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Abstract

In this thesis, an Automatic Speech Recognition system for large vocabulary (more than 10000 words)

tasks is presented. This system is intended to run on resource-constrained mobile devices such as PDAs

and is based on Audimus, a hybrid Hidden Markov Model / Multi Layer Perceptron based speech rec-

ognizer, tailored for the European Portuguese language. The system’s main goal is to ease interaction

with these devices by adding a speech interface.

The present thesis describes the progressive porting of the speech recognition system from the desk-

top computer to the mobile device. The main components of the system (feature extraction, acous-

tic model, and decoder) were progressively ported to the mobile device, producing intermediate Dis-

tributed Speech Recognition systems. To overcome the limitations of the devices, it was necessary to

choose appropriate algorithms and to balance the speed and memory use of the system with its perfor-

mance in terms of word error rates (WER). The final system had the same characteristics as the baseline

system.

The obtained system was tested in a 520 MHz Pocket PC with 64 MB of RAM running Windows Mo-

bile 6.0. The tests used a continuous, 13,161-word radiology task with existing language models. The

baseline system, tested with audio recorded with the PDA’s internal microphone and with a speaker

and microphone adapted acoustic model, achieved an average WER of 3.75%. The two intermediate

distributed systems had WER of 3.80% and 4.71%, respectively, while the final embedded system pre-

sented an average WER of 7.77%, running at 0.71x RT.





Resumo

Nesta tese apresenta-se um sistema de reconhecimento de fala para tarefas com grandes vocabulários

(mais de 10000 palavras). Este trabalho baseia-se no Audimus, um reconhecedor de fala para o Português

Europeu. O sistema desenvolvido tem como alvo dispositivos de baixos recursos computacionais como

PDAs, e como principal objectivo facilitar a interacção entre humanos e dispositivos ao adicionar uma

vertente de fala.

Esta tese descreve a progressiva adaptação do sistema do computador para o dispositivo móvel.

Os seus principais componentes (extracção de caracterı́sticas, modelo acústico, e descodificador) foram

progressivamente transferidos para o dispositivo, obtendo-se um conjunto de sistemas distribuı́dos in-

termédios. Para tal, foi necessário ultrapassar as limitações de recursos dos dispositivos alvo, através de

uma optimização cuidada dos algoritmos, e de tradeoffs entre os erros de transcrição do sistema e o seu

tempo de execução. O sistema final mantém as caracteristicas do sistema inicial.

O sistema obtido foi testado num PDA com um processador a 520 MHz e 64 MB de RAM, exe-

cutando o Windows Mobile 6.0. Utilizou-se uma tarefa de radiologia, com 13161 palavras, contı́nua e

adaptada ao falante. Com áudio gravado com o microfone do PDA e um modelo acústico adaptado ao

falante e ao microfone, o sistema inicial (no PC) apresenta uma taxa de erro de 3,75%, ao passo que os

dois sistemas distribuı́dos intermédios têm 3,80% e 4,71%, respectivamente, e o sistema final apresenta

um erro de 7,77%, executando numa fracção (0,71) do tempo real.
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1Introduction

In recent years, mobile devices such as mobile phones and PDAs have acquired great importance in our

lives, because they enable their users to be integrated with the world everywhere and at any time. The

ease of interaction with these devices is a very important factor, but their size makes it very difficult to

design effective input devices. In this respect, speech recognition offers an alternative to the traditional,

unmanageable input devices such as small keyboards or stylus pens.

Automatic Speech Recognition (ASR) systems attempt to transcribe human speech into words.

Speech recognition is a complex task, and ASR systems usually integrate knowledge from many dif-

ferent sources, usually including models of the acceptable sentences in the language, as well as word

pronunciation models, building up a large search space that combines this knowledge. ASR systems

are complex enough for modern workstations, where they sometimes occupy hundreds of megabytes

of RAM, let alone for mobile devices such as PDAs. For this reason, traditionally, many ASR systems

for low-resource devices have been limited to small-vocabulary tasks, such as the recognition of a list of

names for phone dialing.

Mobile devices have not followed Moore’s law in the last decade - doubling their speed every

18 months - mainly due to problems with energy consumption, which is limited due to the need to

conserve battery life. Their processing capabilities, however, have been slowly but steadily increasing: a

typical PDA currently (as of 2008) has between 32 and 128 MB of RAM, with processors with speeds in

excess of 400 MHz, that sometimes include specialized instructions to accelerate multimedia processing

. This opens up a new set of processing-intensive applications, like video and audio processing, games,

or speech recognition, that were previously very difficult to implement in these devices. These new

applications enrich user experience and lift some of the barriers previously hampering the widespread

adoption of mobile devices.

Besides mobile phones and PDAs, many other applications can benefit from low-resource speech

recognition systems, such as robots that can listen and respond to a user, car navigation systems and

computer game consoles, for instance.



1.1 Goals

The current work’s primary goal is to port an Automatic Speech Recognition System, Audimus (Meinedo

et al., 2003), to mobile devices such as PDAs or mobile phones. This implies adapting the underlying

algorithms in order to keep performance as high as possible, in terms of error rates and task sizes (the

target being to be able to use large vocabulary models in the embedded system, of about ten thousand

words), considering the resource constraints of these devices. The obtained system has to be able to

work at near real time or, preferably, under real time, for the largest task it is supposed to handle. The

completed system will use all the available memory in the device - in contrast with some systems which

attempt to have minimal memory footprint - so that it is possible to take advantage of models of maximal

size.

To realize this goal, it was decided to port the Audimus system by transferring each of its composing

blocks sequentially (feature extraction, acoustic model, and finally decoder). In order to achieve this, it is

necessary to distribute the processing between the system that is currently working and the system that

is being built in the mobile device. In the beginning, the processing is all done in the desktop computer,

being progressively moved to the device. In the end, the system as a whole resides in the mobile device.

The systems that arise from these intermediate steps are known as Distributed Speech Recognition

(DSR) systems. These are the intermediate or secondary goals of the thesis, which were considered less

important than its primary goals. Some of the problems that must be addressed if DSR systems are to

work in realistic networks were therefore not considered in this thesis; the networks were chosen so as

to simplify the problem to be addressed.

1.2 Target device and operating system

This section describes the target device and its operating system, in order to motivate the main problems

that this thesis purports to solve.

1.2.1 Target device

The target device is a 520 MHz PocketPC, with 64 MB of RAM and 128 MB ROM running Windows

Mobile 6.0. It is equipped with a processor (PXA270x) (Intel, 2004) of the XScale family, with a core based

on the ARM920T. This is a microprocessor with no integrated floating-point capabilities, but which

includes some DSP (Digital Signal Processing) capabilities in the Wireless MMX extensions (Paver et

al., 2003). The PXA270x also does not possess a division instruction - this is common in embedded

microprocessors in order to save chip area and energy consumption.
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As said above, the processor of the target device has no integrated floating-point capabilities. Em-

ulating the inexistent floating-point units through software incurs a slowdown of about 10x, which

renders them unacceptable for applications that are processing intensive in terms of arithmetic opera-

tions. This is the case of most components of the Audimus system. The solution is the use of fixed point

computations in all arithmetic operations. Library functions that rely on floating point operations must

be reimplemented to remove that dependency.

Also, the 100 MHz memory bus is a limiting factor in terms of bandwidth, since only 100 million

words (at best) can be read from the main memory in one clock cycle, but the memory latency is perhaps

a more constraining factor, since a word takes several dozens of CPU cycles to arrive, counted from the

clock cycle in which it is requested.

1.2.2 Operating system

The operating system, Windows Mobile 6.0, is based on Windows CE 5.2’s kernel, meaning that it has

several limitations that are not present in its desktop version . The aspects that are the most relevant for

the work in this thesis include:

• A hard limit of 32 to the number of processes and threads that can be active at each time - the

thread, not the process, is the basic execution unit. Audimus uses several threads, in particular,

at least one for each component of the system. This limit can thus be a problem, in special if a

sufficiently large number of other processes is used simultaneously in the system.

• More importantly, there is a limit of 32 MB of usable address space (virtual memory space) per

process. This includes process code, data and loaded libraries. This problem is aggravated by the

fact that DLLs must be loaded at the same address across all processes, meaning that DLLs loaded

for one process “pollute” the address space of other processes. In practice, there is often about

14-18 MB of virtual memory space available at program startup. In this case, it also becomes a

significant problem because the target device has 64 MB of RAM, of which about 30 MB are free

for use by user programs at startup. Windows Mobile 7, based on Windows CE 6.0, solves the

problem by offering each process a 2 GB address space, but it will only be available by the end of

2009.

• The number of usable handles, which include sockets, files, global synchronization objects (mu-

texes, semaphores, critical sections), and other resources, is also limited to 512. Audimus uses

threads and therefore synchronization objects intensively, but as long as it is contained in a single

process, the use of global synchronization objects can be mostly avoided; the use of temporary

files must also be controlled so that it does not exhaust the system resources.
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1.3 The network

The distributed system functions across an ideal network which does not lose, corrupt, or reorder pack-

ets. Networks using TCP/IP transport are, from the application’s viewpoint, close enough to these ideal

properties, and were therefore used for this thesis. Also, it is assumed that the network that is used

has enough bandwidth to support the transmission of all these features without problems. A Wire-

less 802.11g network was chosen, which at 54 Mbps, has more than enough bandwidth to enable the

transmission of speech sampled at 44 KHz, with 16-bit resolution. Finally, the network considered is

assumed to have low latency, to make real time recognition possible. In realistic networks, it is difficult

to guarantee a hard upper bound on latency.

These assumptions are formulated so that it is possible to avoid focusing on packet loss mitiga-

tion, feature quantization, and error correction techniques that are outside the scope of this thesis, as

mentioned in section 1.1.

1.4 Thesis Overview

The thesis consists of seven chapters, organized in the following way:

In the second chapter, the state of the art in Automatic Speech Recognition (ASR) is presented.

After a brief introduction to ASR systems in general, the algorithms and techniques that have been

used to implement Distributed Speech Recognition (DSR) and Embedded Speech Recognition systems

are surveyed. The advantages and disadvantages of each of these two different approaches are also

compared.

The third chapter presents the Audimus ASR system, focusing on its different applications. It

then describes Audimus’ main components, with special emphasis on those which need to be ported

to achieve the goal of this thesis, serving as a basis for the two subsequent chapters.

The following two chapters ( chapters 4 and 5 ) are organized in a way that reflects the progressive

porting of the system to the mobile device; the order in which the components are presented is therefore

the same as the order in which they were ported to the mobile device.

The fourth chapter is centered on the distributed speech recognition systems that were produced as

intermediate system prototypes. It is concerned essentially with explaining the changes that had to be

made to the feature extraction and acoustic model computation algorithms in order to make them work

efficiently in the target device.

The fifth chapter analyses the final embedded system that was obtained. In particular, it describes

the porting of the last and most resource consuming component of the system, the decoder, that inte-
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grates all the knowledge sources available (acoustic model, lexicon, language model, for instance) and

finds the sentence that is the most likely to have been uttered by the speaker.

Both the fourth and the fifth chapters also include the results of the tests that were performed to

evaluate the quality of the distributed and embedded systems produced. In the fourth chapter, the

testing procedure, which is the same for all tests, is described. Then, in chapters 4 and 5, the results

pertaining to each of the chapters are presented and discussed.

In the sixth and final chapter of this thesis, some conclusions are drawn from the work in this thesis

and the results obtained in previous chapters. Possible future improvements to the present work are

also laid out.
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2State of the Art

2.1 An Introduction to Speech Recognition

2.1.1 Introduction

Speech recognition can be defined as a process through which a computer system acquires a speech

signal produced by a human speaker, possibly distorted by noise in the environment, and tries to re-

construct the utterance produced by the speaker. Humans are excellent at understanding other human

speakers; for machines, the problem is harder because they do not (usually) have access to or under-

stand clues such as facial expressions, gestures, and discourse context people use to extract meaning

from a voice signal.

The problem of perfectly recognizing an unrestricted sentence said by an arbitrary speaker in a

noisy environment is well beyond the capabilities of current systems, because problems such as back-

ground noise or different speaker pronunciations have not yet been solved satisfactorily. Also, many

systems force their users to speak in an unnatural way to achieve good recognition results; that is, they

are not well suited for spontaneous speech.

2.1.2 Classification of ASR systems

Speech recognition systems can be classified based on the complexity of the recognition task they are

supposed to undertake, which in turn can be defined by a set of orthogonal attributes (Young, S., 1995).

