
Su�x Identification in Portuguese
using Transducers

Hugo Almeida1,2, Nuno Mamede1,2, and Jorge Baptista2,3

1 Universidade de Lisboa - Instituto Superior Técnico
2 L2F - Spoken Language Systems Laboratory - INESC-ID Lisboa

3 Universidade do Algarve - Faculdade de Ciências Humanas e Sociais
hugo.almeida@l2f.inesc-id.pt

nuno.mamede@inesc-id.pt

jbaptis@ualg.pt

Abstract. This paper1 addresses the challenge of automatically identi-
fying su�xed words not previously encoded in the lexicon of a Natural
Language Processing system, STRING, and correctly tagging them with
their PoS and lemma, as well as all relevant linguistic information. To
date, five of the most productive su�xes in Portuguese have been de-
scribed. The performance of this solution was then evaluated.

Keywords: natural language processing, transducers, su�xation, deriva-
tion morphological analysis

1 Introduction

For many Natural Language Processing (NLP) tasks, the lexicon is key. Many
processing steps rely on an accurate part-of-speech (PoS) tagging, requiring ad-
equate lexical resources with a high granularity and broad lexical coverage. A
particular challenge in lexical analysis is derivation, a linguistic device through
which languages create new lexical items from pre-existing lexical units. Deriva-
tion is a recursive process that applies to both non-derived (or base form) and
derived forms. This is achieved by adding an a�x to a base word. A�xes are
bound morphemes that change in a regular way the meaning (eventually, the
PoS) of the base they are attached to. Complex restrictions may apply in these
processes. This work focuses on su�xes, which are morphemes added at the end
of the base. Derivation by su�xation can not only change the meaning of base
word but also its PoS. For example, the adjective rápido ‘quick’ can yield the
adverb rapidamente ‘quickly’ by adding the adverbializer su�x -mente ‘–ly’.

In Portuguese, the correct identification of derived words is an important
feature in the lexical analysis of many NLP systems. Since derivation is a often a
productive phenomenon, no lexicon could be comprehensive enough to include all
possible, regularly derived word forms for a given base vocabulary, and a general

1 This work was supported by national funds through Fundação para a Ciência e a
Tecnologia (FCT) with reference UID/CEC/50021/2013.

167

mechanism is required to automatically recognize them. Additionally, derived
words need to be associated to their adequate PoS, in order to allow for the
parsing stage, as well as to the lexical (syntactic-semantic) information available
for the base form of the derived word, and so enable the correct syntactic and
semantic processing of text. This, in broad strokes, is the challenge that this
work addresses.

1.1 Context

The issue of processing out-of-vocabulary, regularly derived, su�xed words in
Portuguese is not a new one, and it would be out of the scope of this paper to
produce a comprehensive review of previous work on the topic, hence, just the
briefest overview is provided here. Concerning derivational morphology, in the
context of the transfer-based machine-translation (MT) system Eurotra, [1] is
probably the first work on the topic. In the early nineties, the construction of
large-scale lexical resources required dealing with the phenomena of derivation
and several trends can be associated to the development of the following systems:
(i) Palavroso [2] at INESC-ID Lisboa; (ii) Palavras [3]; (iii) jSpell.pm [4]; and
(iv) Digrama [5, 6], which later lead to the Label-Lex-sw lexicon [7].

The availability of user-friendly finite-state tools like Intex [8] and later Uni-
tex [9] lead to the adaption of existing resources to these platforms [10], including
Brazilian Portuguese [11], and the development of several morphological analy-
sis’ modules and experimentations in Portuguese derivational morphology [12,
13], a trend that is still pursued today [14] within the NooJ platform [15]. These
early works lead to the Morpholimpics joint evaluation contest in 2003 [16], co-
ordinated by Linguateca2. More recent work, in di↵erent approaches, can also
be found in [17] and [18], the later built over the lexicon of [7]. Evaluation on
the specific topic of su�xal derivation is scarce, but some data is provided by
[12] and [13].

