situations nowadays, for

instance, quality control, eHealth, banking, and homeland security. Due to lack of large training sets and

machine learning tools, it is often effective to outsource the inferring of datasets to foreign parties that

hold accurate predictive models (e.g. cloud-based outsourcing). This outsourcing, however, raises major

privacy concerns. The situation becomes even more dire when datasets are composed of irrevocable

biometric data, implying the need for data to remain confidential along the whole testing process.

In this thesis, we base ourselves mainly on the employment of privacy-preserving schemes in a two-

class speech emotion recognition task, as a proof of concept that could be extended to other speech an-

alytics tasks. Our aim is to prove that the implementation of privacy-preserving speech mining schemes

in challenging tasks involving paralinguistic features are not only feasible, but also efficient and accu-

rate. In a first approach we use distance-preserving hashing techniques in a support vector machine.

Afterwards, in a second approach, a fully homomorphic encryption scheme is employed in a light neural

network to preserve the privacy of the recording. For each approach, small, but crucial modifications

to the baseline model were applied, allowing for an efficient protection of sensitive data, in both training

and inferring stages, with little to no degradation regarding the accuracy of state-of-the-art predicative

models.
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Resumo

Uma grande variedade de tarefas de aprendizagem automática e de prospeção de dados são, hoje em

dia, usadas em várias circunstâncias, como por exemplo, em controlo de qualidade, eHealth, comércio

bancário e segurança nacional. Devido à falta de grandes conjuntos de treino e de outras ferramentas é,

normalmente, eficiente recorrer a outros partidos, com modelos preditivos precisos, para o teste de cer-

tos conjuntos de dados. Todavia, este método levanta sérias questões de privacidade. A situação

torna-se ainda mais grave quando os conjuntos são compostos por dados irrevogáveis, como da-

dos biométricos. É devido a este facto que é extremamente necessário que os dados em questão

permaneçam confidenciais ao longo do seu teste no modelo preditivo.

Nesta dissertação, baseámo-nos maioritariamente no desenvolvimento de esquemas de preservação

de privacidade numa tarefa de reconhecimento de emoções com duas classes, como prova de con-

ceito que poderá ser estendida a outras tarefas de análise de fala. O nosso objetivo é provar que a

implementação de esquemas de preservação de privacidade de prospeção de voz em difı́ceis tarefas

paralinguı́sticas não só é fazı́vel, mas também eficiente e precisa. Numa primeira abordagem, foram

usadas técnicas de preservação de distâncias entre hashes numa máquina de suporte de vetores.

Seguidamente, numa segunda abordagem, foi utilizado um esquema de encriptação homomórfica total

numa pequena rede neuronal, de maneira a eficientemente preservar a confidencialidade da gravação.

A implementação destes dois esquemas promove uma proteção eficiente de dados sensı́veis e pouca

degradação em termos de precisão do modelo.

Palavras Chave

Privacidade de Dados; Criptografia; Mineração de Fala; Reconhecimento de Emoções; Paralinguı́stica.
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1.1 Speech Mining

A person's voice is a biometric trait which conveys information about his/her anatomical and be-

havioural traits. Along with other biometrics, such as �ngerprints, face, iris and even handwritten signa-

tures, a variety of data mining tasks can be performed on a speech signal. These tasks mainly include

identity veri�cation, nativity recognition, emotional and health state recognition and also anatomical traits

such as age, weight and height.

Speech mining is a particular �eld of data mining that aims to extract relevant information from

speech. In fact, due to modern advances in communication technology, hours and hours of audio data

have been made available, making speech mining an area of great interest to researchers. From speech

alone, the average individual can distinguish human traits like gender, age group, accent and emotion

from acoustic/prosodic features. For example, while talking on the phone, one can distinguish the gender

of the person based on the pitch and other characteristics of the voice. The developing technologies and

knowledge about this subject allows the transition from this human-based speech mining to an automatic

and machine-based speech mining [6].

The traditional process for performing speech mining is pretty straightforward. First, temporal and

spectral features, such as prosodic features, Mel-Frequency Cepstral Coef�cients (MFCCs), Perceptive

Linear Predictives (PLPs), Linear Prediction Cepstrum Coef�cients (LPCCs) and Linear Prediction Co-

ef�cients and Mel Cepstrum Coef�cients (LPCMCCs) need to be extracted from the speech signal.

