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Abstract— In today’s world, the proliferation of wireless 

devices grows in an exponential form, demanding more and 

more data communication capacity over wireless links, which 

leads to a scarcity in electromagnetic spectrum availability. 

Nevertheless, spectral occupancy studies have shown a low 

utilization rate of some licensed frequency bands both in time 

and geographic location. Cognitive Radio (CR) is a promising 

technology to address spectrum sharing by selectively detecting 

bands not being in use by a Primary User (PU) and 

opportunistically allocating them for a Secondary User (SU) 

utilization. However, the detection of unused frequency bands, 

which is the most challenging problem in CR, can be overcome 

by exploiting cyclostationary features exhibited in the received 

signal. Most, if not all, communications signals have 

cyclostationary signatures, which can be used to detect the PU. 

However, detecting these signatures requires a fine resolution in 

cycle frequency, which can cause high computational complexity 

when computing the discrete Spectral Correlation Function 

(SCF). 

This paper presents an innovative adaptation of the well-

known FFT Accumulation Method (FAM) to efficiently obtain 

the SCF in a zoomed/local sub-band of the entire frequency and 

cycle frequency (𝒇;𝜶) plane. Computational complexity 

comparison of the FAM and the proposed zoom FAM (zFAM) 

algorithms is addressed, and computer simulation results are 

presented to illustrate the zFAM superiority to detect the 

cyclostationary features in a small region of the (𝒇;𝜶) plane.   

 
Index Terms—Spectrum Sensing, Cyclostationary Detection, 

Cognitive Radio, Spectral Correlation Function (SCF), FFT 

Accumulation Method (FAM) 

 

I. INTRODUCTION 

CCORDING to Cisco Visual Networking Index [1] 

(updated in 2020, [2]) - one of the most cited sources in 

the world for global IP traffic – the global mobile data traffic 

is expected to grow around 7-fold from 2016 to 2021, 

representing a compound annual growth rate of 46% (from 

7,200 PByte/month in 2016 to 48,270 PByte/month in 2021, 

and similar growth rate till 2023). Also, the current 

proliferation of the Internet-of-Things (IoT) will scale up 

communications needs. Several studies predict an almost 

exponential growth in the number of IoT devices, totaling 

between 20 and 30 billion by 2023, e.g. [2][3], with a forecast 
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of 500 billion devices connected to the Internet by 2030 [4]. 

This continuous increase in demand for new and faster 

wireless services and applications creates a natural shortage 

in the available wireless spectrum. Furthermore, traditional 

wireless networks deployed by telecommunication service 

providers (licensed users) are based on an exclusive 

allocation of spectrum bands, bought in national auctions, 

where the regulation process guarantees that any other radio 

service does not create harmful interference on those bands. 

This model is naturally the one preferred by network 

operators, allowing a middle to long-term predictable and 

sustainable network investment with financial return. This 

model also has the benefit of avoiding any digital divide, as 

network operators are obliged to invest in low economic 

interest areas, by being granted exclusivity in high economic 

interest areas through coverage obligations in spectrum 

licenses. 

However, this long-established licensing model, but still in 

use today, is being questioned worldwide for two main 

reasons: underutilization of licensed bands in both time and 

geographical domains, and the aforementioned growing 

demand for radio communications services and broadband 

ubiquitous access. 

Several spectrum surveys have been done in the past, 

mainly in the USA. The most cited report on spectrum 

utilization was carried out in the USA by the Federal 

Communications Commission -  Spectrum Policy Task Force 

[5], in several cities (Atlanta, New Orleans, San Diego, and 

New York) and for approximately 700 MHz below 1GHz. 

This report showed that large portions of the licensed 

spectrum were underused, reaching, on average, only 5 % to 

12 % usage. Nevertheless, during peak hours, 85 % usage 

could be reached. 

In another study, carried out from 2004 to 2005 in several 

USA locations, and for the 30 MHz to 3 GHz band [6], similar 

conclusions were reached, indicating an average of 5.2 % 

occupancy. In addition, the maximum average occupancy 

was measured in New York (13.1 %) and the minimum (1 %) 

in a radio quiet zone (the National Radio Astronomy 

Observatory). Surprisingly, and from this study, the 

occupancy ratio between a densely populated area and a 

radio-quiet zone is only about thirteen. 
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Similar surveys were undertaken in other parts of the world, 

resulting in similar underutilization conclusions, e.g., in 

Europe for the 470–790 MHz band ([7]), Singapore for the 

80-5,859 MHz band ([8]). Also, for more in-depth results, 

several references can be found in [9]. 

The license-exempt Industrial Scientific and Medical 

(ISM) [10] bands are typically used for personal local 

wireless networks. These bands are reserved internationally 

for industrial, scientific, and medical applications other than 

telecommunications. Equipment operating in these bands 

must deal with harmful interference generated by other 

applications, without any regulatory protection. As these 

bands are being used by growing unlicensed devices, they too 

are becoming overcrowded, with estimates of 75.38 billion 

connected license-exempt devices in the EU by 2030 [11]. 

The 2.4 GHz already suffers congestion today, and it is 

expected to increase; the 5 GHz band is expected to be further 

congested as devices move from the 2.4 to the 5 GHz band.  

Regulatory approaches along the EU (and worldwide) are 

being carried out to allow more rational use of RF spectrum, 

namely by leasing spectrum to other users (Secondary Users 

- SU) when not in use by the owner (Incumbent, Licensee or 

Primary User - PU) or opportunistic use by some SU after 

sensing the spectrum and verifying that the PU is idle, 

stopping transmitting when the PU becomes active. 

In this scenario, spectrum sensing becomes the central task to 

be performed by any SU, and several sensing methods have 

been proposed in the scientific literature, e.g.,  [12][13]. The 

presence of background noise that adds up to the received 

signal of interest makes using an energy detection decision 

scheme unreliable if little or no statistical information about 

the noise is known [14].  

As almost all human-made communications signals have 

cyclostationary signatures, exploiting these cyclostationary 

features exhibited in the received signal provides an 

advantage over a conventional energy detector. However, 

detecting these signatures requires a fine resolution in cycle 

frequency, which can cause high computational complexity 

when computing the discrete Spectral Correlation Function 

(SCF). Further, when searching for an unknown signal, wide 

frequency and cycle frequency bands must be covered, 

leading to a high computation and memory cost along with 

search time. 

When the signal-to-noise ratio (SNR) is low, 

cyclostationary detection involves a large integration time, 

which further stresses the requirement of fine cycle frequency 

resolution, leading to more computation complexity to 

compute the SCF [15], [16].  

If some cyclostationary features of the signal of interest are 

known or at least known within some uncertainty, the search 

for those features may be reduced to a small frequency and 

cycle frequency band. 

The FFT Accumulation Method (FAM) is the most widely 

used algorithm to compute the SCF and, therefore, to obtain 

the cyclostationary features. However, this algorithm 

computes the SCF for the entire plane, having a very high 

computational cost. This paper presents a new zoom discrete 

SCF computing method, adapted from the FAM algorithm, 

allowing the computation of the SCF in a specific frequency 

and cycle frequency band of the (𝑓; 𝛼) plane with reduced 

complexity, thus efficiently searching cyclostationary 

features in a small frequency and cycle frequency band. 

The remainder of the paper is organized as follows. In 

Section II, Cyclostationary Spectral Analysis (CSA) is briefly 

addressed, with a description of the FAM algorithm. The 

derivation and complexity analysis of the proposed algorithm 

is given in Section III and compared with the traditional FAM 

and another know algorithm [17]. Section IV gives computer 

simulation results for both methods. Finally, concluding 

remarks are drawn in section V. 

II. CYCLOSTATIONARY SPECTRAL ANALYSIS AND THE FAM 

ALGORITHM 

A signal is cyclostationary if it has statistical properties - 

namely its mean and autocorrelation - with periodic changing 

features. For this class of cyclostationary signals, a two-

dimensional autocorrelation function can be computed, 

where the second dimension is referred to as the cyclic 

frequency. The Cyclic Autocorrelation Function (CAF) is 

given, by definition, as [18], [19]: 

 

𝑅𝑥
𝛼(𝜏) = lim

𝑇→∞

1

𝑇
∫ 𝑥 (𝑡 +

𝜏

2
) 𝑥∗ (𝑡 −

𝜏

2
) 𝑒−𝑗2𝜋𝛼𝑡𝑑𝑡

𝑇

 (1) 

 

which can be interpreted as the Fourier coefficient of a 

sinusoidal component with frequency 𝛼 contained in a 

quadratic transformation of the input signal 𝑥(𝑡). Therefore, 

the signal 𝑥(𝑡) is cyclostationary if 𝑅𝑥
𝛼(𝜏) is different from 

zero at some time delay 𝜏 and cycle frequency 𝛼 ≠ 0. 