1.2 Goal

Currently, LexMan [19], the lexical analyser of the STRING system [20], supports
the identification of prefixed words. This is done by applying derivation rules to
base words and then attributing their correct PoS, which can later be used for
syntactic analysis. Unlike prefixes, which could be concatenated with the base
word without much change in its inflection nor altering their PoS, su�xes are
attached to the root of the base, and the inflection values of the derived word
must be found at the word ending. For example, for the word escadas ‘stairs’,
the module would produce the diminutive forms with su�xes -inho and -ito:
escadinhas and escaditas. Notice that the plural-feminine morphemes -as appear
after the su�x.

The purpose of this work is, thus, to extend the morphologic analysis func-
tionality of LexMan, in order to automatically identify out-of-vocabulary, but

2 http://www.linguateca.pt/Morfolimpiadas/

168

regularly derived, su�xed words. For this, a new LexMan submodule was devel-
oped, which, for a given word, identifies and produces all of its su�xed forms.
Currently, and in spite of the large number of su�xes in Portuguese, only for the
most productive su�xes were considered, namely: diminutive su�xes -inho and
-ito; superlatives -́ıssimo and -érrimo; adjectivalizer -vel ‘-ble’ and correspond-
ing nominalizer -bilidade ‘-bility’; and adverbializer -mente ‘-ly’. This work will
also deal with words regularly derived from a compound base, that is, compound
words formed by juxtaposition, such as pés-de-galinha ‘crow’s feet’, where some
element can undergo regular derivational processes, like the diminutive pezinhos-
de-galinha, in as much as ordinary simple words (pé/pezinho).

2 STRING Architecture

STRING [20] is a STatistical and Rule-based Natural lanGuage processing chain
for the Portuguese language3. The system has a pipeline structure and is com-
posed of several modules. The first module of the chain is a morphological ana-
lyzer, LexMan [19]. This module is responsible for splitting the input text into
segments (sentences and tokens) and for attributing morphological tags to to-
kens. LexMan also generates the dictionaries of the system, using a two-level
morphology [21] approach, that is, by combining a lexicon of lemmas with a set
of inflection paradigms that for allow the generation, for a given lemma, of all
the inflected forms that are associated with it. Words are generated by apply-
ing to a base form (called stem) the inflection rules described in the inflection
paradigms. Hence, to form the plural noun escadas an -s is added to the stem
of the lemma escada (in this case, the stem is identical to the lemma).

Some a�xes (currently, only prefixes) are also dealt with using a similar
strategy. The current derivation module uses a set of rules, stating which prefixes
can be added to di↵erent types of base words, i.e. their PoS and their initial
characters and performs the necessary morphosyntactic adjustments (inserting
or removing characters) to adequately generate the derived, prefixed, word.

3 Su�xed Word Generation

This section describes how the new module, the Su�xed Word Generator, was
developed and integrated into LexMan to tackle the problem of recognizing out-
of-vocabulary and regularly derived su�xed words. Figure 2 shows the new ar-
chitecture of LexMan, while Figure 3 describes the internal structure of the new
module.

This new module generates su�xed words using the same two-level morphol-
ogy approach as the Word Generator. However, instead of manually tagging each
word in the LexMan base dictionary with its correct su�xation rule, this is done
automatically through a process described below. The module takes as input
all the words generated by the Word Generator and several files describing the
su�xation paradigms. The process consists of the steps presented below.

3 https://string.l2f.inesc-id.pt

169

Fig. 1. The new LexMan architecture

Parsing The files, containing both simple and compound words, are processed
and parsed by the module. Each line of these files corresponds to a word that is
to be su�xed. The files are then given as input to the rest of the module. The
syntax of the input file is di↵erent for simple and compound words:

(simple-word lemma pos weight)*
(compound-word lemma compound-type word-to-suffix pos weight)*

For simple words, each line contains the word to be processed, its lemma, its
part-of-speech (pos) and its weight. For compound words, each line contains
the compound to be processed, its lemma and the type of the compound, the
element of the compound that is su�xed, the part-of-speech of the compound
word and the weight.