Some of the most important are:

2.1.2.1 Continuous/Discrete Systems

In continuous systems, in contrast with discrete or isolated-word systems, the speaker is not required to

pause between words, making it harder to segment the signal into words.
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2.1.2.2 Vocabulary Size

Systems can also be divided based on the size of the vocabulary to be recognized. Naturally, larger

vocabulary sizes can be used for richer and more complex tasks, but they also give the recognizer a

larger space to search through, which complicates the problem. For instance, a voice dialing system

may require a vocabulary containing just the ten digits (0-9) and a few control words (a very small vo-

cabulary). Medium sized vocabularies containing a few thousand words can be appropriate for some

tasks in a limited domain, for instance, a system for controlling appliances in a car. However, a system

that transcribes the broadcast news must consider a much larger vocabulary (tens or hundreds of thou-

sands of words), since the words spoken come from many different domains and issues. Intuitively,

the latter system will attain the largest word error rate (ratio between words incorrectly transcribed and

the total number of words), all other conditions being equal, since for each spoken word there are more

words to potentially be ’confused’ with.

2.1.2.3 Speaker Independence

It is possible to distinguish the systems on whether or not they are speaker independent, that is, on

whether they can, or not, achieve good recognition quality with speakers they have not been trained

with before. This is important because many systems need to be prepared to understand arbitrary

speakers, for example, systems that sell tickets for cinema, etc, while others may be trained to work

with only one or a few speakers, as may be the case of systems designed to work in mobile devices such

as PDAs. Speaker dependent systems may achieve higher recognition rates and be able to use smaller

models, because they are better adapted to the speaker they model.

Systems are usually speaker adapted in a process which involves the user reading a number of

predefined sentences. The system then aligns these sentences with the acoustic observations, using

them to train the acoustic models in the system.

2.1.3 Applications

Speech recognition systems can be used in a vast number of applications, a few of which are described

next.

2.1.3.1 Spoken Dialog Systems

Systems that engage in a conversation with an user in spoken natural language are an important research

area. These systems enable users to do away with the need to remember a complex interface, that would

be inadequate for many users and in many situations. Dialog systems can be classified based on who
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directs the conversation - the user, the system, or both - and, on another dimension, on the range of

vocabulary they support (McTear, 2002).

2.1.3.2 Dictation Systems

In dictation systems, an user dictates a text to the computer using spoken language instead of typing it

in the keyboard. Usually, these systems have large vocabulary models. While currently, these systems

are inferior for experienced keyboard users, who can type faster than they speak without introducing as

many errors as a dictation system would, they can be invaluable for novice computer users or in small

embedded devices where the input devices are of inferior quality.

2.1.3.3 Broadcast News Recognition

The automatic transcription of broadcast news is useful, for instance, to the hearing impaired, or to

search for news that have appeared in the past, but it requires large vocabulary models to be effective.

Audimus has been used for Broadcast News Recognition (Meinedo, H. and Neto, J. P., 2003) .

2.1.3.4 Speech-to-Speech Translation

These systems require a natural language processing and a text-to-speech module, and can be of in-

valuable help when people that speak different languages need to interact without an interpreter. They

are more computationally demanding than other systems because they use three complex modules. An

interesting example of an (embedded) two-way speech-to-speech system appears in (Hsiao et al., 2006),

which was tested by American forces in a war scenario in Iraq.

2.1.4 Current Speech Recognition Techniques

In the current section, the basics behind current state-of-the-art speech recognition systems are de-

scribed. A more detailed overview can be found in (Young, S., 1995). Speech recognition systems can

be seen as being made of several modules which act sequentially on the speech signal, in order to trans-

form it into a discrete sequence of words. A reasonable approach to solving this would be finding the

sequence of words which maximizes the probability of the observations having been generated by it; in

other words, we wish to find the word sequence W such that the probability P (O|W ) is maximal over all

possible word sequences. Calculating this probability is not straightforward, but using Bayes’ theorem

it is possible to write:

P (O|W ) =
P (W |O)P (W )

P (O)
(2.1)
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For each word sequence W, we can obtain estimates of the probability P (W ) by using, for instance,

a language model. We can also obtain estimates of the probability P (O|W ) by using an acoustic model.

Since we are maximizing for a constant observation, we can drop the P (O) dividing factor; this will not

affect the word sequence chosen.

The speech signal is usually first divided into several short, normally overlapping, windows of

between 5-20 milliseconds, and these windows are subsequently analyzed with signal processing tech-

niques such as Fourier Transforms which are aimed at ’extracting’ a low-dimensionality set of features

from the speech signal, that better represent it by abstracting from noise and speaker variability, among

other factors. Accordingly, the output of this initial processing phase is a number of feature vectors, one

for each window of speech. This allows us to work with a much more compact representation of the

observations.

The speech signal is now usually modeled as a Hidden Markov Model (HMM), which is basically a

set of states which emit observations, along with transition probabilities among the states and emission

probabilities. An introduction to HMMs and their use in speech recognition can be found in (Rabiner,

L.R., 2000). In this model, the probability of being in one state xi depends exclusively on the state xi−1;

also, the probability of emitting a given observation depends only on the current state. In an HMM

model, states are hidden in that one only has access to the observations - that is, it is not possible to

know which sequence of states generated a given set of observations. In the particular case of speech

recognition, the observations are the feature vectors and states represent, for example, the phones that

were spoken. Many systems use tri-phones as the states of the HMM because the acoustic realization of

a phone is context-dependent, that is, depends on the phones that precede and follow it.

The emission probabilities are calculated using an acoustic model. The acoustic model can be real-

ized as a classifier, such as a Multi-Layer Perceptron, as in Audimus, that maps the vectors obtained in the

feature extraction step to probabilities, leading to the hybrid HMM-MLP approach (Boulard & Morgan,

1994).The other usual way to implement the acoustic model is through the use of a Gaussian Mixture

Model (GMM) (Young, S., 1998). Gaussian Mixture Models model the probability distribution as a com-

bination of Gaussian distributions, being therefore most effective when the probability distribution is a

smooth (continuous) function.

Language models assign a probability to each word sequence, in order to filter out word sequences

that are not acceptable in the language being recognized. Most current systems employ n-gram models,

which use a context consisting of the n− 1 most recent words to condition the probability of the current

word . The probability of a word sequence in this model can be computed using equation 2.2:

P (w1 . . . wj) = P (w1)P (w2|w1) . . . P (wn−1|w1 . . . wn−2)
j∏

i=n

P (wi|wi−n+1 . . . wi−1) (2.2)
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N-gram models encode useful local language constraints, but fail to capture deeper, long distance

syntactic and semantic interactions. They are preferred to other alternatives, however, because the train-

ing process is relatively simple (essentially counting in the training set) and evaluation is very efficient,

as it can be done directly via equation 2.2. An alternative sometimes used in simpler systems (for exam-

ple, command recognition systems) is to use language models that directly enumerate all the possible

sentences.

Considering again the recognition problem as posed above, and since the model is stochastic, we

need to find the best path through the HMM that was constructed, that is, the path which is the most

likely to have generated the observations seen. In order to accomplish that, speech recognition systems

often use variations of algorithms such as the Viterbi algorithm (Ryan & Nudd, 1993) (a dynamic pro-

gramming algorithm built on the assumption that the best path over i observations must contain a best

path over i− 1 observations) or the A* algorithm (decoders built using this algorithm are also known as

stack decoders (Paul, 1992)).

Many current systems, of which Audimus is an example, approach the search space modeling prob-

lem by using Weighted Finite State Transducers (WFSTs) (Mohri et al., 2002). WFSTs are finite state

automata, in which the transitions have been augmented with an output symbol (to be output when the

WFST follows the transition) and a weight. In spite of only being able to describe weighted mappings

between regular languages, it is possible to express both the acoustic and language (n-gram) models

as WFSTs. WFSTs can benefit from most of the tools and operations available in finite state automata

(composition, inversion, minimization, determinization, etc.), to represent all the search space in a sin-

gle WFST. Transducer composition can be done online, using specialized algorithms that approximate

determinization and minimization, thus eliminating the need of storing/loading a huge transducer into

memory. Additionally, the time taken to explore the transducer and thus the overall decoding time can

be limited at the expense of accuracy, using all the techniques available in traditional decoders, such

as beam search. But the key advantage of the use of WFSTs is perhaps their flexibility: it is possible to

integrate information to the recognition process from many sources without changing the decoder, by

simply composing with a transducer that represents the information to integrate. This contrasts with

traditional approaches in which different sources of information are combined in an ad-hoc way and

new code has to be written each time a different information source is added to the system.

2.2 Distributed Speech Recognition

Because of their smaller size, weight, and limited power consumption when compared to desktop com-

puters, mobile devices have smaller memory sizes, reduced processing speeds and/or instruction sets.

As a result, the software and operating systems used in these applications usually also has less function-

ality. Also, speech recognition applications often require large amounts of memory and processing time
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to achieve good results. One of the ways to do this, as seen in the next section, is to adapt the algorithms

to these settings with reduced resources, even if that results in worse ASR performances. An alternative

to this are systems based in the client-server model, where the mobile device is the client of a service

provided in the network.

An architecture that transfers all the processing to the servers in the network, known as Network

Speech Recognition (NSR) (Kiss, 2000) could be the immediate solution. The device would then just

acquire the speech signal and send it to the server for processing. Finally, the server would send back the

result of the recognition. On the positive side, this architecture enables seamless upgrades to the system

(from the user viewpoint), and enables the embedded device to do away with almost all computation.

But, on the negative side, wireless network connections normally have limited bandwidth, which forces

the use of low bit-rate codecs, substantially degrading the recognition rates.

The above-mentioned disadvantages have led to the development of systems where the processing

is split between the client and the server: Distributed Speech Recognition (DSR)(Zhang et al., 2000)

systems . This is done by having the client execute the feature extraction blocks (also known as the

front-end), therefore acquiring a set of coefficients it then sends to the server. It now has to execute the

search portion of the ASR task, using its acoustic and language models (the server executes the back-

end). When the server has terminated this part of the process it will send the result of the recognition

process back to the client, just like in the fully server-based architecture described above.

The fact that only a set of coefficients per window of speech is necessary to represent the speech

signal, which can be compressed more easily than the speech signal itself, reduces the information that

needs to be sent across the network. Also, the feature extraction blocks use but a small fraction of the

total processing time. So, when the remaining blocks are transferred to the server, the strain on the

embedded device is reduced, possibly freeing it for other tasks. The main disadvantage of NSR systems

- the excessive use of network bandwidth which results in worse recognition quality - is thus mitigated

by DSR systems.

In light of this, there are several problems (apart from noise robust feature extraction in the device,

which is addressed in the next section) that need to be addressed before building a DSR system. These

are considered in the next subsection.

2.2.1 Issues to consider before building a DSR system

2.2.1.1 Compressing the feature vectors

It must be decided how to compress the feature vectors that are sent across the network in order to fur-

ther reduce the amount of information to be transmitted; this involves finding quantization techniques

12



that allow the reduction of the number of bits sent per feature without significantly impacting recog-

nition quality. To do this, one can use scalar quantizers. Scalar quantizers treat each component of the

feature vector individually, and quantize its values in a uniform or non-uniform way. An alternative is

to use vector quantizers (VQ), that assign a code to each region of a feature vector space. Vector quan-

tizers achieve better performance rates when compared to scalar quantizers, but they are not bit rate

scalable - that is, they do not adapt to different bit rates gracefully. Also, because of the computational

effort required to accurately quantize the feature vector space, it is necessary to explore suboptimal vec-

tor quantization techniques such as product-code vector quantization (Digalakis et al., 1998). Here, the

feature space is partitioned into subspaces, which are then vector quantized independently, thereby re-

ducing the size of each codebook. Other, more sophisticated techniques combine vector quantization

with Gaussian Mixture Models (Hedelin & Skoglund, 2000) to achieve better performance.

2.2.1.2 Error control and mitigation

It is necessary to decide how to control the errors in the transmission, which are inevitable in some chan-

nels. To detect the occurrence of errors, standard error detection codes as Cyclic Redundancy Checks

(CRCs) are often used, providing good protection in most channels, as in (ETSI ES 201 108 v1.1.2 dis-

tributed speech recognition (front-end feature extraction), 2000). The client can also protect the transmitted

features through the use of forward error correcting codes, which can be used by the server to correct

errors that may have occurred, when combined with interleaving, that addresses burst errors. Alterna-

tively, or in addition, server-based error concealment techniques may be considered (Tan et al., 2004).

These include interpolation-based techniques, statistical methods and soft feature techniques. These

methods attempt to replace the missing features with some value that can reasonably be expected to

be close to the actual value, based on information of the received features. Finally, ASR-based methods

(methods that are integrated with the recognition process itself, which assigns less importance to feature

vectors that have values that are not known) may also be used. The advantages of these server-based

methods are that they do not require either modifications to the DSR client or additional bandwidth use

(as the error detection and correction codes do). Of course, they lead to degraded performance relative

to client-based methods, since the missing information is only approximated.

It is also important to mention here that some systems (e.g. phones) use speech coding, in order

to transmit speech over a telephony or IP network as efficiently as possible. The speech is then recon-

structed in the other side as closely as possible to the original by using the features received across the

network. The features generated by the speech coding process can then be adapted to be used in the

speech recognition process, but they are normally extracted at a low frequency and need to be interpo-

lated to keep DSR performance at acceptable levels (Fabregas & Alcaim, 2007). This can make it possible

to avoid porting the feature extraction module to the device, which besides sparing programmer time
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also frees the device’s resources for other tasks.