Normally, MFCC features are used due to their high performance in audio classi�cation. After obtaining

these features a great variety of machine learning techniques can be used to perform speech min-

ing. These techniques include the widely used Hidden Markov Models (HMMs)/Gaussian Mixture Mod-

els (GMMs), Support Vector Machines (SVMs), deep learning or even end-to-end learning approaches,

which both eliminates the need for engineered feature extraction and outperforms the traditional ap-

proaches, thus becoming the state-of-the-art. Even though GMMs continue to be the standard model for

speech recognition [7], Deep Neural Networks (DNNs) with many hidden layers, that are trained using

new methods, have been shown to outperform GMMs on a variety of speech recognition benchmarks,

sometimes by a large margin [8], making DNNs suitable substitutes for GMMs in some cases.

1.2 Security and Privacy

The increasing use of biometrics in data mining tasks and the permanent link the user has with them

has raised concerns about their privacy and security. Besides this immutability with the user, biometrics

are also public and irrevocable, which means they are basically accessible to anyone and cannot be

replaced. A good example of a biometric security breach is the disclose, either by leaking or hacking, of

biometric templates from a database resulting in a permanent loss of security. Furthermore, attackers

will be able to break through a security system using spoo�ng/mimicry and other methods [9], which
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may lead to issues like identity theft and fraud. Attacks to biometric databases have already been

known to happen. A good example is the hack against the U.S. Of�ce of Personnel Management [10]

compromising millions of �ngerprints.

With the vast datasets available in modern times, outsourcing the inference of test sets to parties that

hold very accurate models is becoming more and more common. Usually, it is more expensive and time-

consuming to design, implement and test a whole new machine learning algorithm from scratch than just

paying some party to test the data for us. However, there are no guarantees that the outsourcing party

is trustworthy. It may try to uncover valuable and sensitive information about the data sent. Therefore,

it is not enough to protect the biometric in a database. It is of the utmost importance to also protect it

along the whole testing process.

Although there are several implementations in the literature about privacy-preserving machine learn-

ing, the literature regarding privacy-preserving machine learning in speech signals is very scarce. The

situation for privacy-preserving paralinguistic speech tasks is even less mentioned in the literature.

Nonetheless, several privacy-preserving schemes can be implemented using cryptographic primitives

such as, homomorphic encryption, garbled circuits, oblivious transfer, among others. A Secure Multi-

Party Computation (SMPC) may use any of these primitives to construct of a fully secure privacy-

preserving protocol. Other techniques based on nearest-neighbour search (SBE or SMH) and on differ-

ential privacy may also be used for the construction of said protocols.

1.3 Motivation

In today's world, privacy is a very important matter. As technology advances, people's privacy tends

to decrease. People either share information willingly (e.g. Facebook or other social media) or unwillingly

(e.g. biometrics), which may lead to major security issues. Biometrics are very reliable for authentication

and data analysis, but also very dangerous since they are permanently linked to the user [9]. Hence, a

compromised template cannot be replaced, resulting in a permanent loss of security. Template privacy

is very useful in encrypted matching, for example, in speaker veri�cation, however, there are still major

privacy issues when using biometric data for prediction models.

This thesis will focus mainly on the classi�cation of emotions [11, 12], speci�cally frustration. To

begin with, an individual might not want to share his emotional status and other paralinguistic features.

Furthermore, as it was referred in Section 1.1, the voice of a person conveys a great deal of information

(paralinguistic and non-linguistic), and an attack to a voice biometric might be problematic. The attacker

can perform his/her own speech mining tasks to uncover relevant information about the individual or

what he actually said, which can later be used for a variety of crimes such as fraud, identity theft and

blackmail. However, if the speech is made private and the tasks at hand are computed in a domain

where it is simply impossible to have access to the true biometric template, most of these privacy issues

are resolved.
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Figure 1.1: An example of Secure Machine Learning as a Service applied to speech signals. A user sends en-
crypted speech data to a cloud holding a predicative model. The cloud takes the encrypted speech
data and evaluates it. The provided outputs are then sent to the user.

Nowadays, with the development of cloud services and machine learning, Machine Learning as a

Service (MLaaS) is getting more and more recognition. Still, sending someone's biometric data to a

cloud so it can be ”mined” is extremely dangerous. There is usually no assurance that the cloud is trust-

worthy, and thus, something needs to be done regarding the protection of the biometric traits present

in a recording. Nonetheless, this problem is solvable with the implementation of privacy-preserving ma-

chine learning schemes. Unlike speaker veri�cation, which uses matching with an encrypted database,

privacy-preserving paralinguistic mining aims to train and test a model using con�dential paralinguistic

features, which is not a trivial process. The scheme must allow computations, made in the encrypted

domain, to be preserved in the non-encrypted domain, in order for the machine learning algorithm to

work, or at least, for some information about the true features to be leaked while still maintaining privacy.