This property relates in the frequency domain to 

correlations between spectral components of the input signal, 

 

𝑋𝑇(𝑡, 𝑓) =
1

𝑇
∫ 𝑥(𝑢)𝑒−𝑗2𝜋𝑓𝑢𝑑𝑢

𝑡+𝑇 2⁄

𝑡−𝑇 2⁄

 (2) 

 

The SCF (also known as Spectral Correlation Density or 

Cyclic Spectrum) is, by definition, the Fourier transform of 

the CAF, given by: 

 

𝑆𝑥
𝛼(𝑓) = ∫ 𝑅𝑥

𝛼(𝜏)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏
+∞

−∞

 (3) 

 

 Efficient methods for spectral analysis are based on time 

smoothing algorithms, namely the time Smoothed Cyclic 

Periodogram (SCP) [20], given by: 

 

𝑆𝑥
𝛼𝑖(𝑡, 𝑓𝑖)Δ𝑡Δ𝑓 = 〈𝑋𝑇(𝑡, 𝑓𝑖 + 𝛼𝑖 2⁄ ) 𝑋𝑇

∗(𝑡, 𝑓𝑖 − 𝛼𝑖 2⁄ )〉Δt (4) 

 

where Δ𝑓 = 1 𝑇⁄ , 𝑋𝑇(𝑡, 𝑓𝑖 ± 𝛼𝑖 2⁄ ) are the complex spectral 

components (or complex demodulates) obtained by 

narrowband, bandpass filtering of the input signal, 𝑥(𝑛), at 

frequencies 𝑓𝑖 ± 𝛼𝑖 2⁄  followed by baseband down converting, 

and 𝛼𝑖 is the cyclic frequency; 〈. 〉Δ𝑡 stands for the averaging 

over a Δ𝑡 period. 

The SCP at point (𝑓𝑖; 𝛼𝑖) can be obtained by the spectral 

correlation analyzer illustrated in Fig. 1. 

As shown in [21], as the bandpass filters bandwidth 

approaches zero, and the averaging time goes to infinity, the 

output of the spectral correlation analyzer will give the SCF: 

 

lim
Δ𝑡→∞,Δ𝑓→0

𝑆𝑥
𝛼𝑖(𝑡, 𝑓

𝑖
)
Δ𝑡Δ𝑓

= 𝑆𝑥
𝛼𝑖(𝑓𝑖) (5) 
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Fig. 1. Block diagram of a spectral correlation analyzer. 

 

 

A. Discrete-Time SCF 

 

The spectral correlation analyzer (shown in Fig. 1) is easily 

adapted from the analog counterpart for discrete-time signals. 

The discrete-time SCP is now given by 

 

𝑆𝑥
𝛼𝑖(𝑛, 𝑓𝑖)Δ𝑡Δ𝑓 = 〈𝑋𝑇(𝑛, 𝑓𝑖 + 𝛼𝑖 2⁄ )𝑋𝑇

∗(𝑛, 𝑓𝑖 − 𝛼𝑖 2⁄ )〉Δ𝑡 

 
(6) 

where 𝑋𝑇(𝑛, 𝑓𝑖 ± 𝛼𝑖 2⁄ ) are the discrete-time complex 

demodulates, obtained by narrowband, bandpass filtering of 

the input signal, 𝑥(𝑛), at frequencies 𝑓𝑖 ± 𝛼𝑖 2⁄  followed by 

baseband down converting. 

 

We can thus see that the computation of the smoothed cyclic 

cross periodogram involves the calculation of 𝑋𝑇(𝑛, 𝑓𝑖 + 𝛼𝑖 2⁄ ) 

for a sliding window of 𝑇 seconds (input channelization), 

followed by cross-product and averaging of the complex 

demodulates obtained at 𝑓𝑖 ± 𝛼𝑖 2⁄  in a Δ𝑡 period. Given the 

sampling frequency, 𝑓𝑠, we will define 𝑇 = 𝑁𝑝 𝑓𝑠⁄  and Δ𝑡 =

𝑁𝑡 𝑓𝑠⁄ . 

The complex demodulates are obtained by a short-time DFT 

(similarly as in (2)) as: 

 

𝑋𝑇(𝑛, 𝑓) =
1

𝑁𝑝
∑𝑎(𝑘)𝑥(𝑘 + 𝑛)𝑒−𝑗2𝜋𝑘𝑓 𝑓𝑠⁄

𝑘

 (7) 

 

where 𝑎(𝑛) is a data tapering window of length 𝑇 = 𝑁𝑝 𝑓𝑠⁄ . 

It is important to note that, as complex demodulates are 

computed in a time window or 𝑇 seconds, the frequency 

resolution is Δ𝑓 = 1 𝑇⁄  Hz. Also, by averaging over the Δ𝑡 
interval, the cyclic resolution is Δ𝛼 = 1 Δ𝑡⁄  [21]. 

To enhance efficiency, the outputs of the filters to calculate 

the complex demodulates can be decimated by a factor 𝐿 (𝐿 <

𝑁𝑝). In this case, and for a given (𝑓𝑖; 𝛼𝑖), the SCP can now be 

calculated as 

 

𝑆𝑥
𝛼𝑖(𝑛𝐿, 𝑓𝑖)Δ𝑓Δ𝑡 =∑𝑋𝑇(𝑟𝐿, 𝑓𝑖  + 𝛼𝑖 2⁄ )𝑋𝑇

∗ (𝑟𝐿, 𝑓𝑖
𝑟

− 𝛼𝑖 2⁄ )𝑔(𝑛 − 𝑟) 
(8) 

 

As shown in [20][22][23], the SCF is obtained as the limit of 

the SCP, if ∑𝑎2(𝑛) = ∑𝑔2(𝑛) = 1, and the time-frequency 

resolution product is much greater than one (Δ𝑡Δ𝑓 ≫ 1). Also, 

as shown in [20], typically 𝑎(𝑛) is a hamming window and 

𝑔(𝑛) a rectangular window, and a suitable value for 𝐿 is 𝐿 =

𝑁𝑝 4⁄ . 

So, the SCF is given by: 

 

𝑆𝑥
𝛼𝑖(𝑓𝑖) = lim

Δ𝑓→0
lim

Δt→+∞
𝑆𝑥
𝛼𝑖(𝑛𝐿, 𝑓𝑖)Δ𝑓Δ𝑡  (9) 

 

The complex demodulates, as expressed by (7), can be 

discretized for a finite set of frequencies as 

 

𝑋𝑇(𝑛, 𝑓𝑚) =
1

𝑁𝑝
∑ 𝑎(𝑘)𝑥(𝑘 + 𝑛)𝑒−𝑗2𝜋𝑘𝑓𝑚 𝑓𝑠⁄

𝑁𝑝
2
−1

𝑘=− 
𝑁𝑝
2

 (10) 

 

where 𝑓𝑚 = 𝑚
𝑓𝑠

𝑁𝑝
. 

Considering the SCF estimated by (8) and now taking small 

(positive and negative) 𝛼 steps from the (𝑓𝑖; 𝛼𝑖) = (
𝑓𝑘+𝑓𝑙

2
; 𝑓𝑘 −

𝑓𝑙) point, we get ([20]) 

 

𝑆𝑥
𝛼𝑖+𝑞Δ𝛼(𝑛𝐿, 𝑓𝑖)Δ𝑡 =∑𝑋𝑇(𝑟𝐿, 𝑓𝑘) 𝑋𝑇

∗(𝑟𝐿, 𝑓𝑙)𝑔(𝑛

𝑟

− 𝑟) 𝑒−𝑗2𝜋𝑟𝑞 𝑃⁄  
(11) 

 

where the summation can be evaluated with a 𝑃 point FFT 

(𝑃 = 𝑁𝑡 𝐿⁄ ). Also, the summation in (10) can also be evaluated 

with a 𝑁𝑝 point FFT, which must be post multiplied by 

𝑒
−𝑗2𝜋

𝑘

𝑁𝑝
𝑛𝐿

, 𝑘 = −𝑁𝑝 2⁄ ,… ,+𝑁𝑝 2⁄ , to account for the time 

delay of each time window of the input signal channelization 

(phase compensation). 

As suggested in [20], only half of the points in (11) should be 

retained for 𝑞Δ𝛼 around the centre (𝑞 = 0) to avoid unreliable 

points. 