In addition to that, many devices’ processors include Digital Signal Processing (DSP) extensions or

coprocessors. Usually, these extensions consist of special instructions that can perform saturated add

or multiply operations (that avoid overflow by setting the result to the largest or smallest representable

integer), or faster arithmetic operations (for instance, a full-width multiply-accumulate instruction that

runs in one clock cycle). These capabilities facilitate the implementation of many signal processing

algorithms, both by requiring less time to complete them and by optimizing power consumption in the

device.

In this work, however, since the production of a distributed system was not the primary goal,

it was assumed that the network channel used to transmit information did not lose or corrupt any

information, and had enough bandwidth, so error correction and feature quantization techniques were

not considered in greater detail. Also, the existence of a speech coding module was not assumed, since

this would unnecessarily reduce the range of target devices, some of which do not possess this module.

2.3 State of the Art in Embedded Speech Recognition

The need of achieving embedded speech recognition is largely motivated by the phone / PDA mar-

ket, driven by instant messaging or dictation applications, for instance. There exist many embedded

ASR systems: Nuance’s VoCom (Nuance Vocon, n.d.), IBM’s ViaVoice ( IBM Embedded ViaVoice, n.d.), or

Asahi Kasei’s VORERO (Asahi Kasei VORERO, n.d.), only to mention a few. These systems are software

based solutions that run on a wide range of devices, supporting vocabulary sizes that are only limited

by the device’s memory. Aside from the mobile phone / PDA market, there is an important section

of automotive embedded ASR systems, such as Mercedes’ and Daimler-Chrysler’s Linguatronic (Heis-

terkamp, 2001). This is a speaker independent ASR system with between a few hundred and a few

thousand words, that enables the user to interact with the car totally hands-free. The computer game

market is also interested in embedded ASR systems, as integrating speech recognition in these can offer

users new gaming experiences; while the consoles often have more powerful processors than PDAs,

computer games are very processing-demanding and the applications required are different. Konami’s

Lifeline (Konami’s LifeLine, n.d.), a video game with ASR capabilities built on ScanSoft’s speech recogni-

tion system, is a good example, recognizing a vocabulary of a few thousand words and phrases.

When trying to build new embedded ASR systems or porting existing ones, one must consider the

limitations of the target devices. In particular, the limited capacities of the CPUs of the target devices,

mainly in what concerns speed, DSP extensions and the (usual) inability to perform floating point op-

erations, must be taken into account. The last two features are mostly relevant to the feature extraction

step. In addition to that, one must look into the limited RAM sizes and perhaps equally importantly,
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the reduced memory speeds. In fact, since processors in embedded systems often have smaller caches,

and memory hierarchies that are not very deep (usually not more than a cache), when compared to their

desktop equivalents, memory speed can quickly become a bottleneck. Memory sizes and speeds are

mostly a limiting factor of the size of the models (and dictionaries) that can be used in the ASR process.

Embedded ASR systems also face limitations imposed by the operating system, namely restrictions on

the number of processes or sockets they can create or on the resources they can hold simultaneously.

These restrictions are often stricter than the ones imposed in desktop computers OS’s.

In the remainder of this section, we present several techniques that can be employed to overcome

the memory and CPU limitations of embedded systems while minimizing the negative impact on the

recognition performance of the original ASR system.

These techniques are divided in three broad categories: feature extraction optimizations, acoustic

model optimizations, and decoding optimizations. Apart from the optimizations there presented, port-

ing ASR systems to these embedded systems often involves coding at a lower level in some sections

of the code, since performance is much more critical here and the compiler doesn’t always optimize as

expected.

2.3.1 Feature extraction optimizations

The most significant obstacle in this subsection is the rewriting of all the operations to perform fixed-

point operations. Choice of fixed-point scaling to use is often non-trivial; it may be necessary to rescale

between modules of the feature extraction system, or even inside some of the modules. This, however,

has no significant impact in performance if it is done at function boundaries and not after each arithmetic

operation. An example where rescaling is often performed every two butterflies (iterations) is the Fast

Fourier Transform (FFT). This is a special case of the Block Floating Point (BFP) (Mitra & Chakraborty,

2002) concept, where scaling is applied to relatively large blocks of data as a whole. In the rest of this

paragraph, other problems commonly encountered during the porting of the feature extraction module

are discussed.

2.3.1.1 Computation of the Power Spectrum

Many feature extraction techniques involve the computation of the power spectrum’s magnitude. Most

applications, in order to avoid performing computationally expensive square root operations, work

with this magnitude squared. However, the dynamic range of the resulting values exceeds what can be

saved in a 32-bit fixed point register with reasonable accuracy; as a result, essentially three options arise:

approximating the square root using some fast, lightweight technique such as a linear combination of

the components of the vector to be approximated; working with the logarithm of the power spectrum,
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which is very appropriate for MFCC coefficients, since their calculation requires the computation of the

logarithm anyway (Huggins-Daines et al., 2006); or working with the magnitude squared, by using a

dual fixed point format (Ewe et al., 2004), where a single bit selects one of two possible exponents.

2.3.1.2 Relative complexity of arithmetic operations

Most processors of the target devices have slow multiplication operations (when compared to additions

and shift operations) and often inexistent division operations, that must be emulated in software, taking

up to hundreds of cycles. As a result, it is of crucial importance to replace division operations, whenever

possible, by multiplications with the inverse or table lookups. In some cases, it may also be possible to

replace some of the multiplications or divisions with shifts and additions, when their operands are

constant values.

2.3.1.3 Computation of Special Functions

Often, special functions (trigonometric or transcendental) need to be calculated. For instance, the FFT

and Inverse FFT transforms require the computation of co-sine and sine functions, whereas PLP feature

extraction requires the use of cube-root functions and the calculation of MFCC features requires the

computation of the logarithm function (Huggins-Daines et al., 2006). In many cases, these can be exactly

replaced by table lookups, using tables that are not excessively large (as in the case of the FFT and

Discrete Cosine Transform); if not, adding linear interpolation between table entries is usually sufficient

to achieve the desired precision.

2.3.2 Acoustic Model Optimizations

2.3.2.1 Gaussian Mixture Models

Gaussian Mixture Models (Young, S., 1998) often occupy considerable amounts of memory. In order

to reduce memory footprint, it is possible to quantize the mean and variance vectors of the Gaussian

mixture models. This can be accomplished through the use of all quantization techniques described in

the previous section, being usually done with Vector Quantization (VQ) (Singh et al., 2003) techniques.

In (Huggins-Daines et al., 2006) the use of scalar quantization is proposed, where each of the Gaus-

sian components’ mean and variance is quantized independently, using both uniform and nonuniform

quantization methods.

Evaluation of Gaussian likelihoods occupies, in some systems, a significant portion of their total

running time. To improve Gaussian evaluation speed, several techniques can be employed. The simplest

of these can be found noting that, if aggressive parameter quantization is used, then it is possible that
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we can calculate the probability distribution function using only table lookups. It is also possible to use

Gaussian Selection (Knill et al., 1996) based on the fact that, if a vector is an outlier with respect to a given

Gaussian distribution, then the probability of having been generated by this distribution is very small:

thus it is possible to neglect it by skipping the evaluation of this Gaussian. This can be implemented

by assigning a set of Gaussians to each region of the clustered acoustic space, such that only these

components are evaluated during likelihood calculation, while the others are simply approximated or

ignored.

2.3.2.2 Multi-Layer Perceptrons

The output of the neural network (MLP) is often calculated using techniques based on matrix multipli-

cation, to simulate the signal propagation over the several layers (often only one) that the network is

built from. Matrix multiplication is a rather computationally complex problem, whose usual algorithm

takes time O(n3), where n is the dimension of a n x n square matrix. Efficient algorithms exist that

take advantage from the memory hierarchy of the system (which, as a general rule, tends to comprise

smaller amounts of faster memory and larger amounts of slower memory), by partitioning the matrices

into blocks that fit into the cache and performing matrix multiplication on matrices whose elements are

the blocks. Other methods try to exploit the relatively stationary nature of the speech signal: they only

propagate the signal from one layer to the next if the difference in activation from one time instant to

the next is appreciable (Albesano et al., 1996), though this method is only applicable to Multi-Layer Per-

ceptrons; Single-Layer Perceptron designs do not benefit from its use. The neural network weights may

also be quantized in order to save space, since they take up considerable amounts of memory. As a side

effect, on processors that lack a single-cycle multiply instruction, as is the case with most embedded

processors, multiplying smaller words is often faster.

2.3.3 Decoding Optimizations

Many of the decoder optimizations mentioned in this section apply not only to embedded systems, but

to normal ASR systems as well.

2.3.3.1 Beam search

A typical way to speed up search in the decoding step of Viterbi and A* algorithms is to maintain only

the set of paths which score is above some threshold, which is usually related to the best score found so

far. This is easier to do in Viterbi than in A* because the latter is time-asynchronous, and the likelihoods

of paths with different lengths must thus be compared.
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2.3.3.2 Use of fast match

Another way to speed up search is to use a fast match technique, as described in (Bahl et al., 1993). This is

done by using simplified acoustic and/or language models, or a class of heuristics, to avoid considering

words that are unlikely to be part of the decoded sentence. By doing this, the search space is reduced,

while not degrading the recognition accuracy considerably if the model is chosen appropriately.

2.3.3.3 Multipass Decoding

Related to the fast match idea is the use of multipass decoding schemes (Gosztolya & Kocsor, 2005).

These schemes are ways of reducing the search space by performing searches that are increasingly more

detailed, but that are performed over smaller search graphs. Effectively, it is possible to use a small lan-

guage model transducer in the first pass and then to rescore the resulting model with a larger language

model (Hetherington, 2007). Multipass decoding has the effect of reducing the size of the largest model

kept in memory, thus reducing the required resources, but may also have the negative result of dropping

some paths that would score highly according to the larger model.

2.3.3.4 Reducing memory requirements in WFSTs

Encoding finite state transducers requires to store all the transitions between states. In some systems,

it might be possible to compress the transducer by taking advantage of its structural specificities, thus

saving not only memory space but also computation time (Hetherington, 2007). An additional resource

to help save space is the quantization of the FST’s transition weights. The packing of the transition

weights may even help with the decoding speed (since it boosts cache locality), even considering the

extra required bit-packing and unpacking operations.

2.4 Summary

In this chapter, a brief survey of the state of the art of speech recognition systems and their applications

was presented.

Typical ASR systems feature a pipelined structure which main components (feature extraction,

acoustic model, and decoder) are executed sequentially. The acoustic model usually uses either Mul-

tilayer Perceptrons, as in Audimus, or Gaussian Mixture Models. Often the decoder uses a search space

specified using WFSTs, as in Audimus, because they offer advantages in terms of flexibility and speed.

Distributed speech recognition (DSR) systems are a promising way to give mobile devices ASR

capabilities. Realistic systems need to consider feature compression and error mitigation to overcome
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network limitations. Several distributed systems currently exist; a robust front-end has been standard-

ized by ETSI. Fixed point feature extraction is a well studied problem since its main components such

as the FFT have long been implemented in fixed point devices for many different applications.

Embedded speech recognition is also desirable because it works everywhere, regardless of any

networks being available. Several embedded systems have recently been developed, targeting PDAs,

phones, car control systems, among other applications. It is more difficult to find information about tech-

niques for building embedded speech recognition systems in the literature, since only recently devices

have gained enough processing power to perform embedded speech recognition in tasks of reasonable

size. However, the most resource intensive part of embedded speech recognition is the decoding, so

standard techniques for limiting search complexity can be used to limit the time spent in recognition at

the expense of performance.
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3The Existing System

In this chapter, Audimus, the system that served as a basis for the development of this thesis, is pre-

sented, along with its various applications. The system’s architecture is then explained, namely its main

components (feature extraction component, acoustic model, and decoder), that will need to be ported

to the device in this work. The above discussion serves as a basis for the two subsequent chapters, that

expand further on this subject by analyzing the different intermediate and final prototypes developed.

3.1 The Audimus ASR System

3.1.1 Introduction

Audimus is a high-performance speech recognition engine for the European Portuguese. It can be used

for a wide variety of tasks of different complexity, from simple isolated-digit recognition to complex

dictation tasks. It can also work in adverse acoustic environments, attempting to recognize both low-

quality telephonic speech and noisy speech.

Some of the systems in which Audimus has been integrated include:

• A Broadcast News speech recognition system (figure 3.1). This system transcribes the evening

news of the main Portuguese public channel (RTP). It uses a very large vocabulary of over 100000

words, which is updated every day with new words, and can achieve word error rates of about 5-

10% in speech read by the pivot. The main difficulties of the system reside in spontaneous speech,

which often includes disfluencies, and in outside studio conditions, because there is usually much

more background noise in these cases.