Figure 1.1 illustrates a simple protocol for Secure Machine Learning as a Service (SMLaaS) applied to

speech signals.

Privacy-preserving emotion recognition can be branched out and adjusted to ful�ll other speech

analytics tasks in a wide variety of �elds. These include, but are not limited to, eHealth, banking and

homeland security. However, most of the current privacy-preserving schemes available are not mature

enough in terms of performance and ef�ciency for a large scale deployment [9] and, due to this very fact,

a lot of research still has to be done about this subject. In fact, for most schemes, there is a trade-off

relationship between utility, ef�ciency and privacy. Therefore, nowadays, to have a good private scheme,

either utility or ef�ciency has to be sacri�ced.

To sum up, by performing privacy-preserving emotion recognition we aim to ful�ll the following state-

ments:

� Perform emotion recognition in an encrypted domain while obtaining little to no degradation in the

classi�cation results.

� Effectively secure sensitive information conveyed by the user's voice.

� Derive the best compromise of the trade-off relationship.

� Broaden the spectrum in which privacy-preserving schemes can be applied.
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� Contribute to advancements in the �eld of SMLaaS.

There is a vast amount of literature related to privacy-preserving and biometric protection schemes.

However, most of the literature points to biometric authentication and veri�cation using other types of

biometrics, such as �ngerprints, face or iris. The lack of literature regarding private data mining tasks

in speech signals using paralinguistic features, calls for an increase in research about this very topic.

Moreover, this thesis can be seen as an extension of J. Portêlo's work [13] where keyword spotting, music

matching and speaker recognition tasks are thoroughly investigated in a privacy-preserving domain.

1.4 Structure of the Document

This thesis is organized as follows: Chapter 1 is composed by a brief introduction to the topic of

speech mining and privacy-preserving computation, as well as the main motivations of this thesis. The

most recent and up to date work, as well as other state-of-the-art techniques regarding speech mining

and privacy-preserving schemes, are thoroughly detailed in Chapter 2. In Chapter 3, experiments using

Support Machine Vectors with Secure Binary Embeddings and Secure Modular Hashing are performed

and analyzed on an emotional database, while in Chapter 4, experiments using Arti�cial Neural Networks

with Fully Homomorphic Encryption are performed and analyzed, on the same emotional database.

Finally, Chapter 5 drafts the most important conclusions taken over the course of this thesis. It also

refers the main contributions of this thesis and some interesting topics for future work.
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This chapter describes the most up to date literature about the subjects required to ful�ll this thesis.

Section 2.1 describes the techniques that can be used to perform data mining in speech signals. Meth-

ods and techniques on how to preserve the privacy while performing certain tasks among one or more

untrustworthy parties are presented in Section 2.2.

2.1 Speech and Data Mining

Data Mining is the process of scraping data in order to locate latent patterns that might convey

valuable information. This process can be applied to the majority of signals and, most importantly for

this thesis, speech signals, which are processed in a way that features can be extracted. This feature

extraction can either be performed by human-based pre-processing or in a more end-to-end fashion,

through an automatic machine learning feature extraction phase [14]. In human feature pre-processing,

different types of features, mostly prosodic or spectral, may be used by a speci�c classi�er to classify

new data. This classi�er, usually based on machine learning algorithms, is previously trained with a

training set containing a signi�cant amount of data with the respective class labels. The accuracy of a

classi�er is proportional to the amount of training it was subjected to, i.e., it increases with the amount

of training performed. Figure 2.1 displays a basic speech mining scheme with a trained classi�er.

Figure 2.1: Speech Mining Basic Scheme with N Features.

2.1.1 Hand-Engineered Feature Extraction

A classi�cation task is as good as the features that are used to execute it. Therefore, choosing which

features to use is a very important step to acquire good classi�cation results. In order for features to be

adequate for speech classi�cation tasks, they should have the following attributes:

� Informative: Features should be chosen in a way that relevant information may be retrieved and

irrelevant information discarded.

� Practical: The extraction and measurement of features should not be too computationally demand-

ing and features should occur naturally and frequently in a speech signal.

