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ABSTRACT

The outsourcing of machine learning classification and data min-
ing tasks can be an effective solution for those parties that need ma-
chine learning services, but lack the appropriate resources, knowl-
edge and/or tools to carry them out, in their own premises. This
solution, however, raises major privacy concerns, in particular, when
irrevocable biometric data such as speech is involved. In this work,
we focus on the development of privacy-preserving schemes in a
speech emotion recognition task, as a proof of concept that could be
extended to other speech analytics tasks. Our aim is to prove that
the implementation of privacy-preserving speech mining schemes in
challenging tasks involving paralinguistic features is not only feasi-
ble, but also accurate. Using distance-preserving hashing techniques
in a first approach, and homomorphic encryption in a second ap-
proach, we successfully protect sensitive data with little degradation
costs regarding the accuracy of the predictive models.

Index Terms— Cryptography, hashing, cryptonets, emotion
recognition, paralinguistics

1. INTRODUCTION

In today’s world, privacy is a very important matter. The increasing
usage of biometrics for various machine learning tasks, and the fact
that these are irrevocable and unique to each individual, results in
major privacy issues. Thus, in order to keep up with the newest
trends in biometric machine learning, namely Machine Learning as a
Service (MLaaS) and other cloud-based computations, it is necessary
to devise new and efficient ways to preserve the confidentiality of
biometric data.

The voice of an individual conveys a great deal of information.
In fact, information about the emotional and health status, age, gen-
der and other types of both physical and psychological traits may
be “mined” from the individual’s voice. A party with malicious in-
tent may resort to machine learning algorithms to extract this type of
information and use it for their benefit.

In this paper, we provide two privacy-preserving emotion recog-
nition frameworks that may be extended to other paralinguistic and
speech analytics tasks [1, 2]. In a first approach, we adapt a Support
Vector Machine (SVM) to work with hashes generated through Se-
cure Modular Hashing (SMH) [3], while, in a second approach, we
make use of the structure-preserving properties of a Somewhat Fully
Homomorphic Encryption (SFHE) scheme to implement privacy in
a neural network [4, 5]. By performing privacy-preserving emotion
recognition on speech signals, we aim to effectively secure the bio-
metric content of a recording while obtaining little to no degradation
in classification scores. This broadens the spectrum in which privacy
preserving schemes may be applied and promotes advancements in
Secure Machine Learning as a Service (SMLaaS).
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The remainder of this paper is organized as follows. Section 2
reports related studies on both emotion recognition and privacy-
preserving schemes. Section 3 describes the dataset used in the
experiments. Section 4 extends the SMH technique to an emotion
recognition task. In Section 5, a neural network based on homomor-
phic encryption is implemented and tested. Finally, Section 6 shows
the main conclusions and future work.

2. RELATED WORK

Privacy-preserving paralinguistic mining is still a relatively unex-
plored research topic. Nonetheless, several major works in related
fields were crucial to the development of this work.

Secure binary embedding (SBE) [6] is a scheme based on
nearest-neighbor search with secure randomized embeddings that
uses quantized random projections. In short, it allows information
about true vectors to be leaked if their corresponding SBE hashes
are close enough to each other. Although this scheme provides
information-theoretic security on its own, there is no guarantee that
an attacker is not able to infer any information about the true vectors
if he manages to get a hold of the secret keys, or if he has some prior
knowledge about the true vectors. This scheme was later applied to
some speech-related machine learning tasks, such as speaker verifi-
cation [7] and query-by-example speech search [8] using i-vectors.
Later, Abelino et. al. [3] provided a generalization of this method by
replacing the standard quantization function of Q(z) = z mod 2
with a more generalized one Q(x) = = mod k, where k is cho-
sen by the user. Note that, for these schemes, the number of input
features needs to be the same across all samples and needs to be
independent from the length of the recording.

Anyhow, the need to follow the neural network trend has in-
terested several researchers to devise privacy-preserving schemes
that would work on state-of-the-art Deep Neural Networks (DNN).
Some types of DNN allow for features to be learned in the train-
ing phase by using deep convolutional networks [9, 10], thus dimin-
ishing the need for hand-engineered feature extraction. Moreover,
these learned features may be better suited for the task at hand, since
they are learned using a training set specific for that task. In fact,
these deep convolutional networks have already been applied to a
speech emotion recognition task [9], presenting state-of-the-art ac-
curacy scores. These networks, however, require massive training
datasets to be viable.