Equations (10) and (11) resume the most widely used 

algorithm to obtain the estimate of the SCF, known as the 

FFT Accumulation Method (FAM). The following signal 

processing flow describes the FAM algorithm (with 

architecture illustrated in Fig. 2: 

 

1. Given the frequency resolution required, Δ𝑓, obtain 

𝑁𝑝 = 𝑓𝑠 Δ𝑓⁄  and 𝐿 = 𝑁𝑝 4⁄  or 𝐿 = 𝑁𝑝𝑆𝑒𝑔 4⁄  if 𝑁𝑝 ≠

𝑁𝑝𝑆𝑒𝑔 (𝑓𝑘 and 𝑓𝑙 will both be on the range 

−𝑓𝑠 2⁄ :Δ𝑓:+ 𝑓𝑠 2⁄ − Δ𝑓) 

2. The total number of samples is 𝑁𝑡 = 𝑁𝑝𝑆𝑒𝑔 +
(𝑃 − 1) × 𝐿 ≈ 𝑃 × 𝐿. Given the cycle frequency 

resolution required, Δ𝛼, obtain 𝑃 = 𝑓𝑠 (Δ𝛼𝐿)⁄ . Note 

that one must have Δ𝛼 ≪ Δ𝑓. Moreover 𝑁𝑡 ≈ 𝑃 × 𝐿 

and Δ𝑡 =
1

Δ𝛼
=

𝑁𝑡

𝑓𝑠
, so Δ𝛼 ≈

𝑓𝑠

𝑃×𝐿
 

3. If the input signal length is less than 𝑁𝑡, zero fill, 

otherwise truncate to a length 𝑁𝑡 

4. Channelize the input signal with 𝑃 channels of length 

𝑁𝑝𝑆𝑒𝑔, with a sliding hamming window shifted by 𝐿 

samples for each channel 

5. Compute the FFT for each channel 

6. Phase-compensate each channel to account for the 

time shift of each one 

7. Obtain the cross product of the complex demodulates 

for all channel combinations 

8. Compute the FFT for all cross products, and keep 

only 𝑃 2⁄  around the center 

9. Fill the SCF matrix, finding the corresponding (𝑓𝑖 ; 𝛼𝑖) 

pair, from 𝑓𝑘, 𝑓𝑙 and 𝑞Δ𝛼 
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𝒆
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Fig. 2. FAM algorithm architecture. 

Some notes on the properties of SCF can be given: 

• Given the sampling of the input signal, with a 

sampling frequency 𝑓𝑠, the region of support of 

the SCF is a diamond shape as shown in Fig. 3a), 

since −
𝑓𝑠

2
≤ 𝑓 +

𝛼

2
≤ +

𝑓𝑠

2
 and −

𝑓𝑠

2
≤ 𝑓 −

𝛼

2
≤ +

𝑓𝑠

2
 

• The coverage of the region of support of the SCF, 

obtained from (𝑓𝑖; 𝛼𝑖) = (
𝑓𝑘+𝑓𝑙

2
; 𝑓𝑘 − 𝑓𝑙) with 

equally spaced 𝑓𝑘 and 𝑓𝑙 is shown in Fig. 3b) for 

a small dimension (small 𝑁𝑝=8) 

• For a real input signal, the SCF has the following 

symmetries: 𝑆𝑥
𝛼(−𝑓) = 𝑆𝑥

𝛼(𝑓) and 𝑆𝑥
−𝛼(𝑓) =

(𝑆𝑥
𝛼(𝑓))

∗
. So, to obtain the entire region of the 

SCF, only the first quadrant Fig. 3a) need to be 

computed; the other quadrants can be obtained 

directly using the above symmetries. 

 

One disadvantage obtained in the coverage of the region of 

support of the SCF, easily seen in Fig. 3b), is that it is not 

given in a regular, equally spaced grid, which is usually 

undesired [20]. The method proposed in this paper will also 

address and solve this issue. 

Following all FAM steps will compute the SCF with 𝑁𝑝 

points in the frequency axis, and 𝑁𝑝
𝑃

2
 points in the cycle 

frequency axis. 

If step 8 is suppressed, and just a sum of all 𝑃 channels is 

taken (equivalent to the middle point obtained with the FFT 

of step 8), the SCF is obtained in an 𝑁𝑝 × 𝑁𝑝 grid (although 

non-regular) in the (𝑓; 𝛼) plane. This is the case we will use 

in the following for having a manageable computational 

complexity. Note that using step 8 requires an additional 

computation of 𝑁𝑝
2  “𝑃-point” FFTs. 

Further, considering only the SCF obtained in that 𝑁𝑝 × 𝑁𝑝 

grid, all points have the same variance as the time-frequency 

product remains constant for each point [20]. 

 

 

a) 

 

b) 

Fig. 3. a) Region of support of the SCF. b) Coverage of the region 

of support. 

 

B. FAM computation of the SCF 

 

As an example, we will consider a two-channel digital QPSK 

communication, with 100% excess bandwidth raised-cosine 

pulse shape; sampling frequency 𝑓𝑠 = 18 MHz and 

baud/symbol-rate equal to 𝑓𝑠𝑦𝑚1
= 1 Msps with a carrier 

frequency 𝑓𝑐1 = 1 MHz for the first channel, and 𝑓𝑠𝑦𝑚2
=

2.25 Msps with 𝑓𝑐2 = 5 MHz for the second channel. 

For this modulation, a strong cycle feature will be present for 

𝛼 = 𝑓𝑠𝑦𝑚1,2
[24]. Erro! A origem da referência não foi 

encontrada.  shows the SCF of the received signal obtained 

using the FAM algorithm with 𝑁𝑝 = 256 samples and 𝑃 =

2000 (𝑁𝑝𝑆𝑒𝑔 = 128, so 𝐿 = 𝑁𝑝𝑆𝑒𝑔 4⁄ = 32 and 𝑁𝑡 = 𝑁𝑝𝑆𝑒𝑔 +
(𝑃 − 1)𝐿 = 64,096 samples), corresponding to a sensing 

period of approximately 3.56 𝑚𝑠. As can be seen, the cyclic 

signature of the second channel is detected at 𝛼 = 2.25 MHz, 
but not the one of the first channel (𝛼 = 1 MHz ). The cycle 

frequency spacing is 2𝑓𝑠 𝑁𝑝⁄  and the symbol-rate of the second 

channel is an integer multiple of this spacing 

(2.25 (2 × 18 256⁄ ) = 16⁄ ), but not the symbol-rate of the first 

channel (1 (2× 18 256⁄ ) = 7. (1)⁄ ). The only solution using the 

FAM algorithm is to increase 𝑁𝑝 to enhance coverage. 

 

 

 
 

Fig. 4. SCF for two-channel QPSK communication (𝑁𝑝 = 256, 𝑃 =

2000, 𝑓𝑠 = 18 MHz) with 𝑓𝑠𝑦𝑚1
= 1 Msps, 𝑓𝑐1 = 1 MHz, 𝑓𝑠𝑦𝑚2

=

2.25 Msps, 𝑓𝑐2 = 5 MHz. 

 

However, as shown in Fig. 5, where the SCF is plotted for 

 

-𝑓𝑠 2  

𝑓𝑠   
-𝑓𝑠   

𝑓𝑠 2  

𝛼  

𝑓  

 

-𝑓𝑠 2  

𝑓𝑠   
-𝑓𝑠   

𝑓𝑠 2  

𝛼  

𝑓  
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fixed 𝑓 = 1 MHz and 𝛼 = 0…𝑓𝑠 for various values of 𝑁𝑝, only 

for 𝑁𝑝 = 216 = 65536 we get a clearly distinguishable cycle 

feature for the first channel (𝛼 = 1 MHz).  
We will now consider a similar two-channel digital QPSK 

communication, with 100% excess bandwidth raised-cosine 

pulse shape; sampling frequency 𝑓𝑠 = 18 MHz and 

baud/symbol-rate equal to 𝑓𝑠𝑦𝑚1
= 1.125 Msps, with a carrier 

frequency 𝑓𝑐1 = 1 MHz for the first channel, and 𝑓𝑠𝑦𝑚2
=

2.25 Msps with 𝑓𝑐2 = 5 MHz for the second channel (similar to 

the previous example, but different first channel symbol rate). 

Fig. 6 shows the SCF obtained using the FAM algorithm with 

𝑁𝑝 = 256 samples and 𝑃 = 2000. Clearly, the cycle signatures 

of both channels can be detected. 

