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Abstract—With the rise of smart-watches and other wearables,
off-the-person electrocardiography is gaining momentum as high-
quality Lead 1 ECG signals can now be acquired from a
persons hands or arms. Although several heart disease detection
algorithms have been described in recent years, they are not
designed considering Lead 1-only setups. This work bridges this
gap with an architecture for a robust Lead 1 real-time heart
disease detection system and an FPGA-based implementation.
The proposed system is based on a signal processing pipeline
composed of: ECG signal denoising; heartbeat detection and
segmentation; extraction of dynamic morphological features; and
heartbeat classification (standard and different abnormal heart-
beats). Resorting to the only database from MITs Physiobank
with Lead 1 annotated recordings, InCarTDb, the proposed
pipeline resulted in a 4-class model with a classification accuracy
of up to 96.5%. Moreover, when implemented in a Zynq-7 ZC702
Evaluation Board, the proposed architecture requires less than
30% of the FPGA resources and a total power consumption of
192 mW at a clock frequency of 35 MHz.

Index Terms—ECG analysis, cardiac pathology identification,
hardware architecture, real-time processing

I. INTRODUCTION

Cardiovascular diseases account for the death of more than
17.3 million people per year around the world [1]. To diagnose
multiple heart conditions associated with this pathology, the
electrocardiogram (ECG) is still the most used tool, being
most effective in the detection of arrhythmias and myocardial
infarctions. Typically, the signal acquisition is made with
a 12-lead device, which relies on ten adhesive sensors on
the subject’s torso and limbs. However, since this setup is
impractical for daily life person monitoring, off-the-person
ECG processing systems, supported on a smaller number of
leads, are required. The most practical off-the-person setup
consists of a single-lead view, which still provides relevant
information on the subject’s biometrics and allows the detec-
tion of many pathologies [2]. Aside from the non-intrusiveness
and easiness of use, contact-based single-lead acquisitions
also imply a smaller amount of data. Therefore, the required
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computational and processing power of the system decreases,
making current embedded platforms a highly viable alternative
for ECG processing in real-time environments. In this scenario,
designing a system for Lead 1-only processing (acquired from
both hands/arms) fits the off-the-person paradigm [3], as the
development and adoption of wearable technologies including
smart watches and bands is becoming gradually established in
several application domains.

Over the years, the research on automatic ECG-based
heartbeat classification methods have established (see [4], [5]
and references therein). Most works make use of morpholog-
ical features (e.g. obtained by applying a Discrete Wavelet
Transform (DWT) [6]), eventually combined with dynamic
features (the RR interval information) [7]. In [6], independent
component analysis (ICA), or principal component analysis
(PCA) were also applied for feature extraction, whereas in [8]
a combination of PCA and linear discriminant analysis (LDA)
was used. In [9], redundant features are eliminated through a
genetic algorithm. For the classification of heartbeats, support
vector machines (SVM) [6], [9], probabilistic neural networks
(PNN) [6], [8], [9], bagging tree classifiers [10], or ensem-
ble of classifiers [7] have been used. Furthermore, a semi-
supervised approach based on consensus clustering can be
used to identify abnormal heartbeats [11].

Although the majority of these works focus on multi-lead
setups, single-lead ones are also emerging [9], [10]. However,
they are not based on lead 1 setups, hence demanding more
complex acquisition systems, with requirements for sensors
on the wrists and legs (lead II) or on the torso (lead IV).
In contrast, the setup that is now presented makes use of
an alternative approach that facilitates off-the-person moni-
toring [3]. It gathers the information directly from the wrists
or hands, which significantly simplifies the acquisition process
and makes it easier for integration with wearable devices.

Hence, given the increasing interest in health monitoring
devices, several systems have been proposed for real-time
detection of heart conditions. This includes the detection of
simple arrhythmia based on the heart rate or other straightfor-
ward features [12]-[14]; the implementation of more complex
algorithms to detect P and T waves in real-time [15], or
ST segment elevation/depression [16]. Approaches relying
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Fig. 1. Proposed lead I-only heart disease processing pipeline.

on neural networks [17], [18] or on fuzzy clustering based
algorithms [19] have also been proposed. However, most
works either do not fully implement a classification system
or rely on software-based solutions (e.g., [16], [19]) or focus
on the detection of a small subset of heart conditions [20].
Although [21] proposes an end-to-end architecture, from pre-
processing to heart condition detection, they target modified
lead II acquisition systems that send raw information to cloud
servers, instead of locally processing the information.

