
Automatic Evaluation of Programming Projects

Miguel Rocha Ferreira Aguiar Nogueira

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática e de Computadores

Júri

Presidente: Doutor José Carlos Monteiro
Orientador: Doutor João Carlos Serrenho Dias Pereira
Co-orientador: Doutor Nuno João Mamede
Vogais: Doutor David Manuel Martins de Matos

May 2011

Acknowledgements

This thesis could not have been done without the help and support of several people who
undoubtedly need a word of appreciation.

First and foremost I need to thank my parents for having given me all the possibilities to
have followed my studies and for all the support given during not only the time used to work
on this thesis or the degree but during all my life.

I would also like to thank my advisors for the opportunity given to work on this thesis and
the good advices given to steer my work in the right path.

I cannot forget my family and friends for the giving me a solid foundation to endure good
and bad times and to having kept supporting and cheering me in this academic road coming
to an end now (at least for now).

Lisboa, November 19, 2011
Miguel Aguiar Nogueira

To my parents Alberto and
Manuela

Resumo

Cadeiras de programação são uma componente estrutural de qualquer curso da área das
Ciências da Computação. Para os alunos provarem que aprenderam os tópicos leccionados em
cada cadeira, normalmente é-lhes exigido para resolver problemas programaticamente ou para
desenvolver uma aplicação cumprindo alguns requisitos. Para avaliar os projectos implemen-
tados pelos alunos, o corpo docente das cadeiras ou os avalia manualmente ou usa um sistema
de avaliação automática. Actualmente existem poucos sistemas de avaliação automática e os
que existem não cumprem os requisitos considerados importantes, sendo na sua maior parte
orientados a concursos de programação.

O objectivo desta tese é a criação de um sistema de submissão e avaliação de projectos
para dar suporte a cadeiras de programação. O objectivo é que o sistema ajude o corpo do-
cente e os alunos, automatizando grande parte da avaliação dos trabalhos e dando informação
instantânea aos alunos de como é que as suas soluções resolvem o problema proposto.

Este documento apresenta a ideia por detrás dum sistema destes e os seus requisitos, o
estado da arte dos sistemas utilizados actualmente e apresenta a arquitectura e implementação
de um novo sistema que respeita tais requisitos.

Abstract

Programming courses are the basis for any Computer Science degree. For students to prove
they have learnt the topics taught by each course, they are generally asked to programmati-
cally solve a problem or to build an application according to some requirements. To evaluate
and grade the projects implemented by students the faculty of the courses either evaluates them
by hand or resorts to an automatic evaluation system. Currently, there are few automatic eval-
uation systems and those there are do not comply to the requirements considered important,
being most of them programming contest oriented systems.

The purpose of this thesis is the creation of a project submission and evaluation system to
support programming courses. The goal is for the system to help both the faculty of the course
and students, by automating most of the evaluation, managing the course and giving instant
feedback to students on how well their solutions solve the problem given.

This document presents the rationale and requirements for such a system, the state of the
art of the systems currently used and presents the architecture and implementation details of a
new system that complies with the requirements presented.

Palavras Chave

Keywords

Palavras Chave

Avaliação Automática

Disponibilidade Submissões

Feedback aos Alunos

Apoio Cadeiras Programação

Keywords

Automatic Evaluation

Submission Availability

Feedback to Students

Support Programming Courses

Table of contents

1 Introduction 1

1.1 Introduction . 1

1.2 Goal . 2

1.3 Requirements . 3

1.3.1 Functional Requirements: . 3

1.3.2 Non-functional Requirements . 5

1.4 Outline . 6

2 State of the Art 7

2.1 Introduction . 7

2.2 Mooshak . 7

2.3 PC2 . 9

2.4 UVa Judge and EduJudge . 10

2.5 PO Eval . 10

2.6 e-Learning Systems . 11

2.7 Fénix . 12

2.8 Conclusions . 12

3 Architecture 15

3.1 System’s Architecture . 15

3.2 Application’s Layered Architecture . 17

3.2.1 Domain and Persistency . 18

3.2.2 Business Logic and Services . 18

3.2.3 Presentation . 18

i

4 Implementation 19

4.1 Introduction . 19

4.2 Layered Architecture . 20

4.2.1 Domain . 20

4.2.2 Business Logic and Services . 22

4.2.2.1 Monitor and Evaluators . 24

4.2.3 Presentation . 25

4.3 Fénix Framework and JVSTM . 29

4.4 Submission and evaluation variants . 29

4.4.1 Version Control System / Source Code Management integration 30

4.4.2 File Import . 31

4.5 Project Evaluation Process . 31

4.6 Conclusions . 34

5 Evaluation 35

5.1 Methodology . 35

5.2 Experiment One: Checking the correctness of the system 36

5.3 Experiment Two: Performance of the system . 37

5.4 Experiment Three: Multiple Clients on CVS mode 38

6 Conclusions 41

6.1 Contributions . 41

6.2 Limitations . 41

6.3 Alternative Applications or Uses . 42

6.4 Future Work . 42

6.4.1 Remote Evaluators . 42

6.4.2 Support for more import solutions . 42

6.4.3 Fénix Integration . 43

6.4.4 Other improvements . 43

6.4.4.1 Sandbox . 43

6.4.4.2 Scheduled evaluations . 43

6.4.4.3 Localization / Internationalization 43

6.4.4.4 Statistics . 44

ii

6.4.4.5 Evaluation Policies . 44

6.4.5 Improvement of compile/execution/comparison string parsing 44

iii

iv

List of Figures

2.1 Mooshak being used in the MIUP 2004 event. 9

3.1 The System’s Architecture . 16

3.2 Layered Architecture used in the System . 17

4.1 The System’s Domain Model . 21

4.2 The System’s Services . 23

4.3 Simplified Sequence Diagram of the Monitor and Evaluator. 26

4.4 Student’s view of its evaluated submissions. One in this case. 27

4.5 Teacher’s view of all submissions made on the system. 28

5.1 Experiment Two time comparison chart . 38

5.2 Experiment Three time comparison chart . 40

v

vi

List of Tables

2.1 Comparison Matrix . 13

5.1 Experiment One time comparison . 37

5.2 Experiment Two time comparison . 37

5.3 Experiment Three time table . 39

vii

viii

1Introduction
1.1 Introduction

Courses in which new programming languages, paradigms, methodologies and algorithms are
first taught to students often include a practical component so that students can exercise the ac-
quired theoretical knowledge. Usually, this practical part often involves creating a program in
order to solve a given problem. The programs made by each student (or group of students)
have to be evaluated by the teachers of the course. These programs can be evaluated accord-
ingly to two parameters: i) whether the program executes as required and ii) whether students
have implemented the program applying the concepts and constructs taught in the theoreti-
cal classes. Depending on the course and on the teacher, the evaluation can be just based on
the first parameter or on the combination of both of them. When the course has more than a
hundred students, something that is often usual in the first years of a degree, evaluating all the
project submissions is a big effort for the faculty in charge of said course.