� Robust: They should be constant over time and not prune to relevant changes provided by outside

factors (e.g. noise).
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(a) MFCC Feature Extraction Scheme

(b) LPCC Feature Extraction Scheme

Figure 2.2: Spectral Feature Extraction Scheme

Broadly, hand-engineered feature extraction techniques are classi�ed as temporal analysis and spec-

tral analysis. In temporal analysis, the speech waveform itself is used for analysis while in spectral anal-

ysis, a spectral representation of the speech signal is used for analysis. A great deal of state-of-the-art

tools, such as HTK, openSMILE, GeMAPS and PRAAT are available for performing feature extraction in

speech signals.

2.1.1.1 Spectral Features

Spectral features such as, MFCCs and LPCCs, are shown to have great performance in most speech

mining tasks [11, 15, 16]. On one hand, the Mel-cepstra takes short-time spectral shape to retrieve

important data about the quality of voice and production effects [11]. The reason for computing the

short-term spectrum is that the cochlea of the human ear performs a quasi-frequency analysis. The

analysis in the cochlea takes place on a non-linear frequency scale (known as the Bark scale or the

Mel scale) [17]. In fact, the �rst 13 MFCCs have been shown to yield a very good performance, serving

as the standard for the feature extraction stage [18]. On the other hand, the basic idea behind linear

prediction is that the current sample can be predicted, or approximated, as a linear combination of the

previous samples, which would provide a more robust feature against sudden changes [18]. Figure 2.2

explains schematically how to obtain the most important spectral features from speech signals.

Although MFCCs and LPCCs are used in a bigger scale, other spectral features such as Linear
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Prediction Coef�cients (LPCs), PLPs, Delta Mel-Frequency Cepstral Coef�cients (DMFCCs), and even

hybrids (e.g. LPCMCCs [19]) may also be used to train and test classi�ers. PLPs analysis of speech

is quite similar to the Mel analysis where the short-term spectrum is modi�ed. Still, MFCCs are based

on a Mel scale while PLPs are based on the Bark scale. On another note, PLPs have been known

to outperform MFCCs in speci�c conditions [17]. Using each feature type on their own, to train/test

classi�ers, is not the best approach since it will lead to poor results. However a joint use of these

spectral features, as well as with other prosodic and time-domain features, leads to better classi�cation

results [19]. Despite all the advances in this scienti�c area, the MFCCs are still the state-of-the-art when

it comes to hand-engineered features.

2.1.1.2 Prosodic Features

The main prosodic features are the Fundamental Frequency (F0), Energy and Duration. These

might be useful for some speech (paralinguistic) mining tasks, such as, emotional classi�cation [19],

Parkinson's disease detection [16] and foreign accent detection [20]. In emotion classi�cation, the use

of prosody is quite important since each human emotion can be characterized with different variations in

pitch, energy and speaking rate. Nonetheless, for emotions like anger and surprise, only using prosodic

cues becomes an issue since both have high pitch and energy [15]. A way around it may be the joint use

of both prosodic and spectral features. Parkinson's disease affects all components of speech production,

thus, the speaker may exhibit a monotonous pitch, inappropriate pauses, variable speech rates, harsh

voice, unusual shimmers (variation in amplitude) and jitters (variation in period), among others [16].

On their own, prosodic features still present a lack in classi�cation performance when compared

to spectral features. Although, the use of both features (spectral and prosodic) actually boosts the

performance of the classi�ers when compared with using each feature type individually [19].

There are a lot of techniques to extract prosodic features in the literature [19,21], speci�cally, short-

term correlation, maximum likelihood and frequency domain techniques.

2.1.2 Automatic Feature Extraction

Even though hand-engineered features are easier to process and implement in state-of-the-art ma-

chine learning approaches, and actually hold rather respectable accuracy scores, they are still human-

based, which means they are always prune to slight human-based errors. Errors that, in most state-

of-the-art machine learning models, are propagated, resulting in a signi�cant loss of accuracy. Due to

this fact, new end-to-end approaches [14] are being thoroughly researched to both provide an automatic

machine-based feature learning and to decrease the client's role in a speech mining algorithm, i.e., to,

for instance, only needing the user to speak into a microphone, forcing the inputs of the model to be raw

speech signals which then eliminated the need for a pre-processing of the speech by the user.

In recent related works, experiments were made in large-vocabulary speech recognition (LVCSR) [22],
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Figure 2.3: Training and classi�cation phases of a traditional machine learning model.

based on log-Mel �lterbank energies by using a deep convolutional recurrent neural network, which uses

both convolutional layers and a speci�c type of recurrent layers, Long Short-Term Memorys (LSTMs).