There are several techniques to preserve privacy in deep learn-
ing. These include the controlled leaking of information, such as the
widely popular differential privacy [11], and computations over en-
crypted data [4, 5], using Homomorphic Encryption (HE) and other
cryptographic primitives. Differential privacy was successfully ap-
plied to image recognition by Abadi et. al. [11], with insignificant
degradation of accuracy. More recently, a new privacy-preserving

ICASSP 2018



scheme using deep neural networks, namely cryptonets, was intro-
duced by Dowlin et. al. [5]. These are deep neural networks that use
an FHE scheme to make computations over encrypted data. The first
somewhat efficient FHE scheme was proposed by Gentry [12]. Al-
though they do not support encrypted learning, cryptonets mark an
important milestone in SMLaaS$, since a cloud containing an already
trained model may effectively make predictions on client’s encrypted
data without inferring anything about the data itself. A light cryp-
tonet (9 layers) was used on a hand-written digit database (MNIST
[13]), achieving 99.00% accuracy [5] by using a square activation
function (z?) and replacing max-pooling layers with sum-pooling.
Later, in order to reduce noise-related errors in deeper networks,
Chabanne et. al. [4] proposed a solution based on the approxi-
mation of the ReLU activation function by polynomials, the use of
batch normalization layers and the replacement of the max-pooling
layer with an average-pooling layer. With this solution they obtained
99.30% for a deep Convolutional Neural Network (CNN) with 24
layers, although the state-of-the-at for the MNIST database exceeds
99.70%.

3. DATASET

The dataset considered for the experiments in this work is the latest
version of the "Let’s Go” dataset [14]. "Let’s Go” [15] is a public
dialog system that provides the bus schedule information for Pitts-
burgh’s Port Authority buses during off-peak hours. The corpus was
split into 3,005 recordings for training, 657 recordings for validation
and 581 for testing. Each recording is labelled with an emotional
status of either neutral or angry.

4. SECURE MODULAR HASHING

Secure Modular Hashing (SMH) [3] is a technique that hides and
secures data by converting vectors into bit sequences using band-
quantized random projections. SMH is based on the fact that if the
Hamming distance between two hashed vectors is lower than a cer-
tain threshold, controlled mainly by a scaling factor A and mod-
ulus k, then, the hashes leak information about the true Euclidean
distance between the feature vectors, otherwise no information is
leaked. In order to generate the SMH hashes, one has to compute

h(x) = QLA™ (Ax + w))) =
AT (Ax +w)] mod k, (1)

where h(x) is the hashed product of the vector x, w ~ unif(0, k),
also known as dither, and A ~ N(0, 1) is an independent matrix. A
is the scalar factor of the SMH that controls the variance of A. It is
worth noticing that one can simply set the value of £ = 2 to have a
SBE scheme.

4.1. Baseline Using SVM

Due to its simplicity and the fact that, given a rather small amount
of training data, it presents state-of-the-art results, we implement the
baseline of the emotion recognition classifier using the SVM [16]
algorithm with the Radial Basis Function (RBF) kernel. Moreover,
a model that uses the Euclidean distance between features is re-
quired, since the SMH is based on the Euclidean distance being
leaked through the hashes. Using previously scaled eGeMAPS [17]
features along with the LIBSVM [18] software we obtain an accu-
racy score of 89.80% on the validation set and 82.79 % on the test set.
eGeMAPS features were chosen for these experiments due to their
good accuracy in paralinguistic tasks. In fact, the use of other feature
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Fig. 1. Hamming distance as a function of the Euclidean distance for
different values of k, mpc = 64 and A = 3 for the database hashes.

sets, such as openSMILE [19], that contains about 6,000 features,
would result in a poor generalization of the paralinguistic model, for
such a limited training data set.