For the first parameter described, it is possible to define automatic tests that verify the
correct behavior of student’s programs but this is not possible for the second parameter that
still requires manual verification.

For the students of a course the feedback about this programs is crucial, specially if they
can still correct their work. Giving the possibility of finding errors and correct them during the
implementation of a program is a big advantage since students will learn more by correcting
their own mistakes.

For some years, with the advent of Internet and the ability for students to submit projects
remotely, teachers have used automatic submission systems to receive the projects. These sys-
tems verified which student was logged and at what time he or she uploaded the project to
ensure they were submitted before the deadline. But there was no help at all to run the code
through a series of tests to verify its correctness and automatically publish the results online.
Later on, some teachers started using contest-intended systems like Mooshak (Leal and Silva
2001a) (Section 2.2) to automatically run a series of tests on the submitted programs. Since these
systems are not intended to support a course, they have several limitations (some of which will
be described on Chapter 2) and do not support all the desired functionality needed to help run
a course.

The two main problems that make these systems are hard to create are to ensure the system
can always receive student’s programs (availability) and the ability to gracefully endure high
load peaks.

2 CHAPTER 1. INTRODUCTION

1.2 Goal

The purpose of this thesis is to create a new system or adapt an existing system in order to
assist students and teachers of programming courses by automating most of the tasks related
to evaluating programming assignments.

For teachers, the evaluation system should help to automate the evaluation process of-
floading most of the evaluation work from them. This includes aspects like being easy to create
automatic tests and automating the grade publishing. The system should also handle student
management helping on all the grouping and schedule issues, managing project reception in-
side the deadline and also managing project grades.

The evaluation system should also help students by giving them instant feedback on the
correctness of the submitted solution, since the system will be available 24/7, allowing students
to work at their own pace. This feedback consists in running a series of tests and displaying
the tests which the students’ code passed and those which failed. This interactivity with the
student enters the e-learning topic by trying to engage students in the course which can help
improve learning and consequently grades and reduce the drop of rates of the courses, as de-
scribed in the tests made in the University of Murcia(Garcı́a-Mateos and Fernández-Alemán
2009), topic covered in the Mooshak section (Section 2.2). Moreover, this system also should
allow the student to check if the version being submitted is the correct one, decreasing the
probability of delivering an older version of the code.

The 24/7 issue mentioned earlier, which is in itself an availability and quality of service
(QoS) requirement is specially relevant. Students are being evaluated for their their projects and
the grades normally account for a big percentage of the final course grade (normally around
50%), so the system has to be up to receive students’ submissions. In a peak of traffic like
those that usually happen nearing deadlines the system may get under heavy load, but it is
essential for it to continue to be able to receive the submissions, even if some limitation in the
automatic evaluation part is enforced based on system load. To give an example of an extreme
situation in which the system might have to encounter and handle gracefully, on the 2009/2010
Object-Oriented Programming course at Instituto Superior Técnico, a single group submitted
their project 200 times in a few minutes/footnoteInformation provided verbally by the faculty
of the course..

More concretely, the goal of this thesis is to develop a system able to help the faculty of
programming courses to automatically grade at least a part of the student’s programs. For this
goal to be achieved there are some requirements the system will have to comply with to be
more useful than the current system and the existing alternatives.

This new system should make course management easy on the project front. It should
handle group definition and their maintenance, to allow teachers to visualize the submitted
projects and define, in an easy way, the tests needed to evaluate a project and automatically
grade them. Moreover, it should be easy for students to submit their solutions and get the
corresponding result.

Project submissions for a course usually have a big growth in number as the deadline
approaches. At the end of this deadline a very high number of submissions and therefore eval-
uations are requested to the system and the load of the system increases substantially reducing
its effectiveness. The new system must have mechanisms to handle this load gracefully.

1.3. REQUIREMENTS 3

1.3 Requirements

This section describes in detail the requirements that an automatic evaluation system should
meet. First, we present the functional requirements and then the non-functional requirements.
The desired system should have a set of functionalities that span from authentication to the
ability of automatically grading a project.

1.3.1 Functional Requirements:

The functional requirements of an automatic evaluation system are:

Authentication: The system should allow a student to authenticate himself univocally with
the system since the system is used to evaluate part of his grade on a course.

Grouping: The system must support groups since there are courses in which some practical
projects are to be done in groups of two or more students. The system must allow the
creation of groups of students. The definition of groups should be easy since we do not
want to overload teachers.
A possible support for using the grouping system used in Fénix (Section 2.7) by import-
ing the groups and their composition. Teachers should be warned if there was any change
in the Fénix groups and decide if they want to apply the changes on the system.
The system also must support the possibility of the groups being created by
Project/assignment instead of being independent. This would allow more flexibility for
creating ad-hoc groups for class assignments for example.

Group evolution: There are always some problems regarding grouping during the execution
of a course and it is always necessary to change the constitution of some groups, delete
existing groups or create new ones. This task should also have a low overhead from the
point of view of the teachers.

Individual vs group: A course can have individual and/or group projects. The system should
support both types of projects on a transparent way for teachers and students. When
a student logs in the system, he has access to all group projects of his group and to his
individual projects.

Schedules: It is desirable the system can be aware of the course’s schedules and shifts includ-
ing theoretical and practical classes and which teachers lecture each class. Each group
should be related to a practical class shift.

Submission of files: The source code of the student’s solution has to be able to be uploaded
remotely to the system. If the project the student wants to submit is a group project, any
member of the group can submit it. Each submission must be timestamped.
As there are always some last minute e-mail submissions 4 or 5 minutes after the deadline
expires, the system should allow a teacher to submit a student or group project after the
deadline has ended.

Submission deadlines: Each system has a deadline. The deadline can be static (a specific date
and hour) or variable (until the start or the end of the shift the student/group is enrolled
of a given week).

4 CHAPTER 1. INTRODUCTION

Access to prior submissions The system should be able to save all the submissions the stu-
dents have made and their correspondent grade (if it has already been evaluated). The
students should be able to access all of their submitted programs and the correspondent
results of the automatic evaluation. The access to the submitted programs is important
since sometimes students ”lose” their local copy of the submitted programs.

Grades: The system must be aware of the concept of grades. The faculty of the course must be
able to specify how are the projects graded (for example: 70% automatic evaluation and
30% the quality of the solution and of the code manually graded by a teacher).