In contrast, this manuscript proposes a novel system ar-
chitecture that was specifically designed to be integrated
on embedded devices and smart systems (where resource
usage and power consumption are fundamental aspects). By
following usual off-the-person acquisition setups, it considers
the integration on daily-life objects (e.g., drivers wheel),
where ECG acquisition must be performed using lead 1. The
architecture is scalable and programmable, which allows it to
be tailored to: different acquisition setups; different parame-
ters in most of the filtering, segmentation, feature extraction
and classification stages (by updating the coefficients); and
different abnormalities to be classified.

Hence, this paper introduces the following contributions:

1) a scalable architecture to be embedded in off-the-person
setups;

2) the processing system parameters can be easily tuned
to adapt to specific application needs (acquisition setup,
number of leads, filtering parameters, number and type
of abnormalities), by feeding the architecture with dif-
ferent configuration parameters;

3) it performs end-to-end ECG analysis, from raw signal
pre-processing to classification.

The developed system was prototyped in a Zyng-7 ZC702
Evaluation board and evaluated using an inter-subject ap-
proach, showing accuracies of 96.5% for a 4 class setup.

II. HEART DISEASE DETECTION ALGORITHM

The proposed processing methodology is composed of
four stages, as depicted in Fig. 1: signal conditioning (pre-
processing), segmentation, feature extraction and classifica-
tion.

A. Signal conditioning

Signal conditioning comprehends three steps: baseline re-
moval, high-frequency noise filtering, and amplitude normal-
ization. First, the signal baseline is removed by subtracting
the result of a moving average filter (with a 500 ms window).
Then, a low-pass filter is applied to remove high-frequency
noise. Since FIR filters have a low stopband attenuation for

lower orders and they are computationally more complex than
equivalent IIR filters, an IIR filter was designed with the lowest
order possible, since the phase shifts do not significantly affect
the signal. In particular, a 8-order Chebyshev Type II filter with
a 45 Hz cut-off frequency and 80 dB stopband attenuation
was used. Finally, since ECGs have a tremendous amplitude
variability between patients (and sometimes even for the same
patient), and also between acquisition setups, the third step
normalizes the signal to keep the peaks around 1 mV. It
does so by dividing the values of each 1000 ms window by a
normalization parameter, ensuring proper signal conditioning
across signal recordings.

B. Heartbeat segmentation

The heartbeat segmentation is performed using two tech-
niques that showed to provide accurate results when compared
with training database annotations: (i) detection of the signal
peak (maximum value); followed by (ii) cross-correlation with
a set of previously stored templates. Hence, the ECG signal is
split into segments of 625 ms, corresponding to 250 ms before
the detected peak and 375 ms after.

C. Feature extraction

Feature extraction comprehends dynamic and morphologic
features. The former are obtained from the RR intervals of
the heartbeat. From a given heartbeat, an average rhythm and
a long-term average RR interval are computed by averaging
all the RR intervals within a sliding window of the past 10
seconds and 5 minutes, respectively, from the heartbeat.

Afterwards, the segmented heartbeat is resampled (i.e.,
stretched or compressed, depending on the heartbeat rate) in
order to have one, and only one, P-QRS-T wave inside the
segment window. The resampling rates were experimentally
assessed, giving rise to three intervals: (i) for a heart rate
below 60 beats per minute (bpm), a resampling rate of 1.2 is
employed, stretching the original signal; for a heart rate in the
interval [60;133] bpm, no resampling is performed; for a heart
rate above 133 bpm, a resampling rate of 0.8 is employed.

The morphological features are extracted from the 3rd and
4th order details and the 4th order approximation coefficients
obtained from the application of the DWT with Daubechies
8th-order wavelet function (DBS), followed by a dimension-
ality reduction implemented with a PCA.

D. Classification

Several algorithms were evaluated to implement the pathol-
ogy classification, including: k-Nearest Neighbors (kNN), De-
cision Trees, Support Vector Machines (SVMs) and Artificial
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Fig. 2. End-to-end architecture of the implemented circuit.

Neural Networks (ANNs). Experimental evaluation allowed
to conclude that ANNs provide the best classification scores,
when using Probabilitic Neural Networks (PNNs). Hence, a
PNN was designed that is composed of a set of three layers:
input layer, radial basis function (rbf) and competitive layer.

III. HARDWARE IMPLEMENTATION

The conceived architecture, illustrated in Fig. 2A, is globally
commanded by a Global Control Unit (GCU), which manages
the flow of data between each Processing Unit (PU) by means
of a set of specifically designed flags. Hence, while flags
flowing from the PUs to the GCU indicate the dataflow status
(e.g., the PU has finished processing the input data), flags on
the reverse direction command the PUs to start processing a
new block. The GCU is implemented with a sequential state-
machine using a hierarchical topology: each PU is controlled
by a local state-machine, with the synchronization between
machines being implemented at a global level.