• Dialog systems for applications such as banking or virtual personal assistants. In these cases, Au-

dimus is the component of the system which performs speech recognition on (usually) telephonic

speech, being coupled with Dixi, L2F ’s speech synthesizer, and a dialog management system.

Also, the language model is in these cases limited to a grammar or set of sentences which describe

the probable utterances emitted by the user.

• Several dictation systems, for narrow subject applications such as radiology, imagiology, nu-

clear medicine, in which case the language models have around ten thousand words, or general-



Figure 3.1: Audimus transcribing the RTP evening broadcast news show

purpose dictation systems, with many tens of thousands of words such as the one integrated in

the Microsoft Word text processor. In the former example, using speaker adapted acoustic models,

recognition is almost perfect, achieving around 99% accuracy, whereas in the latter example there

is a slightly larger word error rate, in the 2-5% range.

3.1.2 Description of the Audimus system

3.1.2.1 Programming language and development environment

Audimus is written in the C++ programming language. This is one of the programming languages of

choice for complex systems with strict efficiency requirements. This is both because its standard ensures

that the programmer has complete control over the implications, in terms of efficiency, of language

constructs, and because the language has built-in object oriented concepts (encapsulation, inheritance,

polymorphism) which help to control complexity when building large systems. Memory management

in C++ is also performed by the programmer; this is essential to take advantage of some allocation

policies that are made possible by knowledge of the problem domain. For the same reasons, as well as

the ready availability of programming tools for embedded devices, C++ was also the language of choice

for development in the target device.

Audimus runs in several operating systems, including Windows and Linux. It was written in a way
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that eases porting to other operating systems, but it is nevertheless easier to port Audimus to an OS which

is similar to one of the above. This motivated the choice of a version of Windows (Windows Mobile) for

development in the device. The Microsoft Visual Studio development environment was used as it is the

de facto standard for development for Windows Mobile.

3.1.2.2 Audimus’ architecture

The architecture of the Audimus speech recognition system is shown in figure 3.2.

Figure 3.2: Audimus as a cascade of processing blocks

The architecture depicted in figure 3.2 is generalized by Audimus’ MacroComponent system, which

represents a graph having components, the basic unit of the system, as nodes, and connections between

components as edges. This enables the flexible specification of different sequences of components, based

on an XML file. Porting this system to the target device would, however, be cumbersome, since it would

involve porting an XML parsing library. Therefore, the preferred solution was to settle with a text-based

configuration file that determined which components were included and which were left out, as well as

their parameters.

The MacroComponent system uses the producer - consumer paradigm to synchronize pairs of inter-

connected components, which means that it requires locking to access buffers that are shared among

two or more components. The MacroComponent system relies on the (ZThreads - a portable thread library,

n.d.) library to provide these mechanisms, so it was necessary to port the ZThreads system. This system

provides a number of high-level synchronization concepts, such as monitors, mutexes or semaphores,
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that are defined in terms of the primitives of the operating system where ZThreads is compiled. So, port-

ing the system was basically a matter of resolving the slight differences between the thread primitives

in Windows Mobile and in the desktop versions of the same operating system.

The PortAudio library (PortAudio - an Open-Source Cross-Platform Audio API, n.d.) is used in Audimus

to capture audio in a device and operating-system independent way. There is no reason not to use

this library for the same purpose in Windows Mobile, since a good quality port of PortAudio for this

operating system is readily available.

Audimus has a wide variety of feature extraction components, adapted for different conditions that

are intended to be recognized. These include modules that compute RASTA, PLP, MFCC, and ETSI fea-

tures (Meinedo, H. and Neto, J. P., 2003). RASTA features are usually based on PLP features and intend

to enhance their performance in noisy conditions via relative spectral filtering. ETSI features are based

on MFCCs and designed for robust distributed speech recognition over telecommunication channels. In

view of this, PLP was chosen as the feature extraction component, since the goal of this work is to rec-

ognize clean speech, not speech significantly distorted by noise, and in the literature MFCCs and PLPs

are considered similar in terms of ASR performance.

Audimus is an HMM-MLP hybrid system, combining the temporal modeling capabilities of Hidden

Markov Models with the pattern discrimination capabilities of neural networks. Thus, the classifier that

was ported was the Multilayer Perceptron existing in Audimus.

The previous two components are described in further detail in the next chapter.

Finally, the last component is usually the decoder. This component determines the output of the

ASR system by performing a search through a state space. Audimus currently uses the WFST approach

to search space modeling. WFSTs give a way to decouple the search algorithm from the search space

representation. In terms of search algorithm, Audimus uses a parallel implementation of the Viterbi

algorithm, to take advantage of multiprocessor systems and multiple cores in recent processors. It can

also use the A* algorithm, which has the advantage of not committing to the Viterbi hypothesis, but it is

generally considerably slower.

The necessary modifications to the decoder are described in chapter five.

Besides these components, Audimus employs components to detect speech activity ( so that it does

not waste resources when there is silence) and to segment the speech signal into sentences, to reduce

the strain on the decoder. For that, Audimus possesses essentially two components: the endpoint com-

ponent, which distinguishes speech from silence based on the energy content of the signal and the more

complex SNS (speech - non speech) component that uses an MLP classifier to decide whether a segment

contains speech. The endpoint component was chosen for this work, for the two main reasons that

follow:
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• It is easier to port to the target device than the SNS component; the endpoint component is essen-

tially a state machine coupled with a frame energy calculator which averages the squared energy

of the samples in the frame, whereas the SNS component is more complex.

• The SNS component requires an extra MLP model to be evaluated at each frame, even when there’s

silence (albeit this second problem can be overcome by placing an energy detector in front of

the SNS component, so that only frames with sufficiently high energy are considered in the SNS

component) . This is considerably computationally expensive for a low-resource system.

The main drawback of this choice is that the endpoint component cannot distinguish, for instance,

between music and noise: both, above a sufficiently high energy level, are considered speech. In the

cases where it arises, this confusion may produce random results and slow down the system, since the

decoder will likely have a large number of hypotheses with similar costs to choose from.
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4Building DSR

Architectures

The present chapter begins with a description of the initial network speech recognition system. The two

distributed systems created as intermediate byproducts of this work are also presented in this chapter,

by explaining the changes made to the feature extraction and acoustic components. The performance of

these three systems was also tested, in terms of word error rates and execution times; results for each of

the systems also appear in this chapter.

4.1 Initial NSR system

Figure 4.1 shows the initial NSR system, used as a basis to port the system to the target device.

Figure 4.1: The initial NSR architecture of the system

In this figure, all the system’s modules are running at the server. The audio is captured in the device

and transmitted over the network for processing, and the results of the recognition are sent back to the

device across the same network.



Test Number of Words Duration
1 317 269s
2 448 306s
3 520 366s
4 521 428s
5 486 332s

Total 2,292 1,701s

Table 4.1: Number of words and duration of each of the five tests.

To create this system, as described in the previous chapter, it was necessary to port the PortAudio

and ZThread libraries to the target device. It was also necessary to build the TCP/IP socket communi-

cation interfaces in both the target and desktop systems.

4.1.1 Experiments and evaluation of the system

This section presents the experiments that were carried out in order to evaluate the NSR system de-

scribed above.

Most of the test setup is shared between this and the next chapter, and is therefore not repeated

there.

The desktop system used to perform the tests was a 2.4 GHz dual core PC with 2 GB of RAM,

running the Windows XP operating system.

4.1.1.1 Test set

The test set consists of 215 sentences drawn from five different tests, totaling 2,292 words. These sen-

tences are from the radiology domain, and each test contains one or more radiology reports. The test set

was recorded using two different microphones: a microphone embedded in the device (T1) and a high-

quality USB microphone (T2). Both test sets were read by the same speaker, but not simultaneously.

The duration and number of words of each test is shown in table 4.1.

4.1.1.2 Description of the models used

For the tests, three different acoustic models were used, which were:

• Generic model (AM1) - a generic model, trained using a population of different Portuguese speak-

ers from the country’s different regions (with an emphasis on the region of Lisbon), and of both

genders, that was previously available at L2F .
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• User adapted model (AM2) - a speaker adapted model, trained using 250 sentences with the Au-

dimus.Dictate system, using a high-quality microphone.

• User adapted model 2 (AM3) - like the above, this represents a speaker adapted model, but it

was trained not only with the sentences recorded above, but also with two sets of 100 sentences.

These two sets were made of identical sentences and were recorded simultaneously both with the

microphone of the target device and the USB microphone. This microphone has a much lower

quality than the headset microphone used to train the sentences in the model above, because it is

a small omnidirectional microphone embedded in the PDA.

The lexicon used in the experiments contained 15,190 phonetic transcriptions of 13,141 words for

an average of 1.156 transcriptions per word (a few words have more than one transcription). The lexi-

con was the same throughout the performed tests, because the words were the same in both language

models used.

As to the language models, two different language models were used in this work. Both the lan-

guage models used were n-gram models, where n = 3 (i.e, trigram models), trained using a large corpus

of normalized radiology texts. The two language models used have the same number of words and dif-

fer mainly in their detail; the smaller model is a pruned version of the larger one, where n-grams with

low frequency are removed. The larger model (LM1) is approximately 11.0 MB in size (18.2 MB when

composed with the lexicon and compressed using the algorithm described in the next chapter), while the

smaller model (LM2) is about 5.5 MB in size (9.0 MB when composed with the lexicon and compressed).

The radiology task used for the tests already existed at L2F , so the existing language model was reused

as LM1, while the smaller language model (LM2) was built from LM1, by removing the low-frequency

n-grams, for this work.

4.1.2 Results

Several tests were designed to measure the performance in terms of WER of this system. This perfor-

mance is equal to the performance of the baseline system, since all the processing is still done in the

PC.

The tests consisted in computing the word error rates for the system, for the two different test sets

(with high quality microphone and the microphone embedded in the PDA), using the large language

model.

The real time averages are computed by summing the duration of the recognition of each of the

tests and then dividing by the total duration of the test set (table 4.1), while the word error rate averages

are computed by summing the number of errors in each test and then dividing by the total number of

words in the test set (also in table 4.1).
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Test AM1 + USB mic(T1) AM2 + USB mic(T1) AM2 + PDA mic(T2) AM3 + PDA mic(T2)
1 7.89% 2.52% 14.83% 1.89%
2 11.20% 2.23% 19.20% 4.24%
3 8.85% 1.73% 17.12% 3.46%
4 11.70% 2.50% 25.34% 4.61%
5 9.05% 1.44% 13.40% 3.91%

Total 9.86% 2.05% 18.41% 3.75%

Table 4.2: Word error rates for the NSR system. The 2nd and 3rd columns of the table refer to audio
recorded with the high quality microphone, while the two last refer to audio from the PDA’s internal
microphone. Also, in the 2nd column of the table, the generic acoustic model was used; in the 3rd and
4th, the user adapted model was used, and in the 5th column the second user adapted model was used.

Test Duration PC NSR
1 269s / 1.0 125s / 0.46 126s / 0.47
2 306s / 1.0 161s / 0.53 163s / 0.53
3 366s / 1.0 204s / 0.56 205s / 0.56
4 428s / 1.0 207s / 0.48 208s / 0.49
5 322s / 1.0 188s / 0.57 190s / 0.57

Average 1.0 0.52 0.52

Table 4.3: Time taken (and real time factors) to recognize the five tests when using only the PC (column
3), and when transferring the audio from the PDA to the PC (column 4)

Initially, the generic acoustic model lead to an average word error rate of approximately 10%. This

model was user adapted with 250 sentences leading to a decrease in the word error rate, which reached

2%. However, when this model was used to recognize speech from the PDA’s microphone, the word

error rate increased significantly. The second step of adaptation led to a much reduced word error rate,

which represents a degradation (in absolute terms) of only 1.70% relative to the audio from the high-

quality microphone. Table 4.2 shows these results.

Also, the system’s time was measured when the system was entirely in the PC and when it was

working as a NSR system, in order to assess the degradation in terms of recognition time caused by the

introduction of the network in the system. Table 4.3 presents these results.

From the analysis of table 4.3, it can be seen that this slowdown is not significant (not more than 1-2

seconds). The test network was, as said before, chosen to avoid latency and bandwidth problems; so the

small observed degradation in recognition time is mainly due to the initialization of the communication

and creation of the MacroComponent system.

4.2 First Distributed System

Figure 4.2 shows the first intermediate DSR system that was created as a result of this work.

In this architecture of the system, coefficients computed by the feature extraction component are

transmitted across the network, in the client-server direction, instead of speech. The results are still
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Figure 4.2: The first DSR architecture of the system

returned by the server, in the opposite direction.

To progress towards the goal of this work, it was thus necessary to port the feature extraction com-

ponent, which as said in chapter 3, is the PLP component, which is one of the feature extraction compo-

nents of the Audimus system. The remainder of this section explains what had to be done to achieve this

goal.