Paradigm Loading This module first loads the Su�x Dictionary file, which
associates each su�x to the morphological classes it applies to; and the files
containing the Su�x Paradigms. The Su�x Dictionary file specifies the su�xes
that should be considered. Its syntax is presented below:

<suffix1> [(category-restriction)*] file1
...
<suffixN> [(category-restriction)*] fileN

170

Fig. 2. The inernalstructure of the Su�xed Word Generator module

Each line refers to a su�x to be treated by the module. The first column
indicates which su�x the line refers to; the second column states the grammatical
categories to which the su�x may be applied to; and, finally, the paradigm file
containing the rules to generate the su�xed words is indicated.

A Su�x Paradigm file specifies, for a given su�x, how the su�xed words are
formed. This file has two main zones: exceptions and su�xation rules. The first
zone states three exception types:

file-exception:
[(file)*]

lemma-ending-exceptions:
[(-ending)*]

lemma-exceptions:
[(lemma)*]

It is necessary to deal with exceptions because the grammatical category
alone, specified in the Su�x Dictionary file, is not the only restricting factor
when it comes to word su�xation, so other types of exceptions must be consid-
ered for a given su�x or su�xation rule: (i) file exceptions, for all stems coming
from a given lexicon file, the entire file is ignored (eg. gentilic adjectives and
nouns for diminutive su�xes); (ii) lemma ending exceptions, for all stems with
a given termination (e.g. -âneo termination for the diminutive su�x -inho) are

171

ignored; and (iii) and lemma exceptions, for specified lemmata to be excluded
from the su�xation process.

The second part of the paradigm file contains the su�xation rules, whose
syntax is the following:

tag-restriction (<remove><add> weight new-tag [(exceptions)*])+

To process a word, its morphosyntactic category (or PoS) is first matched
against all the class restrictions of all the su�xes. It is possible that a word PoS
matches with no su�xes (and thus cannot be su�xed); or that is matches one,
several, or even all su�xes. The su�xation process then begins for each su�x
with which the word was successfully matched.

The first column restricts which values the morphological tag of the inputted
word may have. For example, certain rules may only apply to a specific combi-
nation of gender and number. In this tag restriction, the ‘*’ character represents
any value in the inputted word tag. The second column represents which char-
acters are removed from the end of the inputted word and which characters
are added to form the su�xed word. The third column specifies the weight for
each particular rule. The fourth column specifies the tag of the su�xed word
produced by that rule. In this new tag the ‘*’ character represents the value in
the original tag of the inputted word. Finally, the fifth column, delimited by the
square brackets, is a list of words to which that specific rule does not apply. The
following example shows two such rules, the first generating only a su�xed word
and the second generated two su�xed words:

...smn. <io><iozinho> 0 **...**d.x* []
...smn. <ico><icozinho> 0 **...**d.x* []

<ico><iquinho> 0 **...**d.x* []

The first rule adds the su�x -inho to words whose PoS is defined in the Su�x
Dictionary without changing them (first ‘**’), with the morphologic feature-
values corresponding to the singular-masculine-normal degree (smn); it matches
the -io ending (e.g. tio ‘uncle’) and adds the su�x along with a linking consonant
-z-, changing the morphological values from normal to diminutive (d), while
indicating that this word has been derived by su�xation (x). The second rule is
similar, but it applies to -ico ending words(eg. rico ‘rich’); the su�xation can be
achieved, either by using the linking consonant -z-, or by directly attaching the
su�x to the root ofthe base, along with the orthographic-morphotactic change
of <c> into <qu>.

Su�xation Process To process a word, its morphological class is first matched
against all the class restrictions of all the su�xes (as specified in the Su�x
Dictionary). The su�xation process then begins for each su�x with which the
word was successfully matched.

The first step is exception processing. The inputted word is matched for all the
exception types described above. If a word matches any of these exceptions, then

172

that su�x is not applied. The second step is the rule matching. Both the word’s
morphological tag and termination are matched against the rules’ restrictions. If
they both match, then the specified characters are removed from the end of the
word and the specified characters (corresponding to the su�x) are then added
to the end. The new (su�xed) word is then given a new morphological tag and
weight.