4.2. Experiments Using SMH
4.2.1. RBF-Hamming Kernel

The SMH scheme is based on the Hamming distance between the
hashes computed, therefore, it is necessary to adapt the SVM model
to use Hamming distances instead of Euclidean distances. Thus, the
RBF kernel needs to be modified to work with Hamming distances.
Hence, the RBF-Hamming kernel would be then computed as

k(x,y) = 677.d%1(h(x),h(y))’ )
where dg(h(x),h(y)) corresponds to the normalized Hamming
distance between the hashes h(x) and h(y), and ~y corresponds to
the scaling factor. Note that, for a given A and x, the modified ker-
nel closely approximates the conventional RBF for small d(x,y),
but varies significantly when d(x, y) becomes larger.

4.2.2. Experimental Setup

It is known that the parameters A, M (number of samples) and k
affect the behaviour of the SMH [3, 6], however, M by itself is not
useful. An alternative, measurements per coefficient (mpc) or, in
case k = 2, bits per coefficient (bpc) is used and computed as M/ L,
controlling the variance of the universal quantizer [20]. L refers to
the dimensionality of the vector.

The SMH hashes were computed using MATLAB for different
percentages of leakage, values of bpc/mpc and values of k. After-
wards, these hashes were used for training and classification on the
modified SVM model. Notice that the leakage is defined as the total
amount of hashes that leak information, i.e., that have their Ham-
ming distance below the privacy threshold, which is empirically set
by inspecting Fig. 1 and checking the position in which the Ham-
ming distance stops being proportional to the Euclidean distance.
For each k = {2, 3,5, 10} the privacy thresholds were set to 0.475,
0.65, 0.775 and 0.875, respectively. The leakage percentage for dif-
ferent sets of parameters k, A and mpc = 32 may be inspected in
Table 1. From here it is possible to notice the influence & and A have
on the leakage. The mpc may also influence the leakage, but on a
smaller level [20].
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Table 1. Leakage percentage of the test set for different parameters
of A and k, with mpc = 32.

Leakage | A =2 A =25 A=3 A =35
k=2 0.15 % 1.38 % 6.07 % 16.25 %
k=3 27.69 % 56.58 % 77.02 % 88.96 %
k=5 75.00 % 91.54 % 97.11 % 99.06 %
k=10 98.78 % 99.86 % 99.98 % 99.99 %

Table 2. Accuracy results of the test set for different parameters of
A and k, with mpc = 32.

Accuracy | A =2 A=25 A=3 A =35
k=2 — — 79.52 % 80.21 %
k=3 80.56 % 81.58 % 81.75 % 82.80 %
k=5 82.27 % 82.44 % 81.93 % 82.79 %
k=10 82.61 % 82.61 % 82.61 % 82.79 %

4.2.3. Results and Discussion

The accuracy of a private SVM classifier based on SMH, is strongly
related with the amount of information regarding the distance be-
tween feature vectors leaked by the hashes. Thus, it is fair to assume
that, using the parameters from Table 1 the classification will be bet-
ter as the leakage increases. Table 2 presents the classification results
for the different parameters used in Table 1, with optimized C' and ~y
for the training phase of the SVM classifier using the RBF-Hamming
kernel.

As expected, for greater leakage values, the classification results
tend to approximate the non-private results of 82.79% on the test set.
Note that, for small leakages (less than 5%), the classifier is not able
to effectively classify any of the utterances, thus always classifying
them as neutral.

From both Tables 1 and 2, we note that a careful selection of
the parameters mpc, k and A is necessary to achieve the best ac-
curacy scores possible, while still providing strong security. The
experiments performed led us to choose a compromise solution us-
ing mpc = 32, A = 3.5 and k = 2 (highlighted in Table 2), since
only 16.25% of the hashes leak information, which is sufficient for
adequate security, and provides 80.21% accuracy, which presents ap-
proximately 2.5% degradation from the non-private baseline. This
is an acceptable degradation for the preservation of confidentiality.
This scheme can, therefore, be used for encrypted testing and Secure
Joint Learning (SJL) between several untrustworthy parties by send-
ing hashes generated with the same keys to a trustworthy server that
trains a joint model.