The convolutional layer effectively helps reducing the temporal variation, and another convolutional layer

allows to preserve locality and reduce frequency variation. The LSTM layers serve for a contextual mod-

elling of the speech signal. Moreover, the features learned between the �rst two convolutional layers

appear to model phone-speci�c spectral envelopes of the sub-segmental speech signal, which makes

the model more resilient to noise. Other works using a partial end-to-end feature extraction along with

a low-dimensional Mel �lterbank feature vector were performed in the �eld of paralinguistics [23,24]. Fi-

nally a full end-to-end learning using a Deep Convolutional Recurrent Network (DCRN) was developed

for an emotion recognition task [14].

Instead of relying on previously human-engineered features, features are learned along the deep

neural network, being gradually updated to be best suited for the task at hand. In fact, end-to-end

learning derives a representation of the input signal directly from the raw data, which will, ultimately,

allow the network to learn an intermediate representation of the raw input signal that better suits the

task, leading to better performances and accuracy scores [14].

Automatic feature extraction not only allows for better performances and accuracy scores, but also,

minimizes the amount of signal processing the user has to perform. This will be very helpful in devising

privacy-preserving machine learning as a service protocols, namely one referring to speech signals,

where the client will only need to speak into a microphone in order to perform predictions. In these

privacy-preserving protocols, the only processing done by the user, if automatic feature extraction is

present, is the encryption of his or her speech.

2.1.3 Classi�cation

Although choosing which features to extract for each task is a very important step towards good

performance, a good classi�cation will always depend on the classi�er used. Classi�ers have to be

previously trained by, typically, a machine learning algorithm. This algorithm will collectively sweep
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through the training data, labelled with the respective classes, and create a prediction/classi�cation

model. A scheme with the usual process of training and testing can be inspected in Figure 2.3.

In speech mining, GMM [25, 26] (or a mix between GMM and Universal Background Model (UBM)

(GMM-UBM) [7, 13]) and SVM [13, 15, 19] based classi�ers have been extensively used by the speech

processing community due to their good performance and easy implementation. However, in some

recent works [8,27], a DNN implementation has shown better performances for speech mining tasks than

a GMM implementation, due to its ability to train better with a limited size training set [27]. Moreover,

end-to-end approaches [14] were also proposed by combining recurrent neural networks with LSTM

networks, outperforming most traditional approaches for speech and emotion recognition. Still, the GMM

is the most common model in speech pattern recognition problems [13]. Other classi�cation algorithms,

such as K-Nearest Neighbours (kNN) [28], MLPs, and Maximum Likelihood Bayesian Classi�ers, have

also been recently used by researchers [19]. A great deal of software and tools is available for the public

to perform speech modelling, such as SPEAR 1 and MATLAB (GMMs) and LIBSVM 2 and Weka 3

(SVMs).

2.1.3.1 Gaussian Mixture Models

GMMs are probabilistic models that represent single normally distributed subgroups of data within

an overall distribution model. This technique falls within the unsupervised learning category of machine

learning algorithms, since the subgroup assignment is unknown. The expectation maximization algo-

rithm is the traditional technique used to estimate the mixture model's parameters. This algorithm is

basically a numerical technique for maximum likelihood estimation for updating the model parameters,

making the gaussian distributions �t the data in question. Two simple examples 4 for the use of GMMs

are illustrated in Figure 2.4.

The introduction of the expectation maximization algorithm made possible the training of HMMs.

With it, it became possible to develop speech recognition tasks with the richness of the GMM to repre-

sent the relationship between HMM states and the acoustic input. These systems usually use MFCCs

and PLPs and are designed to discard irrelevant information in waveforms while discriminating relevant

information [8,13].

GMMs have the advantage of being able to, with enough components, model probability distributions

to any required level of accuracy and it is fairly easy to �t data when using the expectation maximization

algorithm. Even though there are a lot of ways to improve this system, GMMs are very successful for

acoustic modelling and it is very challenging to come up with a new model that can outperform such

an ef�cient and simple model [8, 13] and so, for the majority of tasks, it remains the state-of-the-art in

speech recognition [7]. However, an alternative using DNNs was shown to outperform common GMMs

1SPEAR Toolkit: https://github.com/guker/spear
2LIBSVM Toolkit: https://www.csie.ntu.edu.tw/ cjlin/libsvm/
3Weka Software: https://www.cs.waikato.ac.nz/ml/weka/
4Images reference: http://mccormickml.com/2014/08/04/gaussian-mixture-models-tutorial-and-matlab-code/
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