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Abstract. This paper states how to profit from 5P’s arrows formalism
to go from a text with its surface structure to a chosen semantic rep-
resentation. We emphasize on this formalism flexibility both to connect
models and to define sets of conditions (over that connections) that will
trigger semantic functions.

1 Introduction

5P ([4], [3]) is a paradigm which goals are much the same than the ones of
other linguistics approaches for the study and processing of Natural Language
(NL). However, these same goals are reached in particular ways. This paper
states how to take advantage of 5P’s arrows formalism to go from syntax to
semantics. We start by presenting the 5P ingredients. Then, we explain how
we use the arrows formalism to connect models and to define sets of conditions
(over that connections) to which semantic functions are associated. Finally, we
present an example of application having First Order Logic (FOL) and Discourse
Representation Structures (DRS) as representation targets.
We would like to make clear that we make our own interpretation/use of this
paradigm, which does not necessarily reflect that of 5P.

2 Some 5P ingredients

Nuclear phrases are very close to Abney’s chunks [1] (see [6] for a detailed ex-
planation of how to identify nuclear phrases and a comparison with chunks and
other similar structures). In the linguistic descriptions made within 5P, nuclear
phrases play an important role, as they have (among others) the useful charac-
teristic of not having internal recursivity if coordination is excluded [5].
5P offers a formalism allowing to describe sequences verifying a set of properties
([3]). These sequences – nuclear or non nuclear phrases, etc. – are called models.
In order to connect models, 5P offers the arrows properties, that we following
present within our own interpretation/extention (see [3] for details over the ori/-
ginal formalism).
A basic arrow property expresses a link between two syntactic elements (the
source and the target) within a model (the current model). As an example, if we



have a nominal nuclear phrase (nn), and an adjectival nuclear phrase (an) inside
a nominal phrase (n) and, moreover, an relates with nn, we say that an arrows
nn in n and we write an →n nn, being: a) an the source; b)nn the target; c)n the
current model. In order to add more expressiveness to this formalism, it can be
extended with restrictions over the:

– current model (ex: an →n nn [restrictions over n])
– source or target1(ex: an(restrictions over an)→nnn(restrictions over nn))
– upper model (ex: an →n nn ↑[restrictions over the model above n])

Each restriction set is divided in 2 sets, separated by a slash (/): a set of restric-
tions to satisfy and a set of restrictions that can not be verified.
These restrictions can be of one of the following types (adj is for adjective, pn for
prepositional nuclear phrase, det for determiner and vn to verbal nuclear phrase):

– existence: x (ex: an(adj/) →n nn [/pn] (adj exists in an. pn doesn’t in n));
– nuclear: ◦x (ex: det →nn adj [◦adj/] (adj exists in nn and is the nucleus));
– linear: x <∗ y if x precedes y (x < y, if x immediately precedes y)(ex: an →n

nn [nn <∗ an/] (both nn and an exists in n. nn precedes an));
– arrowing: x → y (ex: an →n nn [pn→nn/](pn, nn exist in n. pn arrows nn)).

3 Connecting models

Consider the classic example Saw the man in the house with a telescope. As Allen
says in [2], there are five interpretations arising from the different attachments.
By retrieving nuclear phrases, we obtain:

(saw)vn (the man)nn (in the house)pn (with a telescope)pn
By using the following arrows properties2:

nn →s vn, pn →s vn | nn, pn’ →s pn [pn <s pn’]
the 5 hypotheses are obtained, without having to duplicate the basic syntactic
structures (in all nn →s vn):

H1:pn →s vn, pn’ →s vn, H2:pn →s vn, pn’ → pn, H3:pn →s nn, pn’ →s vn,
H4:pn →s nn, pn’ →s nn, H5:pn →s nn, pn’ →s pn

However, with these arrows, a sixth interpretation, corresponding to a false am-
biguity3, becomes possible: pn →s vn, pn →s nn. By adding restrictions over the
arrows, this solution would be avoided. Alternatively, accepting that no arrows
crossing is allowed, this sixth hypothesis is no longer possible.