5. CRYPTOGRAPHIC NEURAL NETWORK

Cryptographic Neural Networks, or just cryptonets [4, 5], are sim-
ply ANNs that are able to perform operations over encrypted data.
The main idea of using this privacy-preserving scheme is to unite
the powerful deep learning models with a structure-preserving en-
cryption scheme, such as FHE. However, FHE schemes only allow
multiplications and additions to be performed on ciphertexts and,
therefore, the ANN must be carefully analyzed and modified to only
perform these FHE-friendly operations.

5.1. Baseline Using ANN

Artificial Neural Networks may range from simple and light Mul-
tilayer Perceptrons (MLP) to much more complex and deeper net-
works. For these experiments we considered a 2-layered MLP net-
work. The inputs of these would be the previously scaled eGeMAPS

features, for reasons previously mentioned, and the outputs would
be either neutral or angry. The first Fully Connected (FC) layer has
100 hidden units, while the second has 50 hidden units. The acti-
vation function present at the end of each FC layer is the Rectified
Linear Unit (ReLU), f(z) = max(0, ). The learning algorithm is
the gradient descent with a learning rate of 0.01 and weight decay of
0. The whole baseline system was implemented in C++.

By training and testing this model using the “Let’s Go” emo-
tional dataset, we obtained 88.58% accuracy on the validation set
and 82.62% on the test set. The accuracy results are similar to the
results obtained with the SVM baseline model in Section 4.1, as ex-
pected, given the size of the training set.

5.2. Experiments Using Homomorphic Encryption
5.2.1. Polynomial Activation Function

In an inferring stage, the inputs will undergo a feedforward sweep
of the network, passing through the activation function. This activa-
tion function (ReLU), however, is not compliant with FHE-friendly
operations and, therefore, the activation function present in the infer-
ring stage must be a polynomial approximation of the ReLU func-
tion. The accuracy scores will, then, be related to how good this
approximation actually is, i.e. related to the degree of the polyno-
mial approximation. Still, one must care for the encryption noise
from homomorphic operations, that increases exponentially with the
polynomial degree, and for the computational overhead that comes
with a higher polynomial degree. A visual representation of the ap-
proximated ReLU polynomial functions for p equal to 2, 4 and 6 is
illustrated in Fig. 2. These may be computed with the polyfit func-
tion of the numpy package, in Python.

3
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Fig. 2. Polynomial approximations of the ReLU (adapted [4]).

5.2.2. Pre-activation Normalization

Although the approximation of the activation function is crucial, it
is not sufficient to guarantee good accuracy results and generaliza-
tion. Notice that, by inspecting Fig. 2, the approximation is only
viable within the interval [—2, 2] (deviating exponentially outside of
it) and, therefore, a normalization must be conducted to force the
activation inputs to be within this viable interval. Common normal-
ization techniques are incompatible with this approach, since one has
to have access to the real unaltered feature vector and, in this case,
all feature vectors are encrypted. To achieve a viable normalization,
we use the batch normalization technique [21], which allows the net-
work to learn the mean and variance of the training population, and
the scale and shift parameters, that may later be used for the nor-
malization in the inferring stage. Notice that, according to the law
of large numbers, the mean and variance of the training population
should give a rather accurate approximation of the mean and vari-
ance of the test feature vector, given a significant amount of training
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samples. This normalization not only guarantees that all activation
inputs fall within the viable interval, but also promotes a regular-
ization of the model and faster training, due to the usage of higher
learning rates.

5.2.3. Encryption Noise

Noise is a fundamental part of encryption. As soon as a plaintext is
encrypted, it has a non-zero amount of noise. This noise will grow
as homomorphic operations are performed. In fact, in the SEAL li-
brary, which is based on the Fan-Vercauteren homomorphic encryp-
tion scheme [22], each ciphertext is assigned a noise budget, which
will decrease everytime an homomorphic operation is performed on
it. While the noise budget is greater than zero, the ciphertext may be
correctly decrypted, otherwise it becomes undecryptable. In higher
degree polynomials and deeper networks with several layers, issues
may arise due to the amount of homomorphic operations performed
on a single ciphertext. In order to solve the noise problem, two things
can be done. Either decrease the plaintext modulus parameter of the
encryption process or increase both the polynomial modulus and co-
efficient modulus parameters. Increasing the plaintext modulus will
significantly decrease the noise growth in homomorphic multiplica-
tion, but also increase the chance of the plaintext polynomial wrap-
ping around the plaintext modulus. On the other hand, increasing
both the polynomial modulus and coefficient modulus will effectively
increase the amount of noise budget, while also increasing the secu-
rity of the encryption. However, increasing these parameters will
also increase the computational time of homomorphic encryptions.