It is possible that several rules in the Su�x Paradigm file may apply. For
example, the word amigo, ‘friend’, matches with the two following rules since it
ends in –o but also ends with –igo. In this case, only the most specific rule is
used, i.e. the one that removes more characters from the end of the base word.
Otherwise, as the input string matches with the first rule, the nonexistent word
*amiginho would then be inadequately generated.

...smn. <o><inho> 0 **...**d.x* []
...smn. <igo><iguinho> 0 **...**d.x* []

Diacritic Removal Words that contain diacritical marks (before the su�xation
process) are flagged for diacritical removal. In Portuguese, it is possible that
after the su�xation process, the derived words may gain one or more additional
syllables. For example, the su�xed word rapidinho is formed from the base
adjetive rápido ‘quick’. The su�xed word must then lose the graphical diacritic
<á> of its base form.

This module takes a word and, with the help of the YAH hyphenator [22], it
hyphenates the word, dividing it by its syllables using the ‘=’ character. Words
with the acute sign <´> in any of the last three syllables must have such diacritic
removed (other diacritics than acute are kept, e.g. órgão ‘organ’/orgãozinho).
Thus, for the su�xed word rápidinho as generated by the su�x paradigm,
the YAH would output the following hyphenated form rá=pi=din=ho; the word
would then lose its diacritic to produce the correct form of the su�xed word,
rapidinho.

Finally, words in LexMan may contain regular expressions in them, to express
an optional character (e.g. ac?to ‘act’) or a choice between several characters in
a given position (e.g. o[iu]ro ‘gold’). YAH, however, does not allow the use of
regular expressions and these words must first be preprocessed, and have their
regular expressions removed. After YAH processes the word, regular expressions
are reintroduced and the diacritic marks removed as necessary.

Compound Words Compound words are processed last. They use the same
Su�x Paradigm files described above, however, in this case, it is not the whole
word that is su�xed, but just one of its elements. For example, in the compound
word chapéu-de-chuva ‘umbrella’, lit. ‘hat-of-rain’, only the first noun chapéu
‘hat’ is su�xed, forming chapeuzinho-de-chuva.

The element receiving the su�x depends on the type of compound. Table 1
shows the di↵erent types of compounds used in LexMan, their internal structure,
the su�xation rule and an example. If a compound word can be su�xed, the

173

Compound Formation Su�xation Example
type

Comp1 Noun-Adjective 1st Element batatinha doce
Comp2 Noun-de-Noun 1st Element luazinha de mel
Comp3 Noun-Noun 1st Element peixinho-lua
Comp4 ?-Noun 2nd Element mini-mercadozinho
Comp5 ?-Adjective 2nd Element mal-humoradinha
Comp6 Verb-Noun None guarda-loiça
Comp7 Adjective-Noun 2nd Element pequeno-almocinho
Comp8 Adjective-Adjective None lateral-esquerdo
Comp9 Noun-Noun 1st Element aninho-luz

Table 1. Compound Types

respective element goes through the normal su�xation process, the only di↵er-
ence being that it does not need to pass through YAH again, since all diacritic
removals have been stored in a map and thus the final form of the word can be
checked without additional processing time.

Transducer Generation Both simple and compound su�xed words are then
merged into a single file. This file is checked for duplicates, which are removed
if present. The file is then used to generate part of the final transducer, used
to analyze inputted text. Figure 4 shows an example of a transducer that can
recognize both the simple word gato ‘cat’ and one of its su�xed form, gatinho.

Fig. 3. Transducer for simple and su�xed word.

4 Evaluation

Several parameters were evaluated to measure the impact of the changes de-
scribed above: processing time, memory usage, transducer size and generation
time. To measure processing time and memory usage of the system along its de-
velopment, several, di↵erent-sized files have been previously built, ranging from
1 to 10,000 sentences. These tests were extracted from one of the parts of the
CETEMPúblico corpus and their details can be seen on Table 2.