Specify automatic tests: The system should support the specification of automatic tests for
each project to assert the correctness of the students’ code. Each test must be composed by
one or more input files and one expected test output file. The system evaluates a test over
a student project by submitting the input files related to each test to the compiled project
and verifying if the project executed without errors and the expected result is equal to
the obtained output. The teacher should also be allowed to specify which tests are to be
run on submission, which are to be run after the deadline when the system grades the
projects and which are to be run on both situations. Teachers might not want to allow the
difference between the intended output and the actual output of the execution of a test to
be shown to the student, only if the test passed or not, so the system must also allow to
change this visualization setting.
Each test has an upper time limit and might have an upper limit in process memory size.
Test specification must be simple and fast. Teachers should only need to spend a few
minutes to specify the tests for a project.

Run automatic tests: The main purpose of the system is to run a series of tests for each project
submitted by the students and grade them accordingly to the number of passed tests and
their respective weight. The grades are given after the deadline has ended in a final eval-
uation of all the last submissions from students with the offline tests. When the tests are
run before the deadline ends, only the submission tests are executed and no grade is ap-
plied, the system only needs to show which testes passed and which did not.
For each test the outcome of its execution may either be correct or there may be some kind
of execution error. This execution errors may vary in seriousness and some kind of errors
can still give a smaller grade like a presentation error in which the output is correct with
the exception of a whitespace.
A security mechanism has to be provided for disallowing students to access (or transfer
them to a remote location) the test input files in order to optimize their code for those
tests or to have the correct answer hardcoded.
If the system cannot give an immediate evaluation result of a submission (because of hav-
ing more submissions to be evaluated before it), the system should indicate an estimated
time for the result being available and when it is available warn the student/group of it
by e-mail.

Language independent: The system should be able to evaluate programs written in any lan-
guage, provided they can be compiled and executed from the command line. For each
project the teachers should be able to specify which programming languages would be
allowed.

Submission evaluation strategies: The system must support various evaluation strategies to
be applied to the submitted projects and be able to change them at runtime. These strate-

1.3. REQUIREMENTS 5

gies could be for example: receive project compile and execute it against the tests; receive
project and compile; receive project and put it in a FIFO queue to be compiled and tested;
limit the number of submissions per student/group. etc. This would be useful to control
the load of the system and to adapt the system to several types of assignments for the
students.

Rank student solutions: In order to promote a healthy competition among the students, the
system should rank their solutions according to several criteria: number of tests passed
or the grade that the submission obtained, number of submissions (lowest number the
better, provided it passes the tests), faster solution, lowest memory used, etc. By ranking
the projects, we hope that students submit projects with an higher quality so that they
have a good classification on the ranking.

Manual grading: Teachers must also be allowed to download the projects of the students that
belong to their practical classes in order to be able to do the non-automatic evaluation of
the code.

Visualization: Apart from the features previously introduced which already impose some user
interface requirements, there are some other UI requirements that do not fit any of the
requirements previously listed.
Teachers should be able to view and sort student’s submissions in a hierarchy composed
from top to bottom by:

Top Level: Shows all the projects and allows each one to be evaluated, to download the
last submission of every group for that project.

Project: For each project selected in the upper level, this view should list all the class
schedules and allow each one to be evaluated, download the last submission of ev-
ery group for each class schedule. Optionally, the class schedule division sorting can
be removed and all the groups for each project would be visible.

Class: For each class, the groups belonging to that class are to be shown with the same
options: evaluate last submission and download it.

Group: Finally, in the lower level of the view hierarchy, all the submissions of each group
are to be shown with the same actions as stated on the hierarchies above, but instead
of being applied to the last submission, applied to that submission.

Practical evaluation: There are some courses in which a practical examination is done after the
project is submitted to assert if the student knows the project code, structure and in the
limit, how to program. This is particularly important in projects done in groups. There-
fore, support for this kind of evaluation is needed. Students should be able to download
their last submission of the project and submit it again with the changes needed to run
the new tests within the deadline for the examination.

1.3.2 Non-functional Requirements

In order to support the functionalities described in Section 1.3.1, the following non-functional
requirements are desirable:

Accessibility: The system should be accessible from a wide variety of locations, being desir-
able to have a web interface for both student and teacher interaction.

6 CHAPTER 1. INTRODUCTION

Adaptability: The system must be adaptable. It should be easy to integrate the system with
other systems like Fénix for example. Fénix along with other functionalities knows the
enrolled students on the courses. This way, it can be used to handle grouping for instance.

Auditability: The system, being used in official courses, must be auditable. For that end the
system must log all user interactions with it like for example: date and time of the sub-
mission along with what files were submitted and by whom it was submitted.

Availability: The system must be able to accept project submissions even if under heavy load.
This may lead to a variation of the Quality of Service taking into account the load of the
system. If the system is too loaded the system can automatically change the evaluation
strategy to a less demanding one in terms of CPU requirements in order to guarantee
student’s submissions are always received on time. In the limit, the system would only
accept submissions and leave the evaluation for later.

Extensibility: The system must be easily extended for new functionalities. It should be easy to
add a new evaluation strategy for when the system is under heavy load for example.

Performance: Under normal load the system should be able to run student’s projects without
any performance hit.

Scalability: It is desirable that the system can scale to support a situation where the number
of submissions grows more than it was intended in the first place.

Security: The system must have secure authentication. The system cannot allow a student to
see another student’s source code.
In order to protect the execution of the system and the content of the tests a student’s
program must be executed in a sandbox. This way, if the submitted code has malicious
instructions it should not be able to affect the normal behavior of the system or corrupt
data.

1.4 Outline

The document is organized as follows. Chapter 2 presents the State of Art, describing some
systems that have similar purposes of automatic evaluation, project submission and/or course
management. Chapter 3 shows the architecture followed to create our evaluation system and
Chapter 4 details how the system was implemented, the parts that compose it alongside a
rationale on why some decisions were made. Chapter 5 details the methodology of how the
system was evaluated. Finally, Chapter 6 presents the conclusions and the proposed future
work.

2State of the Art

2.1 Introduction

This chapter presents an overview of the main existing e-learning and automatic program eval-
uation systems. This division is made since their goals are intrinsically different. At the end of
the section, all the systems are compared between each other.

Automatic Evaluation Systems are systems able to receive the source code of programs
created as solution to a given problem, compile and execute them with a set of tests and assert
the amount of tests passed by the user’s solution. This kind of systems are used to support the
realization of programming contests such as the ACM-ICPC1 and its national and regional sub-
contests, and in several programming courses throughout the world. Three contest systems
and an academic evaluation system will be introduced in this section: Mooshak (Section 2.2),
PC2 (Section 2.3), UVa Judge (Section 2.4) and PO Eval (Section 2.5). A brief description of
e-Learning Systems is also presented (Section 2.6) along with a fully fledge Academic Manage-
ment System (Section 2.7). Finally we present the conclusions taken of the study of the State of
the Art (Section 2.8).