4.2.1 PLP Component

The computation of the PLP features starts by computing the FFT. Then the power spectrum is com-

puted, and from it the auditory spectrum . The auditory spectrum is computed from the power spectrum

using a set of psychoacoustically based transformations (including, for instance, cube root compression

or equal loudness weighting). Finally the LPC coefficients are computed from the auditory spectrum.

These calculations use the four basic arithmetic operations (sum, multiplication, subtraction and divi-

sion) extensively, which must be replaced by their fixed point equivalents, since as has been said before,

the target processor cannot perform floating point operations. Also, between many of the subroutines of

the component, it is necessary to renormalize the input vector (shift the binary point) so that the range

of numbers representable is adequate for the processing done in the subroutine that follows.

The remainder of this subsection refers other, more specific changes that had to be made to the PLP
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component in order to port it to the target device.

4.2.1.1 Computation of the FFT

The FFT is a central component in the computation of PLP coefficients - and many other feature ex-

traction algorithms - and also represents about 50% of the execution time. The FFT is done in 32-bit

fixed point in order to preserve the best possible accuracy. Also, a N-point FFT introduces a gain of N

(the output vector has a magnitude which can be up to N times larger). Therefore, to avoid overflow,

the input data is shifted right between each two butterflies (FFT subroutines). The FFT implementation

in Audimus was further optimized by replacing calls to trigonometric functions, used to compute the

twiddle factors, by table lookups that can be pre-computed.

4.2.1.2 Computation of the Power Spectrum

The power spectrum can be estimated from the complex output of the FFT by calculating the magnitude

of each complex number. However, to avoid an expensive square root operation, most applications work

with the squared magnitude instead. This increases the range of numbers that must be represented,

which complicates a fixed point implementation. The adopted solution was to use a dual fixed point

implementation (Ewe et al., 2004), where a single bit selects one of two possible exponents. This ensures

that the range is enough to cover the squared magnitude spectrum, while maintaining most of the speed

gained by the fixed point approach. One alternative is to use a fast approximation of the magnitude of

a vector, but that introduces errors that are up to 10%.

4.2.1.3 Approximation of the cube root function

The auditory spectrum must be equal-loudness weighted and cube-root compressed to account for the

characteristics of human audition. The cube-root function must therefore be implemented in fixed-

point. One way to solve this problem is to tabulate some of the function’s values and then to use linear

interpolation to approximate it between those values. The property of the cube-root function f , f(ax) =
3
√
ax = 3

√
a 3
√
x = f(a)f(x), and, in particular, the fact that it is an odd function (i.e., f(−x) = −f(x))

mean that we only need to consider the interval between 0 and 1, since any interval between 0 and 2k

can be reduced to the first using a multiplication. We chose to use a table with 256 equally-spaced entries

(to avoid using expensive division operations), which leads to an average error of less than 10−5. The

resulting implementation was roughly 5− 10 times faster than the general-purpose function pow of the

C library.
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4.2.1.4 Further optimization of operations

In addition to the use of fixed point arithmetic, most ARM processor’s division operations are very slow

or inexistent, being emulated in software. As a result, whenever possible, division operations (found,

for example, in the computation of LPC coefficients from the autoregressive model) were replaced with

multiplications by their inverse.

4.2.1.5 Library of transcendental functions

Besides the specific functions mentioned above, a generic library of transcendental functions was im-

plemented. This library was equipped with slower (when compared to the specific cases) but general-

purpose fixed-point implementations of transcendental functions such as exponential, logarithm, and

trigonometric functions. These functions were useful for computations that were not performed many

times and so did not need to be heavily optimized, but that would still be too slow if they used the

standard floating-point library.

4.2.2 Experiments and evaluation of the system

In this section, the test setup from the previous system (NSR system) is reused, so that the main changes

are the tests performed to the system.

4.2.3 Results

The tests designed in this section were mainly aimed at measuring the degradation of the system in

terms of speed and word error rate because of porting the PLP component to the target system.

The language model used for all the computations was still the larger language model.

Table 4.4 shows the word error rates of the system when compared to the baseline system. The

acoustic model used was the speaker adapted acoustic model, in the first half of the table, and the

second speaker adapted acoustic model, in the second half of the table.

It can be seen from table 4.4 that the word error rate increase in both cases, particularly its absolute

value, is limited (less than or equal to 0.51%). This was expected, since the coefficients computed by the

fixed point and floating point versions have small discrepancies (values are usually within 10−3−10−2 of

each other), motivated essentially by truncation and rounding errors, but the largest errors are motivated

by the computation of the delta coefficients, which is inherently unstable.

It is also possible to see that in the left half of the table, the relative increase in word error rate is

24.9%; while in the right half it it is only 1.31%. In the first case, the acoustic model is very well adapted
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Test AM2 + USB mic(T1) AM2 + USB mic(T1) AM3 + PDA mic(T2) AM3 + PDA mic(T2)
1 2.52% 3.47% 1.89% 2.84%
2 2.23% 2.90% 4.24% 4.24%
3 1.73% 2.31% 3.46% 3.46%
4 2.50% 2.88% 4.61% 4.22%
5 1.44% 2.06% 3.91% 3.91%

Total 2.05% 2.66% 3.75% 3.80%

Table 4.4: Word error rates for the first DSR system. The left half of the table, that is, the 2nd and 3rd

columns of the table, refer to the audio recorded with the USB microphone while the columns 4 and 5 to
audio recorded with the PDA’s embedded microphone. Columns 3 and 5 refer to the first DSR system,
while columns 2 and 4 refer to the NSR system.

Test Duration PC NSR PLP in PDA
1 269s / 1.0 125s / 0.46 126s / 0.47 129s / 0.48
2 306s / 1.0 161s / 0.53 163s / 0.53 167s / 0.55
3 366s / 1.0 204s / 0.56 205s / 0.56 207s / 0.57
4 428s / 1.0 207s / 0.48 208s / 0.49 211s / 0.49
5 332s / 1.0 188s / 0.57 190s / 0.57 193s / 0.58

Average 1.0 0.52 0.52 0.53

Table 4.5: Time taken (and real time factor) to recognize the five tests when using only the PC (column 3),
when transferring the audio from the PDA to the PC (column 4) and when executing the PLP component
in the PDA (column 5). Times for the audio recorded with the PDA’s microphone

to the acoustic conditions of the high quality microphone, so that a slight change in the coefficients may

be significant. In the second case, however, the acoustic model is adapted to a microphone which, being

smaller and omnidirectional, captures a larger amount of noise from the environment, so the neural

network is less overtrained, meaning that it tolerates a larger amount of noise in the PLP coefficients.

The system’s time was compared with the times from the NSR system and the PC-based systems

(table 4.5), using speech recorded with the PDA’s internal microphone, in order to measure the increase

in recognition time.

The average degradation is larger than the difference between PC-only recognition and NSR recog-

nition , mainly because the initial creation of the PLP component is expensive - there are a number of

lookup tables, which are computed in floating point before being converted to fixed point. This means

that the rest of the embedded system is still running at a small fraction of real time.

4.3 Second Distributed System

Figure 4.3 shows the architecture of the second intermediate system, known as second distributed system:

In this architecture - the penultimate before the target embedded system - the client performs both

the feature extraction and acoustic model computation portions of the ASR pipeline. The server still

sends the results across the network, but in this case the client sends a probability vector. To get one step
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Figure 4.3: The second DSR architecture of the system

closer to the final goal, it is thus necessary to port the acoustic model to the target device.

The acoustic model is in Audimus, as said before represented by a Multilayer Perceptron. Au-

dimus has a number of components to train Multilayer Perceptrons and classify input vectors, but only

the classifier, the ForwardMLP component, had to be ported. ForwardMLP performs forwarding on an

MLP model (i.e., classifies a feature vector returning a vector of probabilities which indicates, for each

phoneme, the probability of the feature vector having been produced by that phoneme). The Hidden

Markov Models are also part of the acoustic model of each phone, but they are not integrated by the

Multilayer Perceptron, but by the WFST decoder, as seen in the next chapter.

4.3.1 ForwardMLP Component

In the ForwardMLP component, it is necessary to compute the output of a Multilayer Perceptron. To

that effect, it is necessary to calculate the output of a set of neurons, which is a linear combination of

the outputs of the neurons of the layer immediately to the left. This has to be repeated once for each

layer in the network; in the case of a single-layer network, it has to be done two times; once from the

input layer to the hidden layer, and once from the hidden layer to the output. The activation function,

which is usually the sigmoid function, also needs to be evaluated, but that is easily done as a table

lookup. The computation of the output of a layer of neurons fits naturally within the framework of

matrix multiplication, and the current implementation in Audimus uses one of several highly optimized
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BLAS (Basic Linear Algebra System) libraries to perform this operation in reasonable time, since the

matrices used are, for large networks, very large. Unfortunately, to the best of our knowledge, there is

no BLAS system targeting ARM devices. Several possible alternatives and optimizations to the baseline

(O(n3)) matrix multiplication algorithm were considered:

• Sub-cubic complexity algorithms are known to exist since the work of Strassen (Strassen, 1969)

who developed a O(n2.807) algorithm. More recently, exponents for matrix multiplication as low

as 2.367 have been achieved (Coppersmith & Winograd, 1982), and it has been conjectured that

O(n2) suffices in general. However, these results are largely theoretical; they are impractical for all

sizes of matrices except the largest, since the constant hidden behind the O notation is very large.

Also, these algorithms are usually designed for square matrices and adapting them to rectangular

matrices requires some effort that will further reduce their efficiency.

• Stochastic matrix multiplication algorithms - some algorithms compute the multiplication of two

matrices A (n x m) and B (m x k) by randomly selecting p columns from A and the respective

p lines from B, where p < m, yielding a result close to the correct result with high probability,

and a relative speedup of m/p. The main problem of this approach is that there is still possible

that in some cases the result is very far from the correct answer, i.e., the error will stay inside the

bounds with high probability. This problem can of course be mitigated by increasing p, but then

the advantage of performing less computations is gradually lost.

Another possibility is to propagate significant differences from one layer to the next, but that is only

useful in networks with more than one hidden layer, and it was decided to consider networks with just

one hidden layer.

The above alternatives to improve the speed of the traditional algorithm were abandoned since it

is either very difficult to implement them, with very limited performance gains up to very large ma-

trix sizes (sub-cubic algorithms), or difficult to control the errors produced by the algorithm (stochastic

algorithms). It was still necessary to improve the speed of the computations since the ForwardMLP

component couldn’t use up more than a small fraction of the total execution time in the PDA, so it

was decided to improve the algorithm’s implementation and not the algorithm itself, by reordering the

operations (multiplications and sums) that it executes, as explained below.

4.3.1.1 Locality of reference optimizations

The trivial matrix multiplication algorithm uses the processor cache sub-optimally, since to calculate a

row of the output matrix, it will read all of the second matrix. This means that none of the entries of the

second matrix will be found in the cache and must be retrieved from the slower main memory. Instead of
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multiplying two matrices in this way, the first and second matrices can be partitioned into blocks, and

multiplied “blockwise” (i.e. the traditional matrix multiplication algorithm will be applied as normal,

but the elements of the multiplication operation will be matrices, not scalars). This is known as blocked

matrix multiplication. The number of arithmetic operations (multiplications and sums) executed by the

algorithm will be the same as before. However, if the size of the block is chosen so that it fits in the

cache, the number of cache misses will be much lower, causing the algorithm to run much faster; this

happens because the latency of the cache is often an order of magnitude larger than the latency of the

main memory.

To see this in a different way, let M and N be two square matrices of dimensions n × n, and B a

k × k block, where k divides n, and let b = n/k. M and N are thus partitioned into b2 k × k blocks.

Also, it is assumed that there is one cache level in the target device. Assuming that three blocks ( i.e 3k2

elements ) fit in the cache - so that one multiplication between two blocks followed by one accumulation

(i.e, sum of two blocks) can be done without any accesses to the main memory - then each multiplication

between blocks requires roughly 2k2 memory accesses (assuming, to simplify, that none of the blocks is

found in the cache). To compute each of the b2 blocks of the result, it is necessary to multiply b pairs of

blocks, so about 2k2b3 memory accesses are required. It follows that about 2k2(n/k)3 = 2n3/k memory

accesses are required to perform the matrix multiplication. In contrast to this is the traditional version

of the multiplication algorithm that uses three nested loops. To compute one line of the result using

that algorithm, it is necessary to read the entire second matrix. Since it does not usually fit in the cache,

this means that for every line n2 accesses will be made to main memory, resulting in a total of more

than n3 + n2 main memory accesses. For a reasonable value of k, k = 64, this makes considerably more

memory accesses than the blocked version of the algorithm and is therefore slower.