5.2.4. Experimental Setup

With the modifications to our initial MLP, the network is ready for
testing. For the encryption stage we used the SEAL [23] library. We
used the library’s fractional encoder with an integer coefficient of 64,
fraction coefficient of 32 and pool of 3, leaving the rest as default.
The encryption parameters were set to 2% 4 1 for the polynomial
modulus, 4096 for the coefficient modulus and 8 for the plaintext
modulus, leaving the rest as default. We performed experiments for
different polynomial degree approximations, and for a network with
and without pre-activation normalization.

5.2.5. Results and Discussion

There are a lot of factors that may influence the accuracy of this
cryptonet. These include, but are not limited to, the quality of the
polynomial approximation, the loss of precision due to normaliza-
tion and the encryption noise. Inspecting the accuracy results ob-
tained, in Table 3, we notice a degradation around ~ 2% — 3%,
comparing to the baseline of 82.62%. The introduction of the pre-
activation normalization greatly increases the accuracy on the second
degree polynomial, while slightly decreasing the accuracy for higher

Table 3. Accuracy results of the tests performed on the encrypted
test set for different values of p, with and without normalization.

Accuracy | p=2 p=4 p=26
Without Normalization 59.72 % 81.58 % 81.41 %
With Normalization 79.17 % 80.55 % 80.21 %

degree polynomials. Even though the eGeMAPS features were pre-
viously scaled to [—1, 1], the entries of the polynomial ReLU might
still fall outside the viable interval, significantly decreasing the ac-
curacy of the classifier. As seen in Table 3 this effect is most dire in
lower degree polynomials. Notice that, for other types of unscaled
inputs, the accuracy for all polynomial degrees could be extremely
low, since many inputs would fall outside the viable interval. Any-
how, the introduction of the normalization counters this effect by
forcing the values to remain within the interval. In fact, an improve-
ment is seen for the second degree polynomial of around 20%. Still,
the loss of precision due to this normalization slightly decreases the
accuracy for higher degree polynomials, which also tend to be slower
computationally. These experiments led us to conclude that the pre-
activation normalization plays a crucial role in the generalization of
the networks to other inputs.

6. CONCLUSIONS AND FUTURE WORK

This work contributes with an extension of the privacy-preserving
paralinguistic mining literature, advancements in the field of Se-
cure Machine Learning as a Service (SMLaaS), development of the
concept of Secure Joint Learning (SJL) with SMH, and, finally, en-
crypted testing in state-of-the-art classifiers such as SVMs and neu-
ral networks.

Both the SMH and cryptonet approaches effectively secure the
client’s speech biometric while performing emotion recognition onto
it. The security of the SMH is based on the fact the randomly gen-
erated keys A and w are private, and on the assumption that A is
non-invertible. In the case it is invertible, it would still be too com-
putationally demanding to compute its inverse, even if the imposter
had some prior knowledge about the true vector. Therefore, SMH
provides a simple but strong information-theoretic security. On the
other hand, HE offers security based on the hardness of Ring Learn-
ing with Errors (RLWE) problem [24]. An attacker would have
to solve the d-sample decision RLWE problem, which is extremely
hard. Thus, we prove that it is possible to devise privacy-preserving
speech emotion recognition schemes, and expect that these results
may be extended to other paralinguistic tasks, with little to no accu-
racy degradation. Moreover, these schemes may be implemented in
cloud-based applications, promoting the development of SMLaaS.
Future topics for research may be the implementation of end-to-
end schemes for privacy-preservation in speech, encrypted learning
in ANNs, deeper speech cryptonets, and finally, proving the non-
invertibility of matrix A and understanding the role of £ in Equa-
tion 1 for different scenarios. It might also be interesting to imple-
ment privacy-preserving schemes in state-of-the-art classifiers based
on differential privacy.
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