Since the ECG sampling frequency is usually low, a multi-
cycle structure was considered and the architecture of each PU
was specifically designed to operate at the lowest frequency
that still satisfies the aimed processing throughput. Contrasting
to an equivalent pipelined architecture, this allows reducing the
hardware resource utilization, while still allowing to process
lead-I signals in real-time, even when sampled at high rates.
All arithmetic operations (as well as input coefficients) use 16-
bit fixed-point representations, as no significant difference in
accuracy was observed when using a higher number of bits.
The complete architecture was also specifically designed to
support changes in the parameters and in the number of output
classes, by feeding the design with different parameters and
by changing the coefficient stored in memory.

The overall processing flow is as follows. The input sample
stream (i.e., ECG lead signal, converted from the analog
to the digital domain) is initially buffered by means of a
FIFO memory block. Data processing is then performed in
sample batches of 500 ms window (although the architecture

supports windows of different sizes, this value was considered
appropriate to the characteristics of the ECG signal). Each
sample batch is then passed through the Moving Average filter
and stored on another FIFO block.

To implement the pre-pocessing low-pass filtering stage,
an IIR Filter Unit was specifically designed to implement a
quadratic filtering section in direct form II. Hence, to support
the implementation of high-order filters, the sample batch can
flow through the IIR Filter Unit as many times as needed (4
times for the 8-order Chebyshev filter).

Amplitude Normalization would normally require looping
through the sample batch twice: the first to compute the max-
imum value, and the second to implement the normalization.
However, since the EEG signal is quasi-stationary, the normal-
ization of each sample batch n is performed by considering the
maximum value measured by the Peak Detection Unit when
processing the previous batch, n—1.

The implementation of the Morphological Feature Extrac-
tion requires the ECG signal to be aligned according with
the QRS complex. Two units collaborate to attain this goal:
the Peak Detection Unit, which is implemented as a simple
register (holds maximum value) and comparator; and the Tem-
plate Matching Unit, which implements a cross-correlation
between the sample batch and the disease templates. Since
the templates are pre-computed when training the algorithm
and remain constant thereafter, the Template Matching Unit is
actually implemented as a Finite Impulse Response (FIR) filter.
To minimize the resource usage, the operations are folded into
a multiply-and-accumulate (MAC) unit that handles the actual
computation (see Fig. 2B).

The Dynamic Feature Extraction Unit computes both the
instantaneous and mean heartbeat rates (required for tachy-
cardia identification). Computation of instantaneous heart rate
is performed by counting the number of samples between
successive hearbeat peaks. Average heart rates are computed
by counting the total number of threshold crossings in fixed



time windows, followed by time window size normalization
(multiplication with a constant term).

By taking the instantaneous heart rate as input, the Resam-
pler Unit performs sample interpolation whenever the heart
rate is below 60 bpm or above 133 bpm. This is achieved
through a MAC-based interpolation unit, which consumes as
many samples from the Peak Centering FIFO as required
(depends on resampling factor), to compose a resampled
segment.

To extract the morphologic features, a DWT Unit is used,
which relies on a polyphase filter design (see Fig. 2C).
Dimensionality reduction is attained through Principal Com-
ponent Analysis. However, the employed eigenvectors are not
re-estimated in real-time, but based on a previous training
database. Hence, the PCA Unit can be simply implemented
as another FIR filter.

The PNN classifier is fed with the final features and outputs
the classification of the processed heartbeat. Its architecture
is decomposed in a set of homogeneous sub-units, each
featuring a multi-stage pipelined architecture (see Fig. 2D),
and designed to identify a specific heart condition. All sub-
units have access to a specific BRAM block to store input
coefficients (including bias). The exponential function of the
RBF layer is also implemented through a BRAM, configured
as a look-up table (LUT).

IV. EXPERIMENTAL RESULTS

A. Dataset and experimental setup

To evaluate the proposed system (algorithm and archi-
tecture), the InCarTDb database (from PhysioNet) was se-
lected, since it features Lead 1 recordings [22], the most
typical setup in off-the-person ECG analysis. Therefore, in
the context of this work, all of the seventy-five 30-minutes
recordings at 257 Hz from 32 different patients were used. To
train the classification models, four distinct conditions were
considered: (i) normal beat; (ii) atrial premature contraction
(APC); (iii) premature ventricular contraction (PVC); and
(iv) right bundle branch block beat (RBBB). The remaining
classes were discarded from this evaluation since the limited
number of patients with such conditions invalidated the used
cross-validation procedure. Fig. 3 presents average heartbeats
segments for these classes.