 

  

  
 
Fig. 5. SCF for the 1 MHz channel QPSK communication (𝑃 =
2000, 𝑓𝑠 = 18 MHz) with 𝑓𝑠𝑦𝑚1

= 1 Msps, 𝑓𝑐1 = 1 MHz, for fixed 

𝑓 = 1 MHz and varying 𝑁𝑝. 

 

 

 
 
Fig. 6. SCF for two-channel QPSK communication (𝑁𝑝 = 256, 𝑃 =

2000, 𝑓𝑠 = 18 MHz) with 𝑓𝑠𝑦𝑚1
= 1.125 Msps, 𝑓𝑐1 = 1 MHz, 

𝑓𝑠𝑦𝑚2
= 2.25 Msps, 𝑓𝑐2 = 5 MHz. 

 

Considering the same transmitted signal, but now with a 0.1 % 

deviation in the receiver sampling frequency, the resulting 

SCF obtained is shown in Fig. 7 (in this case, the deviation of 

the receiver sampling frequency is −0.1 %). As can be seen, 

the cycle signatures vanish completely, which shows the high 

sensitivity on the cycle frequency when performing 

cyclostationary analysis. 

The need for fine resolution on the cycle frequency, due to 

impairments on system parameters or the long integration 

time needed when the SNR is low, motivated the search for a 

modified FAM algorithm, able to efficiently obtain the SCF 

in specific subregions of the (𝑓; 𝛼) plane. In the following 

section, the zFAM algorithm, which can compute the SCF in 

a zoom/local region, is presented, and its computational cost 

is obtained and compared to the FAM. 

 

 
 
Fig. 7. SCF for two-channel QPSK communication (𝑁𝑝 = 256, 𝑃 =

2000, 𝑓𝑠 = (1 − 0.1 %) × 18 𝑀𝐻𝑧) with 𝑓𝑠𝑦𝑚1
= 1.125 𝑀𝑠𝑝𝑠, 𝑓𝑐1 =

1 𝑀𝐻𝑧, 𝑓𝑠𝑦𝑚2
= 2.25 𝑀𝑠𝑝𝑠, 𝑓𝑐2 = 5 𝑀𝐻𝑧. 

III. THE PROPOSED ZOOM FAM (ZFAM) ALGORITHM 

The method proposed in this paper is an adaptation of the 

FAM algorithm, where the complex demodulates are 

obtained for specific frequencies to provide the computation 

of the SCF in specific Δ𝑓 and Δ𝛼 bands. In this section, Δ𝑓 

references the zoomed frequency region, and Δα references 

the zoomed cycle frequency region of interest and should not 

be misinterpreted as the cycle and cycle frequency resolution. 

Of course, the complete SCF with fine spacing can be 

obtained by tiling the results produced for subregions of the 

(𝑓; 𝛼)  plane. 

Considering the region Δ𝑓 = 𝑓
𝑖2
− 𝑓

𝑖1
 and Δ𝛼 = 𝛼𝑖2 − 𝛼𝑖1, we 

are interested in computing the SCF in a regular grid (𝑁𝑝 × 𝑁𝑝 

points) of that region, as shown in Fig. 8. 

As seen, the (𝑓𝑖; 𝛼𝑖) points are obtained from (𝑓𝑖 ; 𝛼𝑖) =

(
𝑓𝑘+𝑓𝑙

2
; 𝑓𝑘 − 𝑓𝑙), so that the corresponding points and path of 

Fig. 8 correspond to the ones shown in Fig. 9. 

Usually, one will consider a regular grid with 𝑁𝑝 points, 

where 𝑓𝑖 = 𝑓𝑖1 +
Δ𝑓

𝑁𝑝
𝑛 and 𝛼𝑖 = 𝛼𝑖1 +

Δ𝛼

𝑁𝑝
𝑚 with 𝑛,𝑚 = 0…𝑁𝑝 −

1. In the following, we will consider the more general case 

when 𝑛,𝑚 = 0…𝑁𝑝 to account for the whole region (with 

(𝑁𝑝 + 1) × (𝑁𝑝 + 1) points). 
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𝛼𝑖  

𝑓𝑖  𝑓𝑖1 𝑓𝑖2 

𝛼𝑖1 

𝛼𝑖2 2 

1 3 

4 

 
Fig. 8. Region and point path to compute the SCF (𝑓𝑖; 𝛼𝑖). 

 

 

𝑓𝑖1 +
𝛼𝑖1
2

 

𝑓𝑖1 +
𝛼𝑖2
2

 

𝑓𝑖2 +
𝛼𝑖1
2

 

𝑓𝑖2 +
𝛼𝑖2
2

 

𝑓𝑖1 −
𝛼𝑖2
2

 

𝑓𝑖1 −
𝛼𝑖1
2

 

𝑓𝑖2 −
𝛼𝑖2
2

 

𝑓𝑖2 −
𝛼𝑖1
2

 

1 

2 

3 

4 

𝑓𝑘  

𝑓𝑙  

 
Fig. 9. Region and point path to compute the SCF (𝑓𝑘; 𝑓𝑙). 

 

The basis of the proposed algorithm is to allow the 

computation of the SCF, following the FAM algorithm 

closely, but in (Δ𝑓;Δ𝛼) subregions of the (𝑓𝑖 ; 𝛼𝑖) plane, 

starting with arbitrary frequencies 𝑓𝑖1and 𝛼𝑖1, such that the 

corresponding (𝑓𝑘; 𝑓𝑙) points can be obtained from an equally 

spaced array. If such regions can be found, then the complex 

demodulates given in (10) for all 𝑓𝑘 and 𝑓𝑙 frequencies can be 

computed resorting to the Chirp Transform Algorithm (CTA).  

The FAM algorithm uses a regular FFT, so, depending on the 

region of interest, complex demodulates on frequencies 

(𝑓𝑘; 𝑓𝑙) may not be possible to compute, given the FFT 

frequency spacing of 𝑓𝑠 𝑁𝑝⁄ , starting at −𝑓𝑠 2⁄ . Differently, the 

CTA can compute the Discrete Fourier Transform of an input 

signal on any set of equally spaced frequencies.  

In the following sections, the conditions needed to be met (to 

use the zFAM algorithm) when choosing the (Δ𝑓;Δ𝛼) 

subregions of the (𝑓; 𝛼) plane of the SCF are derived. As will 

be shown, a very high zoom of the SCF can be obtained on a 

relatively small part of the plane, keeping a low 

computational cost. This is the main objective of the zFAM 

algorithm proposed. This high-zoom SCF region can also be 

obtained by the FAM algorithm, with an increase in 

computational cost, if the 𝑓𝑘 and 𝑓𝑙 frequencies of that band 

are all an integer multiple of 𝑓𝑠 𝑁𝑝⁄  (𝑁𝑝 could be arbitrarily 

increased, with a corresponding increase in computation 

cost). But, if 𝑓𝑘 and 𝑓𝑙 frequencies of that high-zoom SCF 

region are not an integer multiple of 𝑓𝑠 𝑁𝑝⁄ , the FAM 

algorithm is unable to compute the SCF in that region. 

Conversely, as will be shown, the zFAM algorithm can 

compute the SCF for any subregion, provided that Δ𝛼 = 𝐿Δ𝑓 

or Δ𝑓 = 𝐿Δ𝛼 (𝐿 integer). 

In general, we will need to compute one CTA of the input 

signal for the 𝑓𝑘 frequencies and a second CTA for the 𝑓𝑙 ones. 

In the following, this will be referred to as the Dual CTA 

method. We will also find conditions when 𝑓𝑘 and 𝑓𝑙 can be 

joined or merged in a single frequency array, in which case 

only one CTA needs to be computed. This case will be 

referred to as the Single CTA method. 

 

A. Dual CTA Method 

In general, although we may have a regular grid for (𝑓𝑖; 𝛼𝑖) =

(𝑓𝑖1 + 𝑛
Δ𝑓

𝑁𝑝
; 𝛼𝑖1 +𝑚

Δ𝛼

𝑁𝑝
) (𝑛,𝑚 = 0…𝑁𝑝) the corresponding 

values for (𝑓𝑘; 𝑓𝑙) may not have a regular spacing. We now 

analyze two special cases and derive the conditions needed so 

that the (𝑓𝑘; 𝑓𝑙) values can be obtained from an equally spaced 

frequency array. 