4.3.1.2 Reduction of the network’s memory footprint

By quantizing the matrices and all input values to 16 bits, it is possible to reduce the size of the neural

network considerably, albeit at a small cost in precision. This not only saves memory but also improves

the algorithm’s locality (because more data can be made to fit in the cache). It also saves speed, since

the target processor is capable of multiplying four 16-bit numbers in one clock cycle using WMMX

extensions (which comprise a set of instructions capable of operating on vectors of integers at a time,

thus accelerating the processing of the data). It was found, however, that the degree of precision attained

by the 16-bit implementation alone was unacceptable, so a block floating point technique was adopted

instead. Each set of eight 16 bit values would thus have an associated 8-bit exponent. This did not

impact the speed of the multiplication much, since the shift instruction required is fast in most CPUs

and, in particular, in ARM processors. Also, as the input of the network consists not only of the current

frame but also of the 3 that precede and follow it (so that acoustic correlation with previous frames can
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be modeled, since HMMs, due to their independence assumptions, are unable to directly model this

dependency), each feature frame appears seven times in the first matrix of the first multiplication. This

fact was explored to further reduce size by storing each feature frame only once.

4.3.1.3 Coding the matrix multiplication routine in assembly language

The matrix multiplication algorithm above, directly coded in C++, does not achieve the required speed,

mainly due to limitations of the compiler in finding the best translation of high level code to apparently

unrelated machine instructions. The best instructions are however relatively easy to find for a human

programmer, if one takes into account the processor pipeline delays and the result latencies of each

instruction. This can be done by performing loop unrolling and loading values into registers ahead of

time to maximize throughput. Thus, as a solution to this problem, the entire routine was hand coded in

carefully optimized assembly language of the target processor. This solution has drawbacks in terms of

flexibility - since the function becomes tied to a particular architecture. Also, the routine is optimized

for certain matrix sizes, and becomes less efficient for neural network models of other sizes. But it is

necessary to maintain the CPU time spent at acoustic model evaluation at manageable levels. In fact,

coding the matrix multiplication routine in assembly language involved considerable effort, due to three

main reasons: the need to learn the assembly language of the target device, the relative complexity of

the algorithm and the debugging difficulties caused by the lack of support offered by the development

environment to assembly programming. However, the benefits were considerable insomuch as testing

revealed the assembly algorithm to be approximately 58% faster than the algorithm written in C++.

4.3.1.4 Other optimizations

Like in the feature extraction component, it was necessary to replace all floating point operations with

fixed point operations. The activation function of the neural network - the sigmoid function, which is in

this case the standard logistic function:

f(t) =
1

1 + e−t
(4.1)

could be evaluated by reusing the library of transcendental functions produced for the feature ex-

traction component but, since it did not require very high precision, it was implemented via a simple

lookup table. This lookup table was improved by storing only half of the values, which is made possible

by simply noting the function’s symmetry around the point (0, 0.5).
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Test Duration PC NSR PLP+MLP in PDA
1 269s / 1.0 125s / 0.46 126s / 0.47 135s / 0.50
2 306s / 1.0 161s / 0.53 163s / 0.53 184s / 0.60
3 366s / 1.0 204s / 0.56 205s / 0.56 220s / 0.60
4 428s / 1.0 207s / 0.48 208s / 0.49 226s / 0.53
5 332s / 1.0 188s / 0.57 190s / 0.57 210s / 0.63

Average 1.0 0.52 0.52 0.57

Table 4.6: Time (and respective real time factors) taken to recognize the five tests when using only the
PC (column 3), when transferring the audio from the PDA to the PC (column 4) and when executing the
PLP component and the PLP and MLP components in the PDA (column 5) respectively.

4.3.1.5 Conclusions

The ForwardMLP component, after all the computations had been rewritten in fixed point (but before

the optimizations to the matrix multiplication algorithm), was still running near real time. Such a high

running time for this component alone would be unacceptable since the decoder, the most time consum-

ing part of the system, would not have CPU time left to run while keeping the system running under

real time. The matrix multiplication optimizations performed (both high-level and low level, by coding

the routine in assembly) were determinant for the final system, since they brought the running time of

the component down to approximately 0.20 xRT, which is a much more manageable fraction of real time

which leaves more time available for the decoder.

4.3.2 Experiments and evaluation of the system

This section presents the evaluation of the second distributed system.

4.3.2.1 Tests performed

In these tests the large model (LM1) was used as a language model. Only the speaker dependent model,

adapted to the PDA’s internal microphone (AM3), was used in these tests, as only audio recorded with

this microphone was used.

The time required to process each of the tests using the second distributed system configuration

was recorded and compared with the times for other configurations (NSR configuration, for example).

In addition to this, word error rates for the same configuration (second distributed system) were

also measured and compared with other configurations.
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Test AM2 + USB mic(T1) AM2 + USB mic(T1) AM3 + PDA mic(T2) AM3 + PDA mic(T2)
1 2.52% 3.47% 1.89% 4.10%
2 2.23% 3.57% 4.24% 4.91%
3 1.73% 2.69% 3.46% 4.03%
4 2.50% 3.45% 4.61% 5.76%
5 1.44% 2.47% 3.91% 4.53%

Average 2.05% 3.10% 3.75% 4.71%

Table 4.7: Word error rates for the second DSR system. The left half of the table, that is, the 2nd and 3rd

columns of the table, refer to the audio recorded with the USB microphone while the columns 4 and 5
to audio recorded with the PDA’s embedded microphone. Columns 3 and 5 refer to the second DSR
system, while columns 2 and 4 refer to the NSR system.

4.3.2.2 Presentation and analysis of results

Table 4.6 indicates that also porting the MLP component led to a slight increase in total recognition

time. This does not mean that the combined execution of the endpoint, the PLP and the ForwardMLP

components is slower than the decoder running in the PC; but it means that the reduced precision of

the 16-bit calculations, besides increasing word error rate as explained below, makes a difference in the

vector of probabilities which is propagated to the decoder, which then expands more arcs and nodes

therefore becoming slightly slower.

As it can be seen in table 4.7, porting both the PLP and MLP components resulted in a relative

WER increase of 25.6% and an absolute WER increase of only 0.96% (when transcribing audio recorded

in the device). This increase in WER can mostly be attributed to the porting of the MLP component:

the absolute increase in WER from the configuration where only the PLP had been ported was 0.91%.

The reason for this more significant increase lies in the matrix multiplication algorithm. Since 16 bits of

precision were used in all the computations, even considering that the softmax function applied tends

to “smooth out” errors, the differences accumulated were in some cases enough to change the decoding

decision from a correct to an incorrect one. In the case of audio recorded with the high quality USB

microphone, the absolute WER increase is larger, but the MLP component contributes less than the PLP

component for this degradation.
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5Final Embedded System

Figure 5.1 presents the architecture of the final embedded system that was built in this work.

Figure 5.1: The final embedded system

In this system, the speech recognition process (feature extraction, acoustic model, and decoder) is

done entirely in the device, so the network and server are no longer necessary.

The current chapter is thus centered on porting the decoder to the device, which completes the

porting of the system to the target device. It starts by introducing the existing decoder and its main algo-

rithm, as well as some resource modeling techniques commonly used that justify some specific decisions

taken in the optimization stage. In the second section, the optimizations that had to be implemented in

order to successfully port the decoder are described.



5.1 The existing decoder

The WFST decoder in Audimus is able to integrate the lexicon, the language model and the subword

unit HMMs in several different ways. This means that the user can ask it to work with a search space

that is the integration of the language model with the lexicon only, or with a search space that is the

composition of the language model, the lexicon and the HMMs. If the phone HMMs are expected to

have always the same structures (for instance, in many cases, all the phones are represented by a linear

sequence of states, to enforce the phone’s minimum duration, with a loop in the last state), it is, for

reasons of speed, usually preferable to expand an arc that represents the HMM conceptually in the

decoder. On another level, the user can also choose between using a pre-compiled network and one

which is built on-the-fly, i.e., the parts of the search space WFST are built from the components when

they are necessary. Both approaches have advantages and drawbacks: the static composition approach is

faster in terms of CPU cycles consumed than the dynamic composition approach, but the latter usually

uses considerably less memory and is more flexible, since it is much easier to change the underlying

models dynamically.

In this work, the recognition network is pre-compiled into one large WFST. While memory is surely

a scarce resource in the target devices, it is, in this problem, not the most tight constraint - i.e., CPU

resources would run out first, as long as some kind of model compression was implemented - as de-

scribed in the section below. Also, the goal was not to change models on a sentence-by-sentence basis,

but to work with a dictation task. Finally, the complexity and overhead of the memory management

algorithms associated with dynamic WFST composition (there are many memory allocations followed

by garbage collections) makes them inappropriate for use in the target device.

5.1.1 WFST modeling of the lexicon and language model

In this subsection, the modeling of two different knowledge sources in the decoder (the lexicon and the

language model) is explained. This is important because some of the characteristics of these models will

be used to optimize the compression of the language model with the lexicon, as described later in this

chapter. A much more complete discussion of this can be found in Diamantino Caseiro’s PhD thesis

(Caseiro, 2003).

• Lexicon - in Audimus, lexica are unweighted transducers from phones to words. This means that

all pronunciations of a given word are assigned the same weight. Lexica can be represented as

trees, whose leafs are the words in the lexicon and nodes represent prefixes of sets of words, or as

graphs where nodes no longer represent prefixes, but suffixes of sets of words. The representation

is not very relevant as long as the composition algorithm can produce a fully optimized transducer
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in both cases.

• Language model - in this discussion, only n-gram language models will be considered. N-gram

models in Audimus are represented as WFSTs by assigning a state to each possible combina-

tion of n − 1 context symbols. Between each pair of states (a0, a1, . . . , an−1) and (a1, a2, . . . , an)

there is an edge labeled with word an, with weight equal to the conditional probability

P (a0, a1, . . . , an|a0, a1, . . . , an−1) estimated via counting in the training set (if the n-gram has not

been observed in the training set, the edge does not exist). There are also backoff edges labeled ε

from (a0, a1, . . . , an−1) to (a0, a1, . . . , an−2) with weight equal to the backoff probability which is

computed by some discounting method.

5.1.2 The decoding algorithm

Audimus uses a multithreaded Viterbi decoder, to take advantage of multicore and multiprocessor sys-

tems. It is a token-passing implementation of the Viterbi algorithm, augmented, as mentioned above,

with the capability to expand the HMMs representing each phone during search. The target devices are

usually unable to take advantage of more than one thread of control, since they do not possess multi-

ple cores, so the decoder was simplified to eliminate the overhead of maintaining multiple threads. To

control the use of computational and memory resources, the decoder uses standard beam pruning and

histogram pruning techniques. These techniques were also employed in the target device, to control the

use of CPU at the expense of increasing the WER.

To further increase speed of execution to keep it under real time, and to reduce memory use and

consumption, it is possible to reduce the detail of the models used. This can be done in two different

ways: via n-gram pruning methods such as Stolcke pruning (Stolcke, 1998), which removes the n-grams

that increase the relative entropy less, or by reducing the size of the vocabulary which, as a side effect,

eliminates all n-grams containing the pruned words and may cause OOV (out-of-vocabulary) errors.

The main goal of these techniques is to find the best possible balance between WER, model size and

recognition time, as a last resource after all algorithmic techniques have been explored.

5.2 Main optimizations to the decoder

5.2.1 Compression of the composition of the lexicon with the language model

The composition of the lexicon with the language model usually originates a large transducer, even

after being minimized by removing redundant paths. Transducer minimization returns the smallest

FST that represents the same transduction between languages as the original FST. However, with the

compression method presented herein, it is often possible to reduce the size of the resulting transducer
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to an acceptable size - below twice the size of the language model transducer. Since decompression of

the model is done on-the-fly when the decoder asks for the arcs that originate from a given state in the

automaton, the compression algorithm defined must strike a balance between speed of execution and

ease of decompression.

The output of this compression algorithm has some redundancy left, in the sense that it could be

further compressed using standard algorithms such as Huffman coding or arithmetic coding, in order

to encode some fields in the least possible number of bits. However, these algorithms would consume

considerable amounts of CPU time, even when decoding only at runtime, for what would likely be only

a marginal reward in terms of reduction of the transducer’s size.

To store the automaton in memory or in disk, it is necessary to store its initial state, its final states,

and its transitions. Storing the initial and final states is trivial (the final states are stored in sorted order

so that it is possible to do a binary search to verify if a given state is final). The transitions are first sorted

by origin state, in order to support the interface that the compressed transducer must implement, which

main function receives a state number and outputs an iterator representing the outgoing transitions

from this state. It is also necessary to build an indexing table to quickly find the address of a state in the

automaton, due to the variable size of each transition (explained in the next paragraph), which makes

it impossible to directly compute the memory address of the state from its number. This indexing table

cannot have the same number of entries as the number of states in the transducer, since it would be too

large. Instead, the states in the transducer are divided into blocks whose size (i.e., number of states)

is a power of two, and these blocks are aligned to an integer number of bytes. The table only stores

the addresses of the blocks. To find a state, a lookup is performed in the indexing table which returns

the address of the state’s corresponding block. Then the states before the desired state in the block are

skipped until it is found. This operation, henceforth known as a state skip, requires looking into the

state’s content to determine the appropriate number of bits to skip in each case, and thus represents a

compromise between speed and memory usage.