2.2 Mooshak

Mooshak2 is a web-based programming contest manager and automatic judge (Leal and Silva
2001a; Leal and Silva 2001b) developed by João Paulo Leal and Fernando Silva at the Faculdade
de Ciências of the Universidade do Porto.

Having been conceived as a contest manager, Mooshak allows the registration of teams,
each of which has a single password. Mooshak supports an HTTP interface. This way users
can access the system using a browser.

When Mooshak is evaluating a student’s solution, the automatic judging functionality is
divided in two main phases: static analysis and dynamic analysis. The static analysis phase
verifies the team is valid, which programming language is the solution coded on, what is the
problem the team is trying to solve with this submission, checks if the program size does not
exceed a predefined reasonable size (security feature) and sees if the solution compiles properly.
If all static tests pass, the system enters in the dynamic analysis phase which has to deal with
the execution of the compiled code running some test cases according to the problem the code
is trying to solve. These tests consist in an input and an output file. The compiled program is
executed and is passed the contents of the input file through the standard input (stdin) and its

1ACM’s International Collegiate Programming Contest - http://cm.baylor.edu/welcome.icpc
2http://mooshak.dcc.fc.up.pt/

8 CHAPTER 2. STATE OF THE ART

output (stdout) is compared with the test’s intended output. The execution of the tests can have
several outcomes:

• Pass: The output of the program is same the expected one.

• Time-limit exceeded: At least one test of the test suite took more time to execute than its
predefined time limit.

• Output too long: The output of at least one of the tests is longer than intended.

• Runtime error: The execution of one of the tests exits abnormally.

• Wrong Answer: The answer of one of the tests is not the desired one.

• Presentation error: The answer is correct, only white spaces of at least one of the tests
differ.

Compilation and execution of the submitted code are the most insecure parts of this pro-
cess, therefore they are done in a secure environment with several restrictions and limits en-
forced.

Mooshak was developed using the Tcl scripting language, and is deployed in Apache with
CGI. Instead of using a database system to store the persistent data of the system, the creators
decided to use objects saved directly in the filesystem naming them Persistent Objects. For
replication and scalability purposes rsync3 is used since it allows fast and incremental file trans-
fer and synchronization between various systems. It was created with a scalable architecture
in mind where it can go from a single-site single-server layout up to a multi-site multi-server
one able to securely host a big distributed international event.

From the requirements detailed on Section 1.3, we can see Mooshak does not comply to
several of them. It doesn’t support grouping in an easy way, i.e in order to support a group
of two students, each of the students would have to log in individually for the individual
assignments and then have a different login for the group. This has more implications than
only having to remember the second username and password. For a teacher it would imply
having to manually pair which students belong to each group to assign them the grades. Which
leads us to another characteristic Mooshak lacks, the handling of Grades. For Mooshak a test
is either a pass or a fail, in any of its types like detailed previously. There can not exist more
important tests than others, have dependent tests nor grade them. This system can not handle
schedules either, only final deadlines for the projects. Finally there are no variable evaluation
strategies and the tests can not have multiple input and multiple output files.

This system is used in some university courses around the world such as Análise e Sı́ntese
de Algoritmos here at IST and in the Algorithms and Data Structures course (Garcı́a-Mateos
and Fernández-Alemán 2009) in the University of Murcia. In the latter they used the system
with the main intent of reducing student dropout which was at 70% at the time. To try to
reduce the dropout rate and in order to increase the students’ self-learning initiative and in-
terest in the course they changed the evaluation model from a monolithic approach with a big
programming project and an end of course exam to a more flexible and interactive continuous
evaluation approach with smaller programming assignments (individual and in groups) and

3rsync is an utility that provides incremental file transfer. http://rsync.samba.org/

2.3. PC2 9

Figure 2.1: Mooshak being used in the MIUP 2004 event.

faster feedback. For that they resorted to Mooshak to allow students to submit their assign-
ments and get instant feedback on whether their solution is correct or not allowing to make
faster corrections. This system also allows the creation of a healthy competition between stu-
dents, since their submission results (passed or error) are public. By comparing the results
with the previous year where they used the monolithic approach described earlier, they got the
dropout rate down from 70% to 45% and increased student satisfaction according to a survey
made at the end of the course.

2.3 PC2

PC2 is the acronym of the Programming Contest Control System4 developed at the California
State University in Sacramento. The system was created to support programming contests.
The main difference to the other systems is that users access the system through a Java desktop
application installed in all contestants’ computers. PC2 does not support an web interface
which is a big disadvantage since it is needed to install a local application in all computers that
need access to the system. The contestants receive their problems in the client application and
then submit their solutions to the local application which will in turn send them to the judges’
server application over the local network.

In its early versions the system lacked automated judging capabilities and required several
people to run the contests since the judges had to manually compile, execute the submissions

4http://www.ecs.csus.edu/pc2/

10 CHAPTER 2. STATE OF THE ART

against the tests, see the results and send optional text feedback back to the contestants. In
newer versions it includes a default validator (Samir E. Ashoo 2008) (which can be changed to
another one) that accepts execution output of the submitted code and asserts if it is the expected
or not. PC2 supports any programming language provided it can be compiled from a command
line and it generates an executable file.

Being local area network and contest oriented it does not comply to many of the require-
ments for the intended system, only complying with the file submission and part of the auto-
matic testing desired features.

2.4 UVa Judge and EduJudge

The University of Valladolid’s Online Judge5 is one of the oldest programming contest training
sites for ICPC style contests and is also used for self study (Revilla, Manzoor, and Liu 2008).
They also have an extensive Problem Set available6. Revilla goes through the history of the
UVa Judge system which started as a series of Unix shell scripts and evolved from that to a
more robust system able to run 24 hours a day without the presence of a system operator. They
then had to drop shell scripts because they were not reliable enough to support a true judging
system since they could not control the memory used by the contestants’ programs nor was
it made to generate status reporting events. On the first versions, contestants submitted their
applications by e-mail. Some new iterations of the system are enumerated like the inclusion in
2002 of a SQL database and PHP tools to manage the interface and allowed HTTP updating of
the files, turning the system into a client-server system with a web interface.

The system lacks several important requirements, such as grouping, proper grading, class
schedules and evaluation strategies, only barely complying with the automatic evaluation re-
lated requirements.

EduJudge7 is an European supported project which has as its main goal the improvement
of UVA Online Judge into an effective educational environment able to use said judge in official
courses from secondary and higher education on the area of mathematics and programming
(Revilla, Manzoor, and Liu 2008). The objective is to integrate the system into Moodle and
create a repository of problems. José Paulo Leal and Ricardo Queirós say (Leal and Queirós
2008) the EduJudge project forsees an integration with various LMSs8, Evaluation Engines and
Learning Object9 Repositories running at the same time. The project is in its initial steps and
there is not very much information available.