B. Classification accuracy

To evaluate the heart disease detection algorithm, an inter-
subject analysis is performed, with 47% of subjects used for
training, the rest for validation. A cross-validation scheme is
subsequently applied using 100 runs, each with 100 heartbeats
per class. The Association for the Advancement in Medical
Instrumentation (AAMI) [23] recommends the use of three
metrics to assess the performance of the algorithm. Thus, for
each class c, the following metrics are reported:

1) sensitivity, with sens. = TP./(TP. + FN,);

2) positive predictive value, with PPV = TP, /(TP.+FP.);

3) false positive rate, with FPR = FP./(FP, + TN,);

TABLE I
HEART DISEASE DETECTION ALGORITHM RESULTS. Ntemp MEANS
NUMBER OF TEMPLATES, SENS., PPV, FPR AND ACC. CORRESPOND TO
THE EVALUATION METRICS SENSITIVITY, POSITIVE PREDICTIVE VALUE,
FALSE POSITIVE RATE AND ACCURACY, RESPECTIVELY.

Classes Ntemp  Sens.(%) PPV(%) FPR(%) Acc.(%)

Healthy 38 130 97.9 97.6 7.7 -

APC 1 543 42.3 50.9 1.3 -

PVC 7 626 100.0 99.4 0.1 -

RBBB 3 045 97.5 94.7 0.4 -

Overall 50 344 - - - 96.5
TABLE 11

FPGA RESOURCE UTILIZATION, MAXIMUM OPERATING FREQUENCY AND
POWER CONSUMPTION FOR A SYSTEM WITH 4 CLASSES, 8 AND 16

CLASSES.

4 classes 8 classes 16 classes
Resource Avail. Utilization Utilization Utilization
LUTs 53200 | 20648 (39%) | 24252 (46%) | 28371 (53%)
LUTRAM 17400 2176 (13%) 3968 (23%) 7552 (43%)
FFs 106400 | 16542 (16%) | 16905 (16%) | 17678 (17%)
BRAMs 140 28 (20%) 28 (20%) 28 (20%)
DSPs 220 10 (5%) 14 (6%) 22 (10%)

[ Max. clock freqq. | 35MHz | 35MHz | 35MHz |

Static Power' 122 mW 122 mW 122 mW
Dynamic Power' 70 mW 78 mW 86 mW
Total Power' 192 mW 200 mW 208 mW

T Power consumption at the maximum operating frequency (35MHz).

where TP., TN, and FP. represent the number of true posi-
tives, true negatives and false positives of class c, respectively.

The accuracy of the algorithm was also computed to allow
studying the overall algorithm performance. Since no signifi-
cant difference is observed between the software and hardware
implementations, Table I reports the hardware accuracy for the
considered 4 classes. As it can be observed, all the classes
present highly accurate results (global accuracy of 96.5%),
with the exception of the APC, whose lower accuracy is mostly
related with the known difficulty in correctly identifying the P-
wave changes using the information from lead I only (compare
also the templates presented in Fig. 3).

Although such results are inferior to those obtained with a
multi-lead configuration (e.g., on a 12 lead system accuracies
of 99.4% can be obtained [10]), this still allows attaining
high cardiac pathology detection levels with a much simpler
acquisition system, that is particularly suited for portable, low-
power and off-the-person approaches.

C. Resource utilization

To evaluate the hardware implementation of the devised
architecture, a Zynq-7 ZC702 Evaluation Board was used
for prototyping (the ARM cores were not used). Xilinx Vi-
vado 2016.4 was used for architecture synthesis, map, and
place&route. Table II presents the resource utilization, maxi-
mum clock frequency and power consumption values.

As it can be observed, the proposed architecture can easily
scale for over 16 classes (heart conditions). Moreover, it
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Fig. 3. Average heartbeats segments (after alignment and signal conditioning) for the selected classes.

is able to operate at up to 35 MHz, which would even
allow supporting 12 leads with sampling frequencies of up
to 20kHz. However, for the particular case of lead I-only
analysis (the focus of this paper), with a data sampling rate
of 257 Hz, and a maximum heartbeat rate of 180 bpm, the
device operating frequency could be substantially reduced
(as low as 72kHz), reducing dynamic power consumption to
< 1mW (maximum resolution of the Xilinx Power Estimator
tool). Such results indicate that the proposed solution is a
highly viable approach for integration in application-specific
integrated circuits (ASICs).

V. CONCLUSIONS

To tackle the difficulties posed by current ECG monitoring
and analysis devices in continued, ambulatory and daily life
environments, this manuscript proposed a complete system
(algorithm and architecture) for end-to-end real-time detection
and processing of Lead 1 ECG signals in embedded devices,
supporting a wide number of classes (heart conditions) and
leads. According to the conducted experimental evaluation
in a Zyng-7 ZC702 FPGA device, the developed prototype
offers accuracy levels as high as 97% and requires a power
consumption below ImW@72kHz to process a single lead,
but being able to scale up to a 12-lead scheme by operating
at higher clock rates.
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