Given the set of points (𝑓𝑖 ; 𝛼𝑖) = (𝑓𝑖1 + 𝑛
Δ𝑓

𝑁𝑝
; 𝛼𝑖1 +𝑚

Δ𝛼

𝑁𝑝
) and 

the correspondence {
𝑓𝑙 = 𝑓𝑖 − 𝛼𝑖 2⁄

𝑓𝑘 = 𝑓𝑖 + 𝛼𝑖 2⁄
, we get 

 

 

𝑓𝑘 = 𝑓𝑖1 +
Δ𝑓

𝑁𝑝
𝑛 +

𝛼𝑖1
2
+

Δ𝛼

2𝑁𝑝
𝑚 

 

𝑓𝑙 = 𝑓𝑖1 +
Δ𝑓

𝑁𝑝
𝑛 −

𝛼𝑖1
2
−

Δ𝛼

2𝑁𝑝
𝑚 

 

(12) 

We then must guarantee that a constant spacing on 𝑓𝑘 , Δ𝑓
𝑘
, 

and 𝑓𝑙, Δ𝑓𝑙, covers all points defined in (12) and also that Δ𝑓
𝑘
 

and Δ𝑓
𝑙
 are the maximum possible to minimize the number of 

points needed. Both conditions are met if: 

 

𝑓𝑘,𝑙 −min(𝑓𝑘,𝑙)

Δ𝑓𝑘,𝑙
𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑎𝑛𝑑 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

 

From (12), we get: 

𝑓𝑘 −min(𝑓𝑘)

Δ𝑓𝑘
=

Δ𝑓
𝑁𝑝
𝑛 +

Δ𝛼
2𝑁𝑝

𝑚

Δ𝑓𝑘
 

𝑓𝑙 −min(𝑓𝑙)

Δ𝑓𝑙
=

Δ𝑓
𝑁𝑝
𝑛 +

Δ𝛼
2𝑁𝑝

(𝑚 + 𝑁𝑝)

Δ𝑓𝑙
 

 

In Appendix A, the two cases considered Δ𝛼 = 𝐿Δ𝑓 and Δ𝑓 =
𝐿Δ𝛼 (𝐿 integer) are analyzed, to obtain the frequency spacing 

and number of points for the 𝑓𝑘 and 𝑓𝑙 frequency arrays (𝑁𝑝1 =
max(𝑓𝑘,𝑙)−min (𝑓𝑘,𝑙)

Δ𝑓𝑘,𝑙
+ 1). Also, the correspondence between each 

(𝑓𝑖 ; 𝛼𝑖) and (𝑓𝑘; 𝑓𝑙) points is also given. 

Table I summarizes the results obtained. As can be seen, the 

frequency separation for both 𝑓𝑘 and 𝑓𝑙 is equal for all cases. 

Also, the cases with less computational cost (lowest 𝑁𝑝1) are 

obtained for Δ𝛼 = 2Δ𝑓, followed by Δ𝛼 = Δ𝑓. 

 
TABLE I 

SUMMARY TABLE FOR THE DUAL CTA METHOD 

Case 𝑳 
𝚫𝒇𝒇,𝒇
= 𝚫𝒇𝒌
= 𝚫𝒇𝒍 

𝑵𝒑𝟏 Point Assignment 

𝚫𝜶
= 𝑳𝜟𝒇 

L 

even 

Δ𝑓

𝑁𝑝
 𝑁𝑝 (

𝐿

2
+ 1) + 1 

{
 
 

 
 𝑘 = 𝑛 +

𝐿

2
𝑚

𝑙 = 𝑛 +
𝐿

2
(𝑁𝑝 −𝑚)
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L 

odd 

Δ𝑓

2𝑁𝑝

 𝑁𝑝(𝐿 + 2) + 1 {

𝑘 = 2𝑛 + 𝐿𝑚

𝑙 = 2𝑛 + 𝐿(𝑁𝑝 −𝑚)
 

𝜟𝒇
= 𝑳𝜟𝜶 

any 
Δ𝛼

2𝑁𝑝
 𝑁𝑝(2𝐿 + 1) + 1 {

𝑘 = 2𝐿𝑛 +𝑚

𝑙 = 2𝐿𝑛 + (𝑁𝑝 −𝑚)
 

 

B. Single CTA Method 

We can now check if there are any cases when merging the 

values needed for 𝑓𝑘 and 𝑓𝑙 in a single frequency array of 

equally spaced points is possible. 

Fig. 10 shows the range of 𝑓𝑘 and 𝑓𝑙, where it can easily be 

seen that the first condition for the merge to be possible is 

𝑓𝑖2 −
𝛼𝑖1
2
> 𝑓𝑖1 +

𝛼𝑖1
2

 which is equivalent to Δ𝑓 > 𝛼𝑖1. 

𝑓𝑖1 −
𝛼𝑖2
2

 𝑓𝑖2 −
𝛼𝑖1
2

 𝑓𝑖1 +
𝛼𝑖1
2

 𝑓𝑖2 +
𝛼𝑖2
2

 

𝑓𝑙  

𝑓𝑘  

 
Fig. 10. 𝑓𝑘 and 𝑓𝑙  range. 

 

However, we must also guarantee that frequencies coincide. 

The new frequency array is given by the points 𝑓 = 𝑓𝑖1 −
𝛼𝑖1
2
:Δ𝑓𝑘,𝑙: 𝑓𝑖2 +

𝛼𝑖2
2

, and the frequency points will coincide if, 

starting from the lowest value of 𝑓𝑙, we can reach the lower 

value of 𝑓𝑘 with an integer increment, 𝑞, of Δ𝑓
𝑘,𝑙

, that is: 

 

𝑓𝑖1 −
𝛼𝑖2
2
+ 𝑞 × Δ𝑓𝑘,𝑙 = 𝑓𝑖1 +

𝛼𝑖1
2

 

 

Hence, we must guarantee that there is an integer 𝑞, such that: 

 

𝑞 =
Δ𝛼

2Δ𝑓𝑘,𝑙
+
𝛼𝑖1
Δ𝑓𝑘,𝑙

. (13) 

 

If the merging is possible, the number of points needed is 

given by: 

𝑁𝑝2 =
𝑚𝑎𝑥(𝑓𝑘) − 𝑚𝑖𝑛(𝑓𝑙)

𝛥𝑓𝑘,𝑙
+ 1 =

𝑓𝑖2 +
𝛼𝑖2
2
− (𝑓𝑖1 −

𝛼𝑖2
2
)

𝛥𝑓𝑘,𝑙
+ 1

=
𝛥𝑓 + 𝛥𝛼 + 𝛼𝑖1

𝛥𝑓𝑘,𝑙
+ 1. 

From this new frequency vector, 𝑓𝑙 and 𝑓𝑘 are obtained as a 

simple subset, starting at index 0 and 𝑞, respectively, with 

length equal to 𝑁𝑝1 (as given in Table I). 

Following a similar procedure as in the case of the Dual CTA 

method (as described in Appendix A), the cases when the 

frequency array merge is possible are summarized in Table 

II, provided the following two conditions are met (from (13), 

Δ𝛼 2Δ𝑓𝑘,𝑙⁄  is an integer for all cases, so to guarantee 𝑞 is 

integer, one must have 𝛼𝑖1 Δ𝑓𝑘,𝑙⁄  integer): 

 

Δ𝑓 > 𝛼𝑖1 

 

𝑝 =
𝛼𝑖1
Δ𝑓𝑘,𝑙

 is integer. 

 

 

 
 

TABLE II 
SUMMARY TABLE FOR THE SINGLE CTA METHOD 

Case 𝑳 
𝚫𝒇𝒇,𝒇
= 𝚫𝒇𝒌
= 𝚫𝒇𝒍 

𝑵𝒑𝟐
 

Indexes for 𝒇𝒍 and 

𝒇𝒌 (𝑢 = 0…𝑁𝑝1 − 1) 

𝚫𝜶
= 𝑳𝜟𝒇 

L 

even 

Δ𝑓

𝑁𝑝
 𝑁𝑝(𝐿 + 1) + 𝑝 + 1 {

𝑓𝑙:  𝑢

𝑓𝑘 :  
𝐿𝑁𝑝
2
+ 𝑝 + 𝑢

 

L 
odd 

Δ𝑓

2𝑁𝑝

 2𝑁𝑝(𝐿 + 1) + 𝑝 + 1 {

𝑓𝑙:  𝑢

𝑓𝑘:   𝐿𝑁𝑝 + 𝑝 + 𝑢
 

𝜟𝒇
= 𝑳𝜟𝜶 

any 
Δ𝛼

2𝑁𝑝
 2𝑁𝑝(𝐿 + 1) + 𝑝 + 1 {

𝑓𝑙:  𝑢

𝑓𝑘:  𝑁𝑝 + 𝑝 + 𝑢
 

 

C. Computational Cost 

 

The computational cost of the CTA algorithm, measured as 

the real-number floating-point operation (FLOP) count for 

complex number input, assuming all pre-computations are 

done offline (see [25]), and considering the FLOP count for 

several operations as indicated in Table III, is: 

 
𝐹𝐶𝑇𝐴 = 6𝑁𝑝 + 10𝐿𝐶𝑇𝐴 log2(𝐿𝐶𝑇𝐴) + 6𝐿𝐶𝑇𝐴 + 6𝑁𝑝𝐶𝑇𝐴 (14) 

 

where 𝑁𝑝 is the input signal sample length; 𝑁𝑝𝐶𝑇𝐴 is the 

number of points to calculate (output sample size) and 𝐿𝐶𝑇𝐴 =

𝑛𝑒𝑥𝑡𝑓𝑓𝑡𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝑝 + 𝑁𝑝𝐶𝑇𝐴 − 1), so 𝐿𝐶𝑇𝐴 = 2𝑙𝐶𝑇𝐴. 