2.5 PO Eval

The current system10 used at the Object-Oriented Programming course at Instituto Superior
Técnico has been developed for some years by the course’s faculty in Java and uses a MySQL

5http://uva.onlinejudge.org/
6http://acm.uva.es/problemset/ - Compilation of several contest-like problems for the contestants to train
7http://www.edujudge.eu/
8Learning Management Systems like Moodle, Sakai, LAMS, Dokeos, etc. Introduced in Section 2.6
9Object which contains a problem description and tests to prove the correctness of the solution

10The system’s features were described in person by both my supervisors and with the help of Prof. David Matos,
all lecturers of the course and with deep knowledge of the system and its quirks.

2.6. E-LEARNING SYSTEMS 11

database. The system was created with the intent of automating project submission and evalu-
ation.

The system handles schedules, students and groups sensibly in the way described in the
requirements and it had hooks to Fénix (for authentication and for fetching group information
about logged student) in a previous version, before Fénix suffered a major refactoring which
broke many of these hooks. Projects can be either individual or in groups and are associated
with a deadline. At the time of submission, some tests - named online tests - are run and the
result is displayed to the students. Some offline tests are only run after the deadline and only
on the last submission by means of a command-line launched script. Both types of tests are
based in input and output, also being time limited. The system at the moment only supports
Java programs, but it is adaptable to C through some code changes.

There are two kind of web interfaces with the users, one for students and one other for the
faculty of the course. Students can see all the projects, their submissions for each project, and
if the deadline has not still expired, they can submit a solution. On the other side, a teacher
is related with a shift lectured by him and for evaluation purposes can download either a zip
with the last submission of all groups for a given project or only for each of the shifts he or her
lectures. For testing purposes a teacher can simulate he is a student and can submit projects
(not limited by deadlines) and get them evaluated to check if the results are the expected.

This system had several performance and stability issues under load which lead to con-
stant crashes and needing of relaunching/rebooting. One of the problems was related to the
JVM quitting garbage collecting after a few submissions and starting using more memory than
the available since old classes were not removed from memory, even if the project was already
evaluated a long time ago. Some of the other problems the system has include not being pos-
sible to give a student their submitted source code from the web interface, crashing when the
student’s code threw some kind of exceptions and the difficulty of specifying tests.

2.6 e-Learning Systems

There are also some information systems, known as Learning Management Systems or e-
Learning Systems, created with the main goal of supporting courses. Despite not having au-
tomatic evaluation of computer programs, these systems have some functionalities that fit the
requirements. Some examples of these systems are LAMS11 (Dalziel 2003) which is focused
on learning workflow creation, Moodle12, ATutor13, Sakai14 and Dokeos15. Dokeos is more
targeted to corporations and governments and has a special version for medical training.

All these systems share a common set of features that include among others authentica-
tion, grouping, support for several roles such as teacher and student, collaboration tools (such
as chat, forums, wikis and peer review of papers), evaluation tools (such as quizzes and tests),
deadlines, submission of work related files and support grading. Being general purpose sys-
tems, none has automatic evaluation capabilities for student’s software programs, only allow-
ing the uploading of files on deadlines.

11http://www.lamsfoundation.org/
12http://moodle.org/
13http://www.atutor.ca/atutor/
14http://sakaiproject.org
15http://www.dokeos.com

12 CHAPTER 2. STATE OF THE ART

The systems previously mentioned all follow the same basic web-based client-server archi-
tecture, either developed in Java or PHP and connected to a SQL-like RDBMS.

2.7 Fénix

FenixEDU16 is a School Management Information System developed at Instituto Superior
Técnico of the Universidade Técnica de Lisboa and used at some other academic institutions.
It was first created as assignments for a course (taught by Prof. Rito da Silva) with the idea of
having a course management system and grew to become a school management system sup-
ported by the university. It is also used as a research playground for MSc and PhD students
and some innovations have been tested and applied on it.

The functionalities of the system that are interesting to this thesis are the course manage-
ment ones. Fénix is designed to handle course enrollment, class schedules, class enrollment,
grouping, examination dates, project deadlines, project submissions though it has no automatic
evaluation, course announcements and final grades (passed then to the academic services).

Fénix is a Web-Based client-server system developed in Java that uses MySQL for stor-
age purposes. It uses the Fénix Framework17 that provides a Domain Model Language and a
Software Transactional Memory system (JVSTM - Java Versioned Software Transactional Mem-
ory (Cachopo 2007; Cachopo and Rito-Silva 2006)).

2.8 Conclusions

A good way to better compare the capabilities of the automatic evaluation systems described
in this section and to see to which requirements they answer is to place them side by side
in a table. For simplicity sake, we consider that systems can comply (Yes), not comply (No),
partially comply (+/-) with the requirements or their performance according to the requirement
is unknown (?).

There are some capabilities of the systems that are not publicly available or hard to classify
mainly in the non-functional requirements field. Being the PC2 system composed of a group of
desktop applications intended to run on a small network with few clients, it may not comply
by design with many of the requirements. All the applications described on this section are at
their core client-server applications. All except PC2 offer a web interface.

Table 2.1 shows the comparison matrix. Analyzing the results, we can conclude there does
not exist any system that satisfies all the requirements (laid down on Section 1.3), though some
comply with several of them. As noted in their respective sections, Fénix complies with great
part of the management requirements and Mooshak does a good job concearning the auto-
mated evaluation of tests.

16https://fenix-ashes.ist.utl.pt/
17Framework developed in IST and available at https://fenix-ashes.ist.utl.pt/trac/fenix-framework

2.8. CONCLUSIONS 13

Requirements Mooshak PC2 UVa Judge Fénix PO Eval
Functional Requirements

Authentication Yes Yes Yes Yes Yes
Grouping No No No Yes Yes
Schedules No No No Yes Yes
File Submission Yes Yes Yes +- Yes
Deadlines Yes Yes Yes Yes Yes
Access Prior Submissions Yes ? ? Yes No
Grades No No No +- +-
Specify Automatic Tests +- +- +- No +-
Run Automatic Tests Yes Yes Yes No Yes
Language Independence Yes Yes Yes No +-
Evaluation Strategies No No No No No
Roles Yes Yes Yes +- Yes
Visualization +- +- +- No +-
Practical Examination Support No No No No No

Non-Functional Requirements
Accessibility Yes No Yes Yes Yes
Adaptability ? ? ? ? +-
Auditability Yes Yes Yes Yes Yes
Availability +- ? ? Yes +-
Extensibility +- ? ? +- +-
Performance Yes ? ? ? No
Scalability Yes ? ? +- No
Security Yes ? ? Yes +-

Table 2.1: Comparison Matrix

14 CHAPTER 2. STATE OF THE ART

3Architecture
Having raised the requirements for the system on Section 1.3 the first step to start developing
the system was finding an adequate architecture in order to support it. It was clear early in
the process the system would work in a Client-Server style on the Component-and-Connector
Viewtype and display a Layered style in the Module Viewtype according to the definition of
Viewtypes provided on (Clements, Bachmann, Bass, Garlan, Ivers, Little, Nord, and Stafford
2008). This derives from the need to have a system that supports several simultaneous users
(either teachers or students) that can access the system remotely via a web browser.