The baseline for this evaluation is the performance of LexMan before any of
the changes described above was implemented, which will be referred as Before

174

File Name
Number of
Sentences

Number of
Words

Size (KB)

Parte08-1.txt 1 32 0.21
Parte08-10.txt 10 380 2.22
Parte08-100.txt 100 2388 14.61
Parte08-500.txt 500 11.189 69.51
Parte08-1000.txt 1000 22.403 140.17
Parte08-5000.txt 5000 109.902 686.74
Parte08-10000.txt 10000 219.530 1368.86

Table 2. Files used in the performance evaluation

Su�xes. The comparison scenario includes all the changes described above and
will be referred as After Su�xes. Table 3 shows the evaluation results for both
scenarios. Each file was processed 4 times, an average of all run times was then
calculated for each file. Results shows the average time necessary to process
each file (in seconds), as well as the millisecond/word ratio. Analysis of the
table permits to conclude that the changes add a constant time overhead, not
depending on the amount of words processed.

Before
Su�xes

Before
Su�xes

After
Su�xes

After
Su�xes

File Name
Time

(s)
Time

(ms/w)
Time

(s)
Time

(ms/w)
Time

Di↵erence
Parte08-1.txt 4.66 1.45 6.37 1.9 36.6%
Parte08-10.txt 4.83 0.17 6.52 0.17 34.9%
Parte08-100.txt 5.81 0.02 7.58 0.03 30.4%
Parte08-500.txt 10.6 0.009 12.25 0.01 15.5%
Parte08-1000.txt 16.68 0.007 18.30 0.008 9.6%
Parte08-5000.txt 69.29 0.006 72.18 0.006 4.1%
Parte08-10000.txt 135.7 0.006 139.98 0.006 3.1%

Table 3. Evaluation results for both scenarios

To further study the impact of additional words in the processing time, we
took the new LexMan lexicon of inflected words (with the new su�xed forms)
and progressively added increments of 100,000 new artificially su�xed words.
These artificial words were formed by adding ‘dummy’ su�xes to a list of 100,000
simple adjective words. For example, adding –xpto to simple adjective words such
as bonito ‘pretty’ to form the artificial sufixed word bonitoxpto. For the subse-
quent increments of 100,000 this dummy termination was replaced by another,
such as –otpx. The new, artificially enlarged, lexicons were then added to the
system and the same files described in Table 3 (but only those with 1 sentence
and up to 1000 sentences) were processed anew. Results are shown in Table 4.

175

Su�xes
+100k
Words

+200k
Words

+300k
Words

File Name
Time

(s)
Time

(s)
Time

(s)
Time

(s)
Parte08-1.txt 6.37 7.31 7.64 8.34
Parte08-10.txt 6.52 7.50 7.83 8.53
Parte08-100.txt 7.58 8.62 8.85 9.56
Parte08-500.txt 12.25 13.57 13.49 14.25
Parte08-1000.txt 18.30 19.19 19.55 20.31

Table 4. Evaluation results for 100k increments of words

As we can see, the impact of each increment of 100,000 words on the time
required for processing them is constant, seeming not to depend on the size of
the input. This confirms the results the results of Table 3.

We now turn to the memory required to process the previously mentioned
files, comparing the two scenarios. Results in Table 5 are shown in megabytes
(MB). The values in thos table were registered during the composition operation,
that is, when the transducer for the input lexicon and the transducer of the
tokenizer are being composed. Table 5 shows an increase in the memory usage
as the size of the input grows for both environments. It also shows that, for most
cases, the After Su�xes scenario requires more memory than Before Su�xes
scenario, as expected.

Memory Usage (MB) Memory Usage (MB)
File Name Before Su�xes After Su�xes

Parte08-1.txt 550.3 267.5
Parte08-10.txt 592.2 269.5
Parte08-100.txt 635.7 1005.1
Parte08-500.txt 968.4 1221.7
Parte08-1000.txt 1239.3 1499.4
Parte08-5000.txt 3950.1 4207.6
Parte08-10000.txt 6497.1 7026.7

Table 5. Memory Usage before and after Su�x changes

Table 6 measures the impact of the changes introduced in LexMan on the
size of the transducers built before and after the changes to LexMan. As it can
be seen by comparing results in the table, the generation time increased by an
average of 4 seconds and the transducer size increased 80 megabytes, (36%).
Likewise, the number of states and arcs of the transducer also increased 39%
and 35.5% respectively. To deal with these five su�xes, 292 rules were created.
This set of rules is, however, not yet complete as there are still some words
that do not match with any rule. In total, the new module introduces 529,232
new (su�xed) words in the system’s lexicon. Of these new words, 246,316 are

176

adjectives, 282,916 are nouns; 209,824 are compound words and 319,408 are
simple words. The evaluation of the linguistic adequacy of these new entries
and their impact in the performance of the STRING system will be the topic of
another paper.