4 From Syntax to Semantics

Associating semantic functions to syntactic rules is a classic procedure in NL
processing. It was started by Montague, being [8] a good illustration of this
1 If they are models, and not categories.
2 The vertical slash denotes “or”, and we use pn’ to distinguish the pn on the left (pn)

from the one on the right (pn’).
3 Someone (in the house) saw a man who had a telescope.



method. Nowadays, it is still used in most prominent theories. However, and as
pointed in [4], there are no syntactic rules in 5P, in the sense of conventional
grammar rules, i.e., representing part of a tree structure. From this, we can say
that 5P does not allow the association of semantic rules with syntactic rules, for
the simple reason that it has no syntactic rules. So, the question is, over which
structures will semantic functions operate? The answer is very simple: over the
arrows properties4. As an example, if a arrows b in c defines a syntactic context,
a semantic function f can be associated with it5, and we note it by:

a →c b: f c(b, a)
Notice that a syntactic context can be defined over a set of arrows:

a1,..., an →c b: f c(b, a1, ..., an)
Due to the extended arrows formalism, the conditions that trigger semantic
functions can be very precise. As an example in Portuguese, consider the an
algum. algum means some, but if this an appears after the nn, it means none6.
We express this with:

algum→analgum[nn<an/]: f an(algum)7 and algum→analgum: gan(algum)
The next example shows how this formalism allows dispensing with labels. Con-
sider the sentence (Jones)nn (owns)vn (Ulysses)nn from [7]. If we decide that
our surface structure only has nuclear phrases, we obtain the two nn at the same
level. Nevertheless, the first nn is the subject, and the second the object8, and
we want to be able to distinguish them, as this will have obvious influence in
the semantic results. So, if we use the following arrows, we are able to associate
with each one the appropriate semantic function:

nn→svn[nn<vn]: gs(vn,nn)(subject), and nn→svn[vn<nn]:hs(vn,nn)(object)
That is, without having to add extra labels, the subject and the object are
identified by their own syntactic properties.

5 Semantic functions

We now show how to go from a text in which the nuclear phrases were identified,
to a semantic representation (either in FOL or DRS).
Continuing with the example from the previous section, consider that the seman-
tic associated with the nn Jones is Jones(z) and with the vn owns is owns(x,
y). These will help us to illustrate the following functions:

– θ(A) returns the semantics associated with A (ex: θ(Jones) = Jones(z));
– absi(A) returns the ith variable associated with θ(A)(ex: abs1(vn) = x,

abs2(vn) = y and abs1(nn) = z);
– [X/Y]S replaces Y by X in S (ex: [abs1(vn)/abs1(nn)]θ(nn) = [x/z]Jones(z)

= Jones(x));
4 In 5P, they say that a set of arrows originates a graph, which is the input to semantic

functions [3].
5 We say that the syntactic condition a →c b triggers the semantic function f c(b, a).
6 (algum)an(rapaz )nn means some boy, and (rapaz )nn (algum)an means no boy.
7 If a →b a, instead of f b(a, a) we note the associated semantic function as f b(a).
8 Note that we are not considering the passive voice.



– add({x1, ..., xm}, j, S) adds θ(x1), ..., θ(xm) to S (which can be a formula,
a DRS, etc.), in position j (undetermined ( ) or with a precise meaning) (ex:
being given the drs = ({x, y}, {})9, then add({θ(vn)}, 2, drs) = ({x, y},
{owns(x, y)})).

Consider the following three syntactic contexts/semantic functions pairs:
nn→svn [nn<vn]: gs(vn, nn), nn→svn [vn<nn]: hs(vn, nn), vn→svn: f s(vn).

Take FOL as the representation language. If F = ∅, by defining the functions as:
(1)f s(vn) = add({θ(vn)}, , F)
(2)gs(vn, nn) = add({[abs1(vn)/abs1(nn)]θ(nn)}, , F)
(3)hs(vn, nn) = add([abs2(vn)/abs1 (nn)]θ(nn), , F)

we obtain: F =(1) {owns(x, y)} =(2) {Jones(x), owns(x, y)} =(3) {Jones(x),
owns(x, y), Ulysses(y)}10.
Take now DRS’s. If drs = ({}, {}), 1 denotes the set of reference markers, 2 the
conditions set, and the functions are defined as:

(1)f s(vn) = add({abs1(vn), abs2(vn)}, 1, add(θ(vn), 2, drs))
(2)gs(vn, nn) = add([abs1(vn)/abs1(nn)]θ(nn), 2, drs)
(3)hs(vn, nn) = add([abs2(vn)/abs1(nn)]θ(nn), 2, drs)

we obtain: drs =(1) ({x, y}, {owns(x, y)}) =(2) ({x, y}, {Jones(x), owns(x,
y)})=(3) ({x, y}, {Jones(x), owns(x, y), Ulysses(y)})

6 Conclusions and further work

We showed how to profit from 5P arrows formalism, which, enriched with re-
strictions, is used both to connect models and to precise syntactic triggers to the
semantic analysis. As future work, we will continue to explore this formalism’s
potentialities.
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