The computational cost of each method will depend only on 

the FFT length needed, and therefore the corresponding 𝐿𝐶𝑇𝐴 

value. Comparing this value for the Single/Dual CTA and the 

number of points needed, one can obtain, after extensive 

analysis, the following conditions to define which method has 

the less FLOP count: 

 

• Case 𝚫𝜶 = 𝑳𝚫𝒇, 𝑳 even 
o If 𝐿 = 2𝑥 − 2 and 𝛼𝑖1 = 0, use Single CTA 

o otherwise, use Dual CTA 

• Case 𝚫𝜶 = 𝑳𝚫𝒇, 𝑳 odd 
o Always use Dual CTA 

• Case 𝚫𝒇 = 𝑳𝚫𝛂, and 𝒑 = 𝛂𝐢𝟏 𝚫𝒇𝒌,𝒍⁄ = 𝜶𝒊𝟏 (
𝚫𝜶

𝟐𝑵𝒑
)⁄  is 

integer 
o If 𝐿 = 2𝑥 − 1, use Dual CTA 

o If 𝐿 = 2𝑥−1 + 𝑛, 𝑛 ≤ 2𝑥−1 − 2 and 𝑝 = 𝛼𝑖1 (
Δ𝛼

2𝑁𝑝
)⁄ =

0…𝑁𝑝(2
𝑥 − 2𝑛 − 3), use Single CTA, otherwise use 

Dual CTA 

For each segment in the channelization process, the 

computational cost for both FAM and zFAM can now be 

given. All operators will be considered complex numbers so 

that the FLOP count for several operations is as indicated in 

Table III.  

 
TABLE III 

OPERATIONS FLOP COUNT FOR COMPLEX OPERATORS  
Operation FLOP count 

𝑥 × 𝑦 6 

𝑥 + 𝑦 2 

FFT(2) 10 

FFT(𝑁𝑝) using 
𝑁𝑝

2
log2(𝑁𝑝) FFT(2) butterfly structures 5𝑁𝑝 log2(𝑁𝑝) 

 

The zFAM algorithm follows the FAM closely, with major 

differences in obtaining the complex demodulates. The FAM 

will use a complete FFT, whereas the zFAM will use the CTA 
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with the frequency spacing and the number of points as given 

in Table I or Table II (depending on using a Single or Dual 

CTA). The final complex demodulates to be used in the 

following steps are obtained from the indexes given in those 

tables. 

Table IV provides both algorithms' steps and the 

computational cost (FLOP count) for each step. The total cost 

will be the sum of each step, multiplied by the number of 

segments (𝑃) of the channelization. 

For the zFAM algorithm, the total number of FLOPS depends 

on the region being calculated. For this performance 

comparison, we will get the number of operations needed by 

FAM and zFAM to obtain the SCF for the first quadrant of 

the (𝑓; 𝛼) plane (the only part needed when the input signal is 

real) in a 𝑁𝑝 × 𝑁𝑝 grid. For this case, the FLOP count for the 

FAM algorithm needs additional consideration. The FAM 

produces and 𝑁𝑝 × 𝑁𝑝 matrix for all quadrants of the 

(𝑓; 𝛼) plane. Therefore, to obtain the total computational cost, 

the FFT and phase-compensation steps must be done with 

2 × 𝑁𝑝 points to obtain the same spacing as in zFAM. 

In the case of the zFAM algorithm, as Δ𝛼 = 2Δ𝑓 and 𝛼𝑖1 = 0 

for the first quadrant, we will use the Single CTA method 

with 𝑁𝑝𝑆𝑖𝑛𝑔𝑙𝑒 𝐶𝑇𝐴 = 𝑁𝑝
(𝐿 + 1) + 1 = 3𝑁𝑝 + 1; 𝐿𝐶𝑇𝐴 =

nextfftlength(𝑁𝑝 + 3𝑁𝑝), and, if 𝑁𝑝 is a power-of-2, 𝐿𝐶𝑇𝐴 =

4𝑁𝑝. 

 
TABLE IV 

STEPS COMPUTATIONAL COST FOR FAM AND ZFAM 
Step FAM zFAM 

Channelization − − 

Windowing 6𝑁𝑝 6𝑁𝑝 

FFT 5𝑁𝑝 log2(𝑁𝑝) − 

Dual CTA 

− 
2 (6𝑁𝑝 + 10𝐿𝐶𝑇𝐴𝑙𝑜𝑔2(𝐿𝐶𝑇𝐴)

+ 6𝐿𝐶𝑇𝐴 + 6𝑁𝑝𝐷𝑢𝑎𝑙 𝐶𝑇𝐴) 

Single CTA 
− 

6𝑁𝑝 + 10𝐿𝐶𝑇𝐴𝑙𝑜𝑔2(𝐿𝐶𝑇𝐴)

+ 6𝐿𝐶𝑇𝐴 + 6𝑁𝑝𝑆𝑖𝑛𝑔𝑙𝑒 𝐶𝑇𝐴 

Phase-

compensation 6𝑁𝑝 
Single CTA: 6(𝑁𝑝𝑆𝑖𝑛𝑔𝑙𝑒 𝐶𝑇𝐴) 

Dual CTA: 6(2𝑁𝑝𝐷𝑢𝑎𝑙 𝐶𝑇𝐴)  
 

Complex 
demodulates 

multiply 

6𝑁𝑝
2 

6𝑁𝑝
2 

Sum 2𝑁𝑝 2𝑁𝑝 
 

 

So, the total number of FLOPS for the FAM algorithm (per 

input channel and for the first quadrant, 1Q) is: 

 

𝐹𝐹𝐴𝑀1𝑄
= 30𝑁𝑝 + 10𝑁𝑝 log2(𝑁𝑝) + 6𝑁𝑝

2 (15) 
 

For the proposed zFAM (in the same conditions), one gets: 

 

𝐹𝑧𝐹𝐴𝑀1𝑄
= 154𝑁𝑝 + 40𝑁𝑝 log2(𝑁𝑝) + 6𝑁𝑝

2 + 12 (16) 
 

Fig. 11 shows the FLOP ratio𝐹𝑧𝐹𝐴𝑀1𝑄
𝐹𝐹𝐴𝑀1𝑄
⁄  as a function of 

𝑁𝑝 and for 𝑁𝑝 ≥ 64 (in a practical situation, 𝑁𝑝 will be high). 

As expected, the proposed zFAM has a higher computational 

cost than the FAM algorithm due to the high computational 

cost required by the CTA transform. Nevertheless, for high 

𝑁𝑝, both algorithms show similar cost due to the dominance 

of the 𝑁𝑝
2 term in the total number of operations. 

 

 
Fig. 11. Comparison of the FAM and zFAM algorithms (FLOP 

ratio) for the first-quadrant computation of the SCF (no zoom/local 

region). 

 

However, the zFAM algorithm is not tailored to address the 

computation of the entire region of support of the SCF but to 

a zoom/local subregion. Assume we wish to compute the SCF 

in a subregion defined in the spacing interval of the frequency 

and cycle frequency Δ𝑓 × Δ𝛼 with 𝑁𝑝
′ × 𝑁𝑝

′  points grid, as 

shown in Fig. 12, and also assume an equal dimension 

subregion, i.e., Δ𝑓 = Δ𝛼. 

 

-𝑓𝑠 2  

𝑓𝑠   -𝑓𝑠   

𝑓  

𝛼  

𝑓𝑠 2  

Δ𝛼  

Δ 𝑓 

𝑁𝑝
′ × 𝑁𝑝

′  points 

subregion 

 
Fig. 12. Zoom region to compute the SCF. 