Before After Di↵erence

Transducer Generation (s) 635 639 0.6%
Size (MB) 214.9 294.0 36.8%
Number of States 6,432,441 8,944,098 39.0%
Number of Arcs 8,605,947 11,666,048 35.5%

Table 6. Generation time, size of the transducer, number of states and arcs

5 Conclusions

This work addressed the problem of identifying out-of-vocabulary su�xed words
in Portuguese texts using transducers. The results obtained in comparison with
the baseline (before su�xes) were very positive, over 500,000 new words were
added to their lexicon costing only an average of 2 seconds in text processing,
and with an acceptable increase in memory usage. There is still room for im-
provement, naturally. It is possible to increase the number of identified su�xed
words by extending the described paradigms to other su�xes than those five
this work focused on).

References

1. S. Ananiadou, A. Ralli, and A. Villalva. The Treatment of Derivational Morphology
in a Multilingual Transfer-based MT System (Eurotra). Language Research, 27(4),
1991.

2. J. Medeiros, R. Marques, and D. Santos. Português quantitativo. Actas do Encon-
tro da Associação Portuguesa de Lingúıstica, 1:33–38, 1993.

3. E. Bick. The parsing system PALAVRAS: Automatic Grammatical Analysis of
Portuguese in a Constraint Grammar Framework. University of Arhus, Arhus,
2000.

4. A. Simões and J. Almeida. jspell.pm – um módulo de análise morfológica para
uso em processamento de linguagem natural. In Actas do Encontro da Associação
Portuguesa de Lingúıstica, pages 485–495, 2001.

5. S. Eleutério, E. Ranchhod, H. Freire, and J. Baptista. A system of electronic
dictionaries of Portuguese. Lingvisticae Investigationes, 19(1):57–82, 1995.

6. E. Ranchhod, C. Mota, and J. Baptista. A Computational Lexicon of Portuguese
for Automatic Text Parsing. In Proceedings of SIGLEX99: Standardizing Lexical
Resources, 37th Annual Meeting of the ACL, pages 74–80. Association for Compu-
tational Linguistics, 1999.

177

7. S. Eleutério, E. Ranchhod, C. Mota, and P. Carvalho. Dicionários Electrónicos do
Português. Caracteŕısticas e Aplicações. In Actas del VIII Simposio Internacional
de Comunicación Social, pages 636–642, 2003.

8. M. Silberztein. Dictionnaires électroniques et analyse automatique de textes: le
système INTEX. Masson, Paris, 1993.

9. S. Paumier. De la reconnaissance de formes linguistiques à l’analyse syntaxique.
Thèse de doctorat, Université de Marne-la-Vallée, Paris, 2003.

10. C. Mota. A Renewed Portuguese Module for Intex 4.3x. In Max Silberztein and
Svetla Koeva, editors, Proceedings of the 6th Intex Workshop, Sofia, Bulgaria, May
28-30, 2003, 2003.

11. M. Muniz, M.G. Nunes, and E. Laporte. Unitex-PB, a set of flexible language
resources for Brazilian Portuguese. In Workshop on Technology on Information
and Human Language (TIL), pages 2059–2068, 2005.

12. C. Mota. Analysis of Derivational Morphology by Finite-State Transducers. In
Anne Dister, editor, Revue Informatique et Statistique dans les Sciences Humaines,
volume 36, pages 273–287, Liège, Belgium, 2000. Université de Liège.