5.2.1.1 Packing the fields of the transitions

As said before, it is necessary to store the transitions in the automaton as compactly as possible. Each

transition is defined by its origin and target states, its weight, the input label and the output label. The

transitions are sorted by origin state, and as the sequence of states is continuous, it is only necessary to

store the number of outgoing arcs for each state. To encode the destination state, the fact that in many

cases, its number has a small difference from the origin state, is used. In this case only the difference

to the origin state is output, using a smaller number of bits than would be used to encode the full state

number. To encode the input label, since it is a phone and there are 40 different phones in the system, 6

bits were used. The output label is the index of a word, so dlog (numWords)e bits are used to represent
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this word. A large number of transitions have output label ε, since only a few edges produce an output

word. Finally, the weight is usually stored as a 32 bit float, but it is possible to linearly quantize it to

16 bits without significantly impacting the decoder. It is also useful to note that many transitions in the

automaton have weight equal to zero. All of these properties are explored to reduce the average number

of bits required per transition and thus the size of the transducer.

5.2.1.2 Encoding linear paths in the transducer

A linear path is a sequence of states, connected by arcs, in the transducer, such that each state except the

first (the initial state of the path) and the last (the final state of the path) only has one incoming and one

outgoing arc (transition). Additionally, arcs in linear paths have as output label ε and weight equal to

zero.

The automata composition algorithms push the weights in the transitions towards the starting state

of the transducer as much as possible, to improve pruning efficiency in the decoding algorithm. These

algorithms also push the output labels in the same direction, being produced as soon as the identity

of a word is determined. This justifies the existence of a large number of linear paths in the resulting

transducer: linear paths usually correspond to sequences of phones common to a given set of words

starting at a given language model state, so that there is no difference in language model or lexicon

weights spread to the initial and final states of this path, and hence, all the edges in the path have

weight zero. That is because it is possible to ignore the lexicon weights since, as explained before, the

probability of every pronunciation in the lexicon is equal. Also, because there is no branching in linear

paths, the language model weight remains constant between the initial and final states of the path.

Since transitions in a linear path are uniquely determined by their input phone, a linear path is

therefore very compactly encoded as its length followed by the sequence of phones that defines it. This

can be explored to considerably reduce the size of the transducer; the compact encoding of linear paths

immediately led to a reduction of 55% in the average size of the composition transducers.

5.2.2 Cache for faster access

The impact of the transducer compression operations on the speed of the decoder, in particular the need

to skip through a large number of states, using bit shifting and masking operations, is considerable. As

a solution, a cache was designed, in order to reduce the number of times the compressed FST needs to

be directly accessed. The decoder in Audimus already has a cache, but it is not as well optimized for the

particular case of automaton composition as the cache that was now designed, and performs iterator

copying which is unnecessary in this case (i.e, the cache, when storing iterators, copies them from the

original FST to avoid coherence problems. That is however unnecessary in this case : the accesses to the
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search space FST are managed entirely by the cache system).

Essentially, the cache implements a LRU policy (whenever it is full, and so it is necessary to evict an

entry, it chooses the one that has been used the least recently). Additionally, it takes the access pattern

of the composition WFST into account, in particular that linear paths make up a significant part of the

automaton. The decoder accesses the state having the number immediately above the one that was most

recently stored. By always storing the last state that was requested, it is thus possible, in about one half

of the cases, to respond to the query using a very small amount of computation, by performing only one

state skip. This leads to another important observation: considering the pattern of accesses, the cache

only needs to contain the first state in each linear path, since the others will, in most cases, be accessed

in sequence after the first and their predecessor will already be in the cache. By doing this, it is possible

to use a smaller cache for the same hit rate, which reduces the use of memory space and bandwidth.

The resulting cache is very effective in hiding the access latency of the compressed FST, with hit

rates that are usually above 90%. This translates to a reduction of about one order of magnitude in the

number of accesses to the compressed FST.

5.2.3 The virtual memory problem

Being the most memory intensive section of Audimus, the problem described in chapter 3 (lack of virtual

memory space due to restrictions of the OS) was experienced when larger models were experimented

with. This was problematic since it was intended to use the full physical memory of the device.

The first attempt to solve this problem hinged on the fact that, since one process cannot directly

access more than 32 MB of virtual memory space, the program could be divided into several different

processes, with separate 32 MB address spaces. This solution is not simple to implement in general,

since many programs have complex interdependences among all of their components, which are not

connected through a single point. However, this is made easier in the case under consideration due to

the “pipelined” nature of the ASR system, where the output of one component (feature vectors, prob-

abilities, etc) is fed directly into the next. Nevertheless, this scheme has important disadvantages: the

use of several separate processes consumes a significant amount of system resources, mainly in terms of

memory; synchronization among processes is more cumbersome than among threads, since processes

do not share the same address space, and finally, and perhaps most importantly, the solution is not

completely scalable, since there is a single component - the decoder - that uses the vast majority of

the physical (and virtual) memory of the system, so that this component remains the bottleneck if, for

example, the model is larger than 32 MB.

This led to the consideration of an alternative solution - based on a shared memory region, com-

mon to the address space of all processes. The function VirtualAlloc, which allocates virtual pages in a
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process’s address space, can be directed to allocate pages from this shared pool, that do not belong to

the 32 MB virtual address space of the process. There are a few drawbacks to this approach, namely,

that data stored in a shared region is accessible to all processes and can thus be read by every other

process in the system which can be undesirable in terms of security, and that this shared region is only

128 MB in size, so that occupying a large portion of it may make interprocess communication harder.

These disadvantages were, however, regarded as minor when compared to the ease of implementation

and elegance of the solution, since it would not require any major changes to the code. As a result, this

was the adopted solution.

5.2.4 Optimizations in the decoder

Further optimizations of memory usage in the decoder included reanalyzing the data structures of the

decoder in order to save space.

The Viterbi decoder employs a word list data structure in order to store the required lists of words.

Each node of this structure contains, among other information, the corresponding lattice states in case

it is necessary to generate a lattice as the result of the search, as well as information used to compute

confidence measures ( that indicate how confident one is in a given recognition result) . These can be

removed from the structures used in the target device. In this and other data structures of the decoder,

it is possible to reduce the width of some fields, which are usually small integers, so their range is not

fully used. This is not done in the PC version of the code because, in this case, larger amounts of RAM

and cache memory are available. This makes the speed of access to these structures a more important

factor than the compactness of the data structures; using smaller fields can, in some cases, disrupt the

alignment and thus the access speeds.

Other related optimizations in the area include reducing the memory occupied by the tokens by

removing the time instant to which they refer. This value is important for alignment tasks and the

computation of confidence measures, but these two tasks are not performed in the target system.

The original decoder already performed beam pruning and histogram based pruning to limit search

complexity at the expense of some recognition performance. These techniques are parameterizable and

as such they did not require any changes, but were used with narrower beams and a smaller maximum

number of active states.

Multipass search, in particular, two-pass search, was considered as an option to speed up the de-

coder, but it dropped one of the fundamental requirements of the system : that it be online, as much

as possible. The direct application of a multipass decoding strategy would require that all of the utter-

ance had been read before the second pass could start, causing a significant delay when obtaining the

system’s output.
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5.3 Experiments and evaluation of the system

This section presents the results obtained for the final embedded system. The language and acoustic

models used are the same that were described in the previous chapter.

5.3.1 Tests performed

To assess the performance of the final embedded system, a sequence of tests was prepared. These tests

were sequenced in such a way as to only change one parameter of the configuration at a time.

In all tests of this system the audio used was recorded with the microphone in the PDA.

The first four tests were executed in the embedded system. The tests all used the large language

model (LM1), except for the fourth, which used the small language model (LM2). The first test used

the generic acoustic model (AM1), the second test the speaker adapted acoustic model (AM2), and the

third and fourth tests the speaker and microphone adapted acoustic model (AM3). This was intended

to assess the impact in recognition performance of different acoustic models.

Tests five and six of this set were executed in the NSR system. Both use the speaker and microphone

adapted acoustic model (AM3). Test five uses the small language model (LM2) while test six uses the

large one (LM1). These tests are intended to compare the baseline word error rates and times with those

from the embedded system.

5.3.2 Presentation and analysis of the results

Tables 5.1 and 5.2 present times of recognition and real time factors for the configurations presented in

the above subsection.

The two following tables present times for each of the six tests. Table 5.1 presents times for the first

four tests, while table 5.2 presents times for the fifth / sixth tests.

Tables 5.3 and 5.4 present error rates for the same configurations as in tables 5.1 and 5.2, respectively.

From these results, and comparing them with the ones from the tables of chapter 4, it is possible to

note the following points:

• The average WER of the best embedded configuration (large language model, and adapted acous-

tic model AM3) is 7.77% with a real time factor of 0.71. This value of WER compares favorably

with those in table 4.2, in which processing power is unrestricted: it is lower than the column in

which the generic acoustic model is used to recognize clean speech. It is also only 4.03% higher

than the value of the best configuration (column 2) of table 5.4, in absolute terms.
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Test AM1 + Large LM AM2 + Large LM AM3 + Large LM AM3 + Small LM
1 250s/0.93 202s/0.75 165s/0.61 191s/0.71
2 334s/1.09 288s/0.94 224s/0.73 278s/0.91
3 432s/1.18 391s/1.07 275s/0.75 359s/0.98
4 459s/1.07 406s/0.95 316s/0.74 394s/0.92
5 335s/1.01 279s/0.84 233s/0.70 285s/0.86

Average 1.06 0.92 0.71 0.89

Table 5.1: Duration and real time factors in the recognition of the four test cases. The acoustic model
is the generic acoustic model (AM1) in the first system, the speaker-dependent model (AM2) in the
second, and the speaker-dependent model adapted to the embedded device’s microphone (AM3) in the
third and fourth.

Test Small LM Large LM
1 135s/0.50 126s/0.47
2 169s/0.55 163s/0.53
3 217s/0.59 205s/0.56
4 256s/0.60 208s/0.49
5 193s/0.58 190s/0.57

Average 0.57 0.52

Table 5.2: Duration (in seconds) of the recognition of each of the five test cases, and respective real time
factor. Both tests were executed in the NSR system, and use the acoustic model adapted to the PDA’s
microphone (AM3).

Test AM1 + Large LM AM2 + Large LM AM3 + Large LM AM3 + Small LM
1 18.30% 16.72% 4.10% 6.62%
2 21.65% 16.07% 5.80% 10.04%
3 25.77% 13.65% 6.73% 5.96%
4 40.38% 25.58% 13.65% 14.23%
5 15.43% 13.99% 6.79% 8.64%

Average 25.06% 17.33% 7.77% 9.30%

Table 5.3: Word Error Rates for the same configurations as presented in table 5.1

Test Small LM Large LM
1 2.88% 1.89%
2 3.61% 4.24%
3 4.35% 3.46%
4 6.78% 4.61%
5 4.96% 3.91%

Average 4.68% 3.75%

Table 5.4: Word Error Rates for the same configurations as presented in table 5.2
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• As it would be expected, the use of acoustic models AM1 and AM2 is not good enough, mainly in

terms of word error rates (25.06% and 17.33% respectively). This confirms that the acoustic model

needs to be adapted both to the user and microphone in order to obtain good performances.

• The use of the small language model seems to have limited influence on the system’s recogni-

tion errors; the WER is degraded 1.53%, in absolute terms, in the embedded system. However,

using the smaller language model also leads to an increase in execution time; the real time factor

in the embedded configuration increases from 0.71 to 0.89, and in the NSR configuration this fac-

tor increases from 0.52 to 0.57. In other words, this means that the fact that the larger model has

less locality is more than compensated for by its better adequation to the speech segment being

recognized, leading to a more focused and therefore faster search. Consequently, it seems to be

preferable to use more detailed language models if enough memory to store the models is avail-

able.

• Test 4 shows the highest overall error rates of the test set, in many cases much higher than those

of the remaining tests, reaching the absolute value of 40% in column 2 of table 5.3. In fact, this

test seems to contain a set of sentences made up of more complex words. It also contains short

phrases that are sometimes discarded by the endpoint component for being too short. The obvious

solution would be to increase the threshold for the shortest acceptable speech block in the endpoint

component, but that also leads to an increase in the detection of spurious non-speech fragments as

speech.

These results show that the largest absolute increase in word error rate of all components occurs

when porting the decoder. This would be expected, not because complex fixed point operations are per-

formed in the decoder (since it performs mostly sums), but because the decoder is the most complex part

of the system and so aggressive pruning had to be applied to control its time complexity. However, the

absolute increase in word error rate in the best configuration, relative to the NSR system, is only about

4% and the final system still runs under real time (0.71 xRT). This means that the results confirm the

feasibility of using a large language model in the system, with good results, provided that the acoustic

model is speaker adapted.
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6Conclusions

This chapter presents the concluding remarks of this thesis, summarizing the work that was done. It

ends by presenting some work that remains to be done in the future.