 

For the proposed zFAM, and using the results from Table III, 

we have 𝐿 = 1, and, considering the worst case of a Dual 

CTA, 𝑁𝑝𝐷𝑢𝑎𝑙 𝐶𝑇𝐴 = 3𝑁′𝑝 + 1 and 𝐿𝐶𝑇𝐴 = nextfftlength(4𝑁′𝑝) =

4𝑁′𝑝 assuming 𝑁′𝑝 is a power-of-two. The total number of 

FLOPs is: 

 

𝐹𝑧𝐹𝐴𝑀 = 300𝑁′𝑝 + 80𝑁′𝑝 log2(𝑁′𝑝) + 6𝑁′𝑝
2 + 24 (17) 

 

For the FAM, we will need the computation of the first FFT 

and phase-compensation of the entire frequency range array. 

Assuming the initial spacing of 𝑓𝑠 𝑁𝑝⁄ , the total number of 

points in the FFT is now 𝑁𝑝𝑁𝑝
′ . Using the results from Table 

III, one gets: 

 

𝐹𝐹𝐴𝑀 = 6𝑁𝑝 + (5𝑁𝑝𝑁𝑝
′ log2(𝑁𝑝𝑁𝑝

′ ) + 6𝑁𝑝𝑁𝑝
′  ) + 6𝑁 ′

𝑝
2

+ 2𝑁𝑝
′  

(18) 

 

In this case, the correspondence of the needed complex 
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demodulates obtained after the first FFT and phase-

compensation would have to be obtained for the specific 

points (𝑓𝑖; 𝛼𝑖) of the SCF in the subregion. Further, the 

coverage of this subregion will not be regular, as in the case 

of complete first-quadrant computation of the SCF using the 

FAM algorithm. 

Although there is no general relation between 𝑁𝑝 and 𝑁𝑝
′ , we 

will usually be interested in a high zoom SCF, so that 𝑁𝑝𝑁𝑝
′  

is high. This way, we will compare the computational cost 

when using FAM or zFAM for high 𝑁𝑝 and 𝑁𝑝
′ . 

Fig. 13 shows the FLOP ratio𝐹𝑧𝐹𝐴𝑀 𝐹𝐹𝐴𝑀⁄  as a function of 

𝑁𝑝 for several local region dimension (𝑁𝑝
′ ). As can be seen, 

the zFAM has a much lower computation cost than FAM, 

being lower than 5% (compared to FAM) for 𝑁𝑝 ≥ 210. 

Another recent method to compute the SCF only on a 

subregion on the (𝑓; 𝛼) plane was proposed in [17] with low 

computational cost by using a Sliding Discrete Fourier 

Transform scheme. This method allows the computation of a 

DFT bin (complex demodulates) with only two complex 

adders and one complex multiplier, although needing a 

memory buffer with size equal to the FFT length, 𝑁𝑝. The 

subregion is defined by some frequency bandwidth, 𝐵, and 

cyclic frequency [0; 𝛼max], therefore not as flexible as the 

zFAM algorithm proposed. Also, as in the previous case, to 

obtain the SCF in a zoomed region with 𝑁𝑝
′  points, the FFT 

size would be 𝑁𝑝𝑁𝑝
′ , so the memory requirements could 

become prohibitively high. Nevertheless, due to its low 

computational cost, it should be considered when using lower 

dimension subregions. 

IV. ZFAM SIMULATION EXAMPLES 

We will use the zFAM to obtain the SCD on a zoom region 

of the (𝑓; 𝛼) plane for the same case considered in section IIB.  

In a zoom region around (𝑓𝑖 ; 𝛼𝑖) = (𝑓𝑐1; 𝑓𝑠𝑦𝑚1
), with 𝑁𝑝 = 256 

points, the cyclostationary feature is now clearly obtained, as 

shown in Fig. 14. Using the FAM algorithm, with equal 𝑁𝑝 

and similar computational cost, that feature could not be 

detected (Fig. 4). As seen in section IIIB, this feature could 

only be obtained by the FAM for 𝑁𝑝 = 216, which corresponds 

to about 10 times the zFAM cost. 

 
Fig. 13. Comparison of the FAM and zFAM algorithms (FLOP 

ratio) for a zoom/local region of the SCF with varying 𝑁𝑝
′ . 

 

 

 
Fig. 14. Zoom SCF for two-channel QPSK communication (𝑁𝑝 =

256, 𝑃 = 2000, 𝑓𝑠 = 18 MHz) with 𝑓𝑠𝑦𝑚1
= 1 Msps, 𝑓𝑐1 = 1 MHz, 

𝑓𝑠𝑦𝑚2
= 2.25 Msps, 𝑓𝑐2 = 5 MHz (obtained by zFAM, around 

(𝑓𝑖 ; 𝛼𝑖) = (𝑓𝑐1; 𝑓𝑠𝑦𝑚1
)). 

 

Also, as illustrated in Fig. 15, in a zoom region around 

(𝑓𝑖 ; 𝛼𝑖) = (𝑓𝑐2; 𝑓𝑠𝑦𝑚2
), with 𝑁𝑝 = 256 points, the 

cyclostationary feature of the second channel is also clearly 

obtained (As shown in Fig. 4, the FAM could also detect this 

feature with similar computational cost). 

For the case with receiver sampling frequency deviation, as 

shown in Fig. 7 for the FAM algorithm, the cycle signatures 

vanished with 𝑁𝑝 = 256. Now, using our zFAM algorithm, for 

the zoom region around (𝑓𝑖; 𝛼𝑖) = (𝑓𝑐1; 𝑓𝑠𝑦𝑚1
) delimited by the 

corresponding square as in Fig. 12, with 𝑁′𝑝 = 256, one 

obtains the SCF shown in Fig. 16, where the cycle feature is 

now visible. For this case, and from Fig. 13, with 𝑁𝑝 = 𝑁𝑝
′ =

256, zFAM takes only about 10% the computational time of 

FAM. 

 

 
Fig. 15. Zoom SCF for two-channel QPSK communication (𝑁𝑝 =

256, 𝑃 = 2000, 𝑓𝑠 = 18 MHz) with 𝑓𝑠𝑦𝑚1
= 1 Msps, 𝑓𝑐1 = 1 MHz, 

𝑓𝑠𝑦𝑚2
= 2.25 Msps, 𝑓𝑐2 = 5 MHz (obtained by zFAM, around 

(𝑓𝑖 ; 𝛼𝑖) = (𝑓𝑐2; 𝑓𝑠𝑦𝑚2
)). 
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Fig. 16. Zoom SCF obtained by zFAM in the square region of the 

cycle feature with receiver sampling frequency deviation. 

V. CONCLUSION 

Performing a (possibly) wideband spectrum sensing and 

detection involves analyzing a large frequency swath to carry 

out cyclic feature detection. But, generally, only a small 

region of the (𝑓; 𝛼) plane contains these features. This led to 

the search for an adaptation or modification of the known 

FAM algorithm to efficiently obtain the SCF in a zoom/local 

sub-band of the entire plane. The zoom FAM (zFAM) 

algorithm has been proposed and detailed, and its 

computational cost was compared to the original FAM. When 

the entire (𝑓; 𝛼) plane needs to be computed, the FAM is 

naturally more efficient than the zFAM. However, for 

practical cases, when analysis of a small fraction of the 

(𝑓; 𝛼) plane is needed, the zFAM can perform significantly 

better than the FAM algorithm, reaching less than 5% of the 

FAM computational cost in many cases. 
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APPENDIX A 

FREQUENCY SPACING AND NUMBER OF POINTS NEEDED FOR 

THE DUAL CTA 

 

Given the set of points (𝑓𝑖 ; 𝛼𝑖) = (𝑓𝑖1 + 𝑛
Δ𝑓

𝑁𝑝
; 𝛼𝑖1 +𝑚

Δ𝛼

𝑁𝑝
) and 

the correspondence {
𝑓𝑙 = 𝑓𝑖 − 𝛼𝑖 2⁄

𝑓𝑘 = 𝑓𝑖 + 𝛼𝑖 2⁄
, we get 

 

 

(𝑓𝑘; 𝑓𝑙) = (𝑓𝑖1 +
Δ𝑓

𝑁𝑝
𝑛 +

𝛼𝑖1
2
+

Δ𝛼

2𝑁𝑝
𝑚;𝑓𝑖1 +

Δ𝑓

𝑁𝑝
𝑛 −

𝛼𝑖1
2

−
Δ𝛼

2𝑁𝑝
𝑚) 

 

(19) 

We then must guarantee that a constant spacing on 𝑓𝑘, Δ𝑓
𝑘
, 

and 𝑓𝑙, Δ𝑓𝑙, covers all points defined in (19) and also that Δ𝑓
𝑘
 

and Δ𝑓
𝑙
 are the maximum possible to minimize the number of 

points needed. Both conditions are met if:  

 

𝑓𝑘 −min(𝑓𝑘)

Δ𝑓𝑘
=

Δ𝑓
𝑁𝑝
𝑛 +

Δ𝛼
2𝑁𝑝

𝑚

Δ𝑓𝑘
 

𝑓𝑙 −min(𝑓𝑙)

Δ𝑓𝑙
=

Δ𝑓
𝑁𝑝
𝑛 +

Δ𝛼
2𝑁𝑝

(𝑚 + 𝑁𝑝)

Δ𝑓𝑙
 

 

and the number of points is: 

𝑁𝑝1 =
max(𝑓𝑘,𝑙) −min (𝑓𝑘,𝑙)

Δ𝑓𝑘,𝑙
+ 1 

The two cases considered: Δ𝛼 = 𝐿Δ𝑓 and Δ𝑓 = 𝐿Δ𝛼 (𝐿 

integer) are analyzed, in the following. 