13. J. Baptista. Suppletive morphology: How far can you go? paLavra, 12:149–163,
2004.

14. Cristina Mota, Paula Carvalho, and Anabela Barreiro. Port4NooJ v3. 0: Integrated
Linguistic Resources for Portuguese NLP. In 10th Intl. Conference on Language
Resources and Evaluation (LREC 2016), pages 1264–1269, 2016.

15. M. Silberztein. Formalizing Natural Languages: The NooJ Approach. John Wiley
& Sons, 2016.

16. D. Santos, L. Costa, and P. Rocha. Cooperatively evaluating Portuguese morphol-
ogy. In International Workshop on Computational Processing of the Portuguese
Language (PROPOR 2013), pages 259–266. Springer, 2003.

17. J. Silva. Shallow processing of Portuguese: From sentence chunking to nominal
lemmatization. Master’s thesis, Universidade de Lisboa - Faculdade de Ciências,
Lisboa, 2007.

18. R. Rodrigues, H. Oliveira, and P Gomes. LemPORT: a high-accuracy cross-
platform lemmatizer for Portuguese. In SLATE 2014, volume 38. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2014.

19. A. Vicente. Lexman: um segmentador e analisador morfológico com transdutores.
Master’s thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, June
2013.

20. N. Mamede, J. Baptista, C. Diniz, and V. Cabarrão. STRING: A Hybrid Statistical
and Rule-Based Natural Language Processing Chain for Portuguese. In Interna-
tional Conference on Computational Processing of Portuguese (PROPOR’2012),
volume PROPOR’2012 Demo session, April 2012.

21. K. Koskenniemi. Two-level model for morphological analysis. In Proceedings of
the 8th International Joint Conference on Artificial Intelligence. Karlsruhe, FRG,
August 1983, pages 683–685, 1983.

22. P. Figueirinha. Sintactic REAP - exercises on word formation. Master’s thesis,
Instituto Superior Técnico, Universidade Técnica de Lisboa, October 2013.

178

	Deployment Issues of a Large Scale Vehicular Network
	Ultra-scalable Transactional Databases Made Practical
	Applying local-search optimization of a rotational search space to protein docking
	SAT-based identification of stable states in composed Boolean regulatory networks
	NGSPipes: From Specification to Automatic Deployment of NGS pipelines
	The Applicability of Multi-Criteria Decision Aiding Methods to Risk Management
	Enterprise Information Architecture Patterns for Portuguese Government
	Efficient Location-aware Message Delivery for Encounter Networks
	Cotton Wool Spots in Eye Fundus Scope
	A new approach to organization and tracking of Walking School Buses
	ByTAM: um Gestor de Adaptação Tolerante a Faltas Bizantinas
	Ginja: Recuperação de Desastres de Baixo Custo para Sistemas de Gestão de Bases de Dados
	Load Balancing for Constraint Solving with GPUs
	Isolamento de Falhas em Redes Definidas por Software
	Comunicação Móvel Inter-Grupo Baseada em TCP sobre Wi-Fi Direct
	Measurement Study of Peer-to-Peer Multimedia Streaming Systems
	Suffix Identification in Portuguese using Transducers
	A pipeline for producing a scientifically accurate visualisation of the Milky Way
	Detecting violence on movie excerpts. A machine-learning approach based on audio and video features
	Cascatas de Classificação de Sentimento em Microblogues
	UpdaThing: um sistema de atualizações seguro para a Internet das Coisas
	SmartLighting – A platform for intelligent building management
	Smart Places: A framework to develop proximity-based mobile applications
	poRsCHE: Remote Control via Head movEs
	Modelação de Sistemas Não-Deterministas Usando Aprendizagem Automática
	Programming with Mutable Objects and Dependent Types
	The View Update Problem in the OutSystems Aggregate Language
	A No-Programming Test Automation Framework for Android Applications
	From Object-Oriented code with assertions to behavioural types
	Redundant Firewalls for Web Applications
	Síntese de Vídeo para Evasão de Censura na Internet
	Web Tracking and Third-parties of Top Visited Domains in Portugal
	Descoberta de Ameaças de Segurança Através do Twitter
	Controlo de Acessos em Sistemas com Consistência Fraca