6.1 Final Remarks

In this work, Audimus, described in chapter 3, was progressively ported to a target device, using a radi-

ology task with a vocabulary of 13161 words to test each of the intermediate systems that was produced.

The mobile device used in the tests was a 520 MHz PDA with 64 MB of RAM running Windows Mobile

6 and with no floating point capabilities.

The starting point for this work was a NSR system (chapter 4), running over a wireless TCP/IP

network. This initial system, running with a generic model and with audio recorded with a high quality

microphone, attained a WER of 9.86%. The generic acoustic model was speaker adapted, leading to a

WER of 2.05%. Then, an attempt to reuse the acoustic model with audio recorded with the PDA’s in-

ternal microphone led to a very large increase in WER (to 18.41%). So, the acoustic model was further

adapted to the internal microphone in the PDA. Accordingly, the WER dropped to 3.75%, which rep-

resents an absolute increase in WER of only 1.70%, when compared with the adapted system running

in the PC with the speaker adapted model. Then the PLP component was ported to the target device,

as mentioned in subsection 4.2.1, and the word error rate did not increase significantly (only 0.05% in

absolute terms). Also, the MLP component was ported to the PDA (subsection 4.3.1), with an absolute

increase in WER of 0.91%. Porting these two components did not cause a significant increase in WER.

Finally, the decoder was ported to the target system, creating the final embedded system (chapter 5) and

giving the most significant absolute increase in WER, from 4.71% to 7.77%. The system ran at 0.71 xRT.

This final embedded system can be compared with the baseline system in the PC. Both systems

perform the same recognition task and are online, that is, they output recognition results as soon as it

is possible (this is a desirable quality in dictation tasks for it gives the user immediate feedback). When

both systems are used with a speaker adapted model recognizing the same audio, the baseline system

has a WER of 3.75%, while the embedded system has a WER of only 7.77%. This absolute increase in

WER is small when the discrepancies in processing power are factored into consideration, since the PC

is an order of magnitude or more faster than the device. In terms of the percentage of time occupied



by each component, in the baseline system the PLP component took up about 4% of the total time and

the acoustic model about 12% of the execution time, with the decoder using up the remaining 84%. In

contrast, in the final system the PLP component occupied 10%, the acoustic model 28%, and the decoder

only 62%. This increase in proportion of the PLP and acoustic model components is natural since, even

if these components have been optimized for speed, the improvement is not enough to counterbalance

the difference of processing speeds between the desktop system and the target device. It also shows

why the decoder had to perform more aggressive pruning, justifying the increase in word error rates.

From the above summary of the obtained results, it is possible to conclude that the goals of this

thesis were attained, in that Audimus was successfully ported to a PDA, achieving good performance

in the task used to test it. It is hard to directly compare its performance with state-of-art embedded

systems due to the different characteristics of the devices used in each work. However, most of the

surveyed systems that used state-of-art systems had vocabularies between 2000-15000 words, worked

near or above real time, were speaker adapted, and had word error rates in the 10-15% range. This is

comparable to the performance achieved by the system described in this thesis.

It is also important to note that the intermediate systems that were produced can be an interesting

alternative to the final embedded system. They present lower word error rates and enable using larger

tasks, since they transfer the most complex part of the processing to a computer with enough resources.

Given this and despite their disadvantages - the increased latency in response and the requirement that

a suitable network be available within reach of the device - distributed systems may well be the best

option in the cases where processing power is too limited or the ability to use a very large language

model is the determinant factor.

6.2 Future work

In this section, some of the lines that can be explored in future work are described.

6.2.1 Integration of some improvements in the desktop Audimus system

The work that has been done, in terms of reducing memory consumption and CPU time used, is mostly

independent of the system where it is deployed. This means that it may be possible to employ it to

reduce memory consumption in the desktop system, enabling the use of larger tasks. Integrating some

of these improvements in the baseline system, such as the compression of the composition of the lexicon

with the language model would, nevertheless, require a more careful analysis of how they would scale

for larger models and how they would function in the presence of multithreading, especially in the case

of the cache, which is not thread safe.

52



6.2.2 Improving the distributed systems

The task of creating robust distributed systems was left outside the scope of this thesis, since they arised

as a byproduct of its main goal: to create a completely embedded system. In this sense, it would be

important to investigate:

• other feature extraction components, in special their adequation to more realistic and challenging

environments. Background noise, such as people talking, cars running, or room reverberation

is common in most realistic environments, and must be addressed if system performance is to

degrade gracefully under these circumstances.

• it would also be interesting to apply feature compression and error mitigation techniques in or-

der to adapt the system to some types of communications networks that are commonly used by

mobile devices. Many of these networks are congested and therefore lose or corrupt a large num-

ber of packets. This requires compressing the feature vectors to make the most of the available

bandwidth, as well as minimizing the impact of any packet loss on the recognition performance.

In addition to what was mentioned in the above paragraph, it would also be interesting to look into

the possibility of porting and using the SNS component instead of the endpoint component for sentence

segmentation and speech detection, to see if the improvement in robustness would be significant.

6.2.3 Porting the system to other OSs and devices

The current system only works under the Windows Mobile operating system. It is, however, antici-

pated that porting it to other mobile operating systems will be relatively easy, since the system uses few

OS-dependent constructs or functions. Porting the system would thus essentially require to port the

PortAudio and ZThreads systems to the target OS, which would not be difficult given the fact that most

modern operating systems for embedded devices support threads.

Also, the system is currently dependent on the device’s processor; in particular, the efficient ver-

sion of the matrix multiplication algorithm of the ForwardMLP component will only work on processors

featuring the Wireless MMX extensions (there is a less efficient version, written solely in C, of the ma-

trix multiplication that will work on all processors, but as it stands, this version is about 58% slower

than the assembler version, which is unacceptable for most purposes). This can be avoided if compiler

technology advances enough so that compilers can understand how to optimize effectively for all tar-

get architectures, in particular how to use some vector instructions of the processor effectively. But it

would also be interesting to investigate how to automatically generate good quality code for a set of

ARM based architectures sharing similar DSP instructions but with different pipelines and instruction

scheduling rules.
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6.2.4 Confidence measures

The obtained system does not compute confidence measures, since their calculation introduced non-

negligible overhead in the system. The computation of confidence measures does not seem to be a

priority, since in a dictation application, because the system is online, the user has immediate feedback

on whether the text they have spoken has been correctly recognized by the system. However, if the user

speaks a large amount of text in a short period of time, they might not remember exactly what they

have spoken, so confidence measures might help them not to be confused with the output of the system.

Additionally, confidence measures are extremely useful in a command-based system, because they can

help the system not to execute commands that have been recognized with confidence below a given

threshold.

For these reasons, it would be important to consider, in future work, the introduction of confidence

measures into the system.
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Técnico, UTL, Lisboa, Portugal.

Coppersmith, D., & Winograd, S. (1982). On the asymptotic complexity of matrix multiplication. SIAM

Journal on Computing(11), 472–492.

Digalakis, V., Neumeyer, L., & Perakakis, M. (1998). Product-Code Vector Quantization of Cepstral Param-

eters for Speech Recognition over the WWW. In Proceedings of the ICSLP 1998. Sydney, Australia.

ETSI ES 201 108 v1.1.2 distributed speech recognition (front-end feature extraction). (2000).

Ewe, C. T., Cheung, P. Y. K., & Constantinides, G. A. (2004). An Efficient Alternative to Floating Point

Computation. In Proceedings of FPL 2004. Antwerp, Belgium.

Fabregas, V., & Alcaim, A. (2007). Features Interpolation Domain for Distributed Speech Recognition and

performance for ITU-T G.723.1 CODEC. In Proceedings of Interspeech 2007. Antwerp, Belgium.

Gosztolya, G., & Kocsor, A. (2005). Speeding Up Dynamic Search Methods in Speech Recognition. In

Proceedings of the IEA / AIE 2005. Bari, Italy.

Hedelin, P., & Skoglund, J. (2000, July). Vector quantization based on Gaussian mixture models. IEEE

Transactions on Speech and Audio Processing, 8(4), 385–401.

Heisterkamp, P. (2001). Product Level Speech System for Mercedes-Benz Cars. In Proceedings of the HLT

2001. San Diego, USA.

55



Hetherington, I. (2007). PocketSUMMIT: Small-Footprint Continuous Speech Recognition. In Proceedings

of Interspeech 2007. Antwerp, Belgium.

Hsiao, R., Venugopal, A., Kohler, T., Zhang, Y., Charoenpornsawat, P., Zollmann, A., et al. (2006). Opti-

mizing components for handheld two-way speech translation for an english-iraqi arabic system.

In Proceedings of the ICSLP 2006. Pittsburgh, USA.

Huggins-Daines, D., Kuhmar, M. C. A., Black, A. W., Ravishankar, M., & Rudnicky, A. (2006). Pock-

etSPHINX: A Free, Real-Time continuous speech recognition system for hand-held devices. In

Proceedings of the ICASSP 2006. Toulouse, France.

IBM Embedded ViaVoice. (n.d.). http://www-306.ibm.com/software/pervasive/embedded_

viavoice/.

Intel. (2004, October). Intel PXA27x Processor Family Developer’s Manual.

Kiss, I. (2000). A comparison of distributed and network speech recognition for mobile communication

systems. In Proceedings of the ICSLP 2000. Beijing, China.

Knill, K. M., Gales, M. J. F., & Young, S. J. (1996). Use of Gaussian Selection in Large Vocabulary Continu-

ous Speech Recognition using HMM’s. In Proceedings of the ICSLP 1996. Philadelphia, USA.

Konami’s LifeLine. (n.d.). http://www.konami.com/lifeline.

McTear, M. F. (2002). Spoken dialogue technology: enabling the conversational user interface. ACM

Computing Survey, 34(1), 90–169.

Meinedo, H., Caseiro, D. A., Neto, J. P., & Trancoso, I. (2003). AUDIMUS.media: a Broadcast News speech

recognition system for the European Portuguese language. In Proceedings of the PROPOR 2003 .

Faro, Portugal.

Meinedo, H. and Neto, J. P. (2003). Automatic speech annotation and transcription in a broadcast news

task. In Proceedings of the ISCA Workshop on Multilingual Spoken Document Retrieval. Macau, China.

Mitra, A., & Chakraborty, M. (2002). An Efficient Block-Floating-Point Implementation of Fixed Coef-

ficient FIR Digital Filters. In Proceedings of the National Conference On Communications. Bombay,

India.

Mohri, M., Pereira, F., & Riley, M. (2002). Weighted finite state transducers in speech recognition. Computer

Speech and Language, 16, 69–88.

Nuance Vocon. (n.d.). http://www.nuance.com/vocon/.

Paul, D. B. (1992). An Efficient A* Stack Decoder Algorithm for Continuous Speech Recognition with

Stochastic Language Model. In Proceedings of the ICASSP 1992 . San Francisco, USA.

56



Paver, N. C., Aldrich, B. C., & Khan, M. H. (2003). Intel wireless MMX technology: a 64-bit SIMD

architecture for mobile multi-media. In Proceedings of ICASSP 2003. Hong Kong, China.

PortAudio - an Open-Source Cross-Platform Audio API. (n.d.). http://www.portaudio.com/.

Rabiner, L.R. (2000). A tutorial on hidden Markov models and selected applications in speech recognition.

In Readings in Speech Recognition (pp. 267–296). San Francisco, USA: Morgan Kaufmann.

Ryan, M. S., & Nudd, G. R. (1993). The Viterbi algorithm . In Warwick Research Report RR238. Conventry,

England.

Singh, G., Panda, A., Bhattacharyya, S., & Srikanthan, T. (2003). Vector quantization techniques for GMM

based speaker verification. In Proceedings of the ICASSP 2003. Hong Kong, China.

Stolcke, A. (1998). Entropy-based pruning of backoff language models. In Proceedings of the DARPA

Broadcast News Transcription and Understanding Workshop 1998. Landsdowne, USA.

Strassen, V. (1969). Gaussian Elimination is not optimal. Numer. Mathemat.(13), 354–356.

Tan, Z.-H., Borge, L., & Dalsgaard, P. (2004). A Comparative Study of Feature-Domain Error Concealment

Techniques for Distributed Speech Recognition. In Proceedings of the ITRW on Robustness Issues in

Conversational Interaction. Norwich, UK.

Young, S. (1995). Large vocabulary continuous speech recognition: A review. In Proceedings of the IEEE

Workshop on Automatic Speech Recognition and Understanding. Snowbird, Utah.

Young, S. (1998). Acoustic Modelling for Large Vocabulary Continuous Speech Recognition. In Proceedings

of the NATO Advanced Study Institute Conference on Computational Models of Speech Pattern Processing

1998. Il Ciocco, Italy.

Zhang, W. Q., He, L., Chow, Y., Yang, R., & Su, Y. (2000). The study on distributed speech recognition

system. In Proceedings of the ICASSP 2000. Istanbul, Turkey.

ZThreads - a portable thread library. (n.d.). http://zthread.sourceforge.net/.

57



58