3.1 System’s Architecture

Figure 3.1 shows the architecture of an evaluation system and its access of external sources. In
this section, we will discuss what each part does, why does it exist and map it into the layered
architecture of the system.

The requirement of the system having to have high availability in order for the students
to be able to submit their projects, made us choose to decentralize the two main functions of
the system - submission and evaluation. This makes us be able to consider the the system
as being composed of two theoretical subsystems, one for each function. This way even if
the evaluation subsystem has some problem or is under load, the submission subsystem is
unaffected, allowing students to submit their solutions without problems which from the point
of view of both students and teachers is the crucial activity. If students are not able to submit
their projects (or new versions) they will not be evaluated. If the files have been submitted in
due time (before the project deadline ends) to the Submission Subsystem, they will eventually
be evaluated.

The Submission Subsystem is responsible for storing the several versions of the projects
submitted by students. Currently we have two types of submission systems: a Version Control
System and the file system. In the former case we support the CVS version control system
but the code was made in order easily support other types of version control systems (see
Section 4.4.1 for details). In the second case, we use the Fénix system to store the submissions
made by the students and then teachers have to download the last submission of each group
into the file system and then the evaluation system automatically handles the evaluation of
those submissions.

The main component of the evaluation subsystem is represented by the Evaluation Man-
ager Component. This component is responsible for managing all the activities and data con-
cerning the evaluation of projects and also for managing the results of those evaluations. Basi-
cally it implements the domain logic of our application and coordinates the access to the other
components of the system.

16 CHAPTER 3. ARCHITECTURE

Figure 3.1: The System’s Architecture

3.2. APPLICATION’S LAYERED ARCHITECTURE 17

Figure 3.2: Layered Architecture used in the System

The authentication is handled by a module that contacts an external server in order to
validate the user’s credentials. This module can be easily extended to support various types of
external authentication services or to use built-in authentication validation.

The Evaluation Manager component also has a module named Monitor that manages the
projects to evaluate. It handles the queue of work (i.e. projects to evaluate) to do and dispatches
it to the Evaluators. In order to be scalable and be able to support a high load of submitted
projects, the projects are not directly evaluated by the Evaluation Manager Component. The
evaluation of a project is made by one Evaluator component. The Evaluators can be local
and/or remote and we can have several Evaluators subcomponents to allow the system to
be able to evaluate more than one submission at the same time provided there is available
computational power (more cores/processors or machines) distributing and controlling the
load of the system. Their function is further explained on Section 4.2.2.1.

Finally, the Presentation Layer is created using web technologies and is remotely accessed
by Web Browsers the users are using in order to communicate with the system.

3.2 Application’s Layered Architecture

The Evaluation Manager subsystem presents a layered architecture having three layers: the
presentation, the business logic and the domain.

Figure 3.2 represents a Layered Architecture where the Business Logic and Domain Layers
are located in a server and the Presentation Layer is located wherever the client is accessing the
server to get and send information through an Internet Connection. This type of architecture
was chosen because we had the need to save persistent data (provided by the Domain and
Persistency Layer, Section 3.2.1), provide ways to manipulate that same data (Business Logic
and Services Layer, Section 3.2.2) and then present the results of said manipulations or the data
itself to the end user of the system who is not on the same machine where the system is running

18 CHAPTER 3. ARCHITECTURE

(Presentation Layer, Section 3.2.3). The layers visible on this system have their interactions well
defined. The Business Logic and Services uses the entities from the Domain Layer and provide
services for the Presentation Layer to use. The Presentation Layer cannot directly access the
Domain Layer.

3.2.1 Domain and Persistency

This layer contains the domain entities of the system that model the problem. It also handles
the instances of said entities (the actual system’s data) and where and how they are saved
persistently. This is the basis of the system, and the system is built upon this layer. No business
logic is contained on this layer, only how the domain entities are related to each other and how
to retrieve and access data.

The separation of this layer from the Business Logic layer allows for an easier change of
how the system saves the data without affecting the layers above provided the interfaces are
maintained.

3.2.2 Business Logic and Services

As mentioned before, the Business Logic and Services layer is where the system’s data located
in the layer below, the Domain and Persistency Layer, is created and manipulated following the
rules dictated by the defined business logic. This is also the layer which the Presentation Layer
has to accesses to get information and make the system do something. Every action made on
the system is made through a Service contained on this layer. A service can contain the business
logic itself, orchestrate other services and/or utilize functionalities located in other modules.

3.2.3 Presentation

Finally, the layer that presents the information to the users (in our case either teachers or stu-
dents) and allows the users to interact with the system is the presentation layer. The presenta-
tion layer interacts with the layer below, the Business Logic Layer, through Services and Views.
The services were already introduced in the previous section. The views are passed to this layer
through the invocation of services and are a representation of the data of the system.

Having this layer decoupled from the rest of the system allows the existence of several
presentation methods being one of them a web interface which allows for the accessibility re-
quirement to be fulfilled since this way the system can be accessed from anywhere provided
there is an Internet connection (or network provided the user is in the same network than the
system). Theoretically, although given the ubiquity of web browsers in all sort of platforms the
desire and need for this options is reduced, this design solution also allows for different pre-
sentation clients to be created such as command line applications, native mobile and desktop
applications, etc.

4Implementation

4.1 Introduction

In order to create a system that complies with the requirements raised in Section 1.3 our ap-
proach was to use a familiar programming language (for the stakeholders) and a straightfor-
ward architecture (presented briefly on Chapter 3) for it to be easily maintained and extended.

We chose to use Java as programming language since it is very widespread and has a big
user base worldwide, which makes it easier to find people able to maintain and extend the
system if needed.

The system separates two big functionalities: submission and evaluation. The submission
is the act of a student or group of students to upload their project to the system and the eval-
uation functionality consists in evaluating said submission following some rules and passing
given tests. In order of not having a single point of failure on the system, our approach was to
decentralize and separate both functions, offloading the submission part to other systems usu-
ally running in other machines and to provide the means for the evaluation system to import
submissions on demand.