 

• Case 𝚫𝜶 = 𝑳𝜟𝒇 
 

In this case 

𝑓𝑘 −min(𝑓𝑘)

Δ𝑓𝑘
=

Δ𝑓
𝑁𝑝
𝑛 +

Δ𝛼
2𝑁𝑝

𝑚

Δ𝑓𝑘
=

Δ𝑓
𝑁𝑝
(𝑛 +

L
2
𝑚)

Δ𝑓𝑘
 

 

𝑓𝑙 −min(𝑓𝑙)

Δ𝑓𝑙
=

Δ𝑓
𝑁𝑝
𝑛 −

Δ𝛼
2𝑁𝑝

(𝑚 + 𝑁𝑝)

Δ𝑓𝑙

=

Δ𝑓
𝑁𝑝
(𝑛 +

L
2
(𝑚 +𝑁𝑝))

Δ𝑓𝑙
 

 
To guarantee both are integer and minimum, for the possible 

values of 𝐿, we have two cases: 

 

o 𝑳 even (𝑗 = 𝐿 2⁄  is an integer) 
 

𝑓𝑘 −min(𝑓𝑘)

Δ𝑓𝑘
=

Δ𝑓
𝑁𝑝
(𝑛 +

L
2
𝑚)

Δ𝑓𝑘
=

Δ𝑓
𝑁𝑝
(𝑛 + 𝑗 × 𝑚)

Δ𝑓𝑘
 

 

𝑓𝑙 −min(𝑓𝑙)

Δ𝑓𝑙
=

Δ𝑓
𝑁𝑝
(𝑛 + 𝑗 × (𝑚 + 𝑁𝑝))

Δ𝑓𝑙
 

 

So, to guarantee that both are integer and minimum, one 

must have Δ𝑓
𝑘
=

Δ𝑓

𝑁𝑝
 and Δ𝑓

𝑙
=

Δ𝑓

𝑁𝑝
. 

The number of points is 𝑁𝑝1 =
max(𝑓𝑘)−min (𝑓𝑘)

Δ𝑓𝑘
+ 1 =

Δ𝑓+
Δ𝛼

2
Δ𝑓

𝑁𝑝

+

1 = 𝑁𝑝 (
𝐿

2
+ 1) + 1. 

 

In this case, the available points are: 

  

(𝑓𝑘; 𝑓𝑙) = (𝑓𝑖1 +
𝛼𝑖1
2
+

Δ𝑓

𝑁𝑝
𝑘; 𝑓𝑖1 −

𝛼𝑖1
2
+

Δ𝑓

𝑁𝑝
𝑙). 

 

Therefore, using (19) gives: 
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{
 
 

 
 𝑓𝑖1 +

Δ𝑓

𝑁𝑝
𝑛 +

𝛼𝑖1
2
+

Δ𝛼

2𝑁𝑝
𝑚 = 𝑓𝑖1 +

𝛼𝑖1
2
+

Δ𝑓

𝑁𝑝
𝑘

𝑓𝑖1 +
Δ𝑓

𝑁𝑝
𝑛 −

𝛼𝑖1
2
−

Δ𝛼

2𝑁𝑝
𝑚 = 𝑓𝑖1 −

𝛼𝑖1
2
+

Δ𝑓

𝑁𝑝
𝑙

 

 

which leads to (as Δ𝛼 = 𝐿𝛥𝑓): 
 

{
𝑘 = 𝑛 +

𝐿

2
𝑚

𝑙 = 𝑛 +
𝐿

2
(𝑁𝑝 −𝑚)

 

 

o 𝑳 odd (𝑗 = (𝐿 − 1) 2⁄  is an integer) 

 

𝑓𝑘 −min(𝑓𝑘)

Δ𝑓𝑘
=

Δ𝑓
𝑁𝑝
(𝑛 +

L
2
𝑚)

Δ𝑓𝑘
=

Δ𝑓
𝑁𝑝
(𝑛 + 𝑗 × 𝑚 +

𝑚
2
)

Δ𝑓𝑘
 

 

𝑓𝑙 −min(𝑓𝑙)

Δ𝑓𝑙
=

Δ𝑓
𝑁𝑝
(𝑛 + 𝑗 × (𝑚 + 𝑁𝑝) +

(𝑚 + 𝑁𝑝)
2

)

Δ𝑓𝑙
 

 

So, to guarantee that both are integer and minimum, one 

must have Δ𝑓
𝑘
=

Δ𝑓

2𝑁𝑝
 and Δ𝑓

𝑙
=

Δ𝑓

2𝑁𝑝
. 

The number of points is 𝑁𝑝1 =
max(𝑓𝑘)−min (𝑓𝑘)

Δ𝑓𝑘
+ 1 =

Δ𝑓+
Δ𝛼

2
Δ𝑓

2𝑁𝑝

+

1 = 𝑁𝑝(𝐿 + 2) + 1. 

 

In this case, the available points are: 

 

(𝑓𝑘; 𝑓𝑙) = (𝑓𝑖1 +
𝛼𝑖1
2
+

Δ𝑓

2𝑁𝑝
𝑘; 𝑓𝑖1 −

𝛼𝑖1
2
+

Δ𝑓

2𝑁𝑝
𝑙). 

 

Using (19), and, as Δ𝛼 = 𝐿𝛥𝑓, leads to: 

 

{

𝑘 = 2𝑛 + 𝐿𝑚

𝑙 = 2𝑛 + 𝐿(𝑁𝑝 −𝑚)
 

 

• Case 𝚫𝒇 = 𝑳𝚫𝛂 
 

In this case 

𝑓𝑘 −min(𝑓𝑘)

Δ𝑓𝑘
=

Δ𝑓
𝑁𝑝
𝑛 +

Δ𝛼
2𝑁𝑝

𝑚

Δ𝑓𝑘
=

Δ𝛼
𝑁𝑝
(𝐿𝑛 +

𝑚
2
)

Δ𝑓𝑘
 

 

𝑓𝑙 −min(𝑓𝑙)

Δ𝑓𝑙
=

Δ𝑓
𝑁𝑝
𝑛 −

Δ𝛼
2𝑁𝑝

(𝑚 + 𝑁𝑝)

Δ𝑓𝑙
=

Δ𝛼
𝑁𝑝
(𝐿𝑛 +

(𝑚 + 𝑁𝑝)
2

)

Δ𝑓𝑙
 

 
To guarantee that both are integer and minimum, we must have 

Δ𝑓
𝑘
=

Δ𝛼

2𝑁𝑝
 and Δ𝑓

𝑙
=

Δ𝛼

2𝑁𝑝
. 

The number of points is 𝑁𝑝1 =
max(𝑓𝑘)−min (𝑓𝑘)

Δ𝑓𝑘
+ 1 =

Δ𝑓+
Δ𝛼

2
Δ𝛼

2𝑁𝑝

+

1 = 𝑁𝑝(2𝐿 + 1) + 1. 

 

Therefore, the available points are: 
 

(𝑓𝑘; 𝑓𝑙) = (𝑓𝑖1 +
𝛼𝑖1
2
+

Δ𝛼

2𝑁𝑝
𝑘; 𝑓𝑖1 −

𝛼𝑖1
2
+

Δ𝛼

2𝑁𝑝
𝑙). 

 

So, using (19), and, as Δ𝑓 = 𝐿𝛥𝛼, leads to 

 

{

𝑘 = 2𝐿𝑛 +𝑚

𝑙 = 2𝐿𝑛 + (𝑁𝑝 −𝑚)
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