The current version of the system supports two modes of submission: From a Version Con-
trol System (it currently supports only CVS, but it is easily adaptable to other VCS’s like git1)
or importing from a folder which allows teachers to use the universities’ e-Learning or man-
agement platforms (like Moodle or Fénix) to handle the project submissions. Both approaches
serve our availability requirements because the SLA2 universities’ systems provide are usually
very good3 and also allows for an offloading of responsibilities and work from the faculty of
the course to specialized teams that run these systems.

This chapter details the parts composing the system, their functions and how they interact
with each other, as well as the framework used. A brief outline is presented next:

We chose a layered architecture along with some extra modules as the architecture able
to support the system we proposed to create. This topic is explained on Section 4.2. Having
chosen the main architecture to use and the programming language, we decided to use a home-
brewed framework created in the Software Engineering Group of INESC-ID and in the Fénix
Project of the Informatics Centre from Instituto Superior Técnico. This framework is further
detailed in Section 4.3. A rationale of the two modes of file submission currently supported

1Git is a Distributed Version Control System used by many famous projects like the Linux Kernel, Eclipse, Ruby
on Rails. http://git-scm.com/

2Service Level Agreement
3This applies to the institution from where this thesis comes from since the hole institution runs on Fénix and

the cluster of servers where the CVS server is running is also run on a fail-safe and redundant way by CIIST -
Informatics Center of Instituto Superior Técnico. CIIST also provides hosting to other machines, but the QoS SLA
is not that good, making the better solution to use Fénix or CVS running in their servers.

20 CHAPTER 4. IMPLEMENTATION

by the system and how the choosing of one of them varies the modus operandi of the system
is presented on Section 4.4. Finally, an explanation of the Evaluation Process is presented on
Section 4.5.

4.2 Layered Architecture

Using the layered architecture view presented on Chapter 3, we can now detail what each of
the layers contains on this system.

In order to automate some of the functions of the system, a couple of modules had to be
added detouring the architecture from a straight-forward and by the book layered architecture
in which calls origin from the user. These modules are the modules responsible for managing
the queue of submissions to evaluate and the worker threads that evaluate the projects. These
modules are always running and can also be accessed through services. Every interaction with
data in these modules is made through services in order to maintain data consistency. They are
presented in Section 4.2.2.1.

4.2.1 Domain

As mentioned in the corresponding section of the Architecture chapter (3.2.1), the Domain
layer represents the entities modeled by the system and whose instances (the data) are saved
persistently. The method and where this data is saved is further explained in Section 4.3.

The domain entities of the system are represented in Figure 4.1. The root class of the do-
main which represents the system itself is the ASEPPApp class. From there on, the system
models Courses4; Students, if they are enrolled in a given Course and if they are organized in
Groups5 on a given Course; Projects belong to Courses and contain the information of when
submissions can start to be accepted and evaluated, if the project is a group project or an in-
dividual project, the submission deadline date and time and how are the submissions to be
compiled, executed and tested. These Projects have associated a set of Tests that are used to
evaluate them. The entity that represents the submissions for a given project of a given student
or group is called Submission. Students’ Submissions are first compiled, producing a Compi-
lation Error if said compilation fails, and then evaluated according to the Tests producing one
TestEvaluation instance for each Test ran which contains the result and stores the output of the
execution of the Test if said test is failed. Their grade for the given Submission is the sum of the
passed TestEvaluations. Courses might also contain Shifts for practical classes or laboratories
to which Students belong and might be used to limit Submission deadlines instead of a single
deadline for everyone6 if the responsible Teacher chooses so. Finally a Login class exists which
is the basis for a possible local authentication functionality not yet implemented.

4Although the first prototype uses only one course, there is already preliminary support for using the system in
a multiple course scenario with few changes.

5Due to a framework bug which causes a MySQL error, this entity cannot be represented by the word Group,
being instead named Grupo.

6Might be useful for homework evaluation.

4.2. LAYERED ARCHITECTURE 21

Figure 4.1: The System’s Domain Model

22 CHAPTER 4. IMPLEMENTATION

4.2.2 Business Logic and Services

As mentioned on Section 3.2.2, the Services layer is where the system’s data is created and
manipulated, in other words, it is the layer that contains the Business Logic. Every action
made on the system is made through a Service contained on this layer.

Figure 4.2 represents the services implemented in this layer to support the functionalities
of the system. All the services are subclasses of the Service class. These services can consist in
functionalities as trivial as adding a new Student to the system (AddStudentService) to more
complex ones like importing a list of groups and students to the system and enroll them in
the selected course in the case they don’t exist or change their groups in case they already
exist (ImportGroupWithStudentsService). In the case of the latter service, it uses the former
service for each student found in the import order to register him in the system, enrolls him
in the course and makes him part of the desired group. Some of the most relevant services are
described bellow:

AddProjectService: This service creates a new Project in the system. A Filesystem folder is
automatically created which will contain the tests and the associated libraries needed for
the execution of the project. Depending on the mode the system is in, the VCS repository
for the project is also inserted or a File Import folder is created7. This service receives as
inputs the project name, deadline, start date, if it is a group project or not, the compilation,
execution and evaluation strings, etc. It is further explained in Section 4.5

AddSubmissionToQueueService: As the name implies, this is the service used to add a sub-
mission to the evaluation queue. This is explained in more detail in Section 4.2.2.1

AddTestsFromFolderService: Service that adds the selected tests to the selected project mark-
ing them as Preliminary and/or Evaluation Tests. This service is used in conjunction
with the ShowTests ToAddFromFolderService which lists the tests existing in the Project
Folder. This service is explained in detail in Section 4.5.

EvaluateSubmissionByIDService: This service is a service that is called not from the presenta-
tion layer directly, but from a separate module called Evaluator included in the Business
Logic, further detailed on Section 4.2.2.1 in order to evaluate a specific student submis-
sion. This service is invoked once per Submission either in File System or VCS mode. It
is also invoked to determine the final grade for each group.

ExecuteFinalProjectEvaluationService: It is a service available in VCS mode that orders the
system to make the final evaluation of a given project. This will fetch the last submission
for each group or student from the VCS server, mark it as a final submission and add it to
the evaluation queue. In File System mode this service is not used.

GenerateDownloadableFileWithSubmissionsService: For a given project, returns the final
submission for every student/group in a zipped folder. This service is available only to
teachers.

GetNextSubmissionFromQueueService: Service that returns the next submission in queue to
be evaluated.

7These modes were introduced earlier and will be further explored in Section 4.4

4.2. LAYERED ARCHITECTURE 23

Figure 4.2: The System’s Services

24 CHAPTER 4. IMPLEMENTATION

GetRankingService: Returns the current ranking of a given project. The ranking orders the
best evaluated submission for each group. This ranking is always sorted by number of
passed tests and the number of submissions evaluated or submission date (the last two
criteria only make sense concerning the evaluation of submissions in VCS-mode with
student requested evaluations since in File-mode all the submissions are created in the
system at the same time).

GetSystemStatusService: This service returns the status of the system such as the number of
active workers, what are they doing, the number of submissions still on queue, etc. This
service is used to show the status of the system to the teachers.

ImportSubmissionsFromFolderService: Service available in the File Import mode which im-
ports a set of folders from the File System creating a submission for each one of the
group/students the folder name represents and queueing them for evaluation. With a
special flag these evaluations are flagged as final.

ListAllSubmissionsService: Service accessible only to teachers that lists all submissions con-
tained in a given course.

ListStudentSubmissionService: Service that lists all submissions from a given student8.

LoginManagerService: Service that handles the authentication of the user in the system. In
the current version it inquires a remote server to ascertain if the login credentials are
the correct ones, but it is easily extensible to use a self-contained authentication solution
(partly implemented already) or another third-party one.

StudentSubmitProjectService: This is the service invoked when a student (in VCS-mode) asks
the system to evaluate a submission. The service fetches the submission from the VCS
system and enqueues it for further evaluation.

4.2.2.1 Monitor and Evaluators

Contained in the business logic of the system, there are a few modules (Monitor and Evalua-
tors) that are always running, that play a big role on making the system work.

One module that is central for the system to properly work is the Monitor module. This
module is a single entity whose function is to manage and monitor the worker threads, des-
ignated as Evaluators, and to dispatch queued work to them. For this reason, the module
maintains a queue of pending submissions to be evaluated. The Monitor is accessed by ser-
vices for several reasons. One of them is to add a submission to be evaluated, like service
AddSubmissionToQueueService does. The other reason is to get a report on the status of the
Monitor (made through the GetSystemStatusService service). Finally the Monitor also exposes
services that are used to create and kill evaluators.

This entity also has a failsafe mechanism that tracks if an Evaluator is locked up somewhere
and kills it, quarantining the submission the worker was currently working on and trying to
evaluate it one more time (if it fails again the submission will not be evaluated again). This
failsafe mechanism is implemented through a timer. This mechanism also ensures that there is
at least one Evaluator running at any given time. On system startup, the domain is searched for

8Group submissions are also linked to each of the members of the group at the time of the submission.

4.2. LAYERED ARCHITECTURE 25

non evaluated submissions and the queue is populated, making the need for queue persistency
non-existent.

The Evaluators are threads (in a future iteration of the system they might be full programs
on remote machines as well, see Section 6.4.1) that inquire the Monitor if there is new work (i.e.
submissions to be evaluated) to be done and if there is, they ask the Monitor for it and proceed
to evaluate the submission (done through the GetNextSubmissionFromQueueService service).
The choice of using threads instead of processes for this first iteration was mainly because the
way the projects are evaluated and to save computing resources on the server. For the former
reason, the rationale is that the evaluation of a given submission consists in calling a process
which compiles the student’s program and for each test contained in the project, to run the
compiled program with the test’s input data, comparing the output later. Since the evaluator
calls external processes, the risk of the thread getting corrupted and misbehaving is low. Easier
to understand is the latter reason. If the Evaluators were to be processes, a new instance of the
JVM would have to be created and maintained, causing the memory used for each evaluator to
be orders of magnitude bigger than by using threads which is counter-productive. Moreover,
the communication time between Evaluators and Monitors would be higher since they would
be in distinct processes.

A representation of a simplified interaction between a student, the Evaluation System and
the previously mentioned modules is shown on Figure 4.3.

4.2.3 Presentation

The system contains two different layouts depending if the logged user is a teacher or a student.
The login screen is the actual landing page of the system.

The student interface allows the user to tell the system it wants it to evaluate a submission
(available only if the system is in CVS/VCS-mode), to see his (or his group’s) previous sub-
missions and their results if they were already evaluated and to see the Ranking of results of
all the students. The result screen, as it can be seen in Figure 4.4, shows if a given submission
was already evaluated or not. If it was, it shows if the submitted program was able to compile
without errors or if there was any error on the compilation, which is shown to the user. If the
submission was compiled, then it shows the result of running the compiled program through
the set of tests associated with the project. Again, if there was any error during the execution
of the several tests, the student can access the error message. This error message shows the
differences between the expected result and the obtained result.

The teachers’ interface allows a bigger number of functionalities many of them related
to the management of the course and setting up of the evaluation environment. Teachers can
check the system’s status (number of queued submissions, number of active evaluating threads,
which submission is each of the evaluating thread working on, etc.), launch more working
threads, kill a working thread, list and import students and groups, add another teacher, list
and import shifts, list and add projects as well as their tests, import submissions if the system is
in ”File Import” mode, start the final evaluation of the final submissions of all students, list all
the submissions and evaluations of the system in a per project basis as well as their rankings,
etc. The teacher’s point of view of the submissions the system contains can be seen in Figure 4.5.

In order to develop this layer, we used Google Web Toolkit9. This is a toolkit that allows a
9Version used: 2.0.4. Can be found at http://code.google.com/webtoolkit/

26 CHAPTER 4. IMPLEMENTATION

Figure 4.3: Simplified Sequence Diagram of the Monitor and Evaluator.

4.2. LAYERED ARCHITECTURE 27

Figure 4.4: Student’s view of its evaluated submissions. One in this case.

28 CHAPTER 4. IMPLEMENTATION

Figure 4.5: Teacher’s view of all submissions made on the system.

4.3. FÉNIX FRAMEWORK AND JVSTM 29

programmer to create web application front-ends by writing Java code. This Java code is then
transformed into Javascript that generates the webpage itself. This toolkit was chosen because
it is easy to use, the learning curve is not steep and it is Java as well, making it easier to maintain
and extend to a larger user-base that might not know HTML, CSS and/or Javascript.

4.3 Fénix Framework and JVSTM

Having hinted on the framework used on the previous sections, this section presents the frame-
work used and the rationale on why it was chosen.

The Fénix Framework and one of its biggest components, the Java Versioned Software
Transaction Memory (JVSTM), were briefly mentioned on Section 2.7 and on the introduction
of this chapter. The JVSTM was developed on the Software Engineering Group of INESC-ID
(Instituto Superior Técnico), starting as a doctoral thesis from Prof. João Cachopo (Cachopo
2007) and evolving into the the basis of the framework in which the Fénix academic system is
built upon.

In its essence the JVSTM is a Software Transaction Memory system which maintains the
domain and its instances in memory and handles the way the data persists in the database
without the intervention of the user(Cachopo and Rito-Silva 2006). This makes programming
with this API easier, since the programmer works with objects as it would in any Java program,
not having to worry to interact directly with the database with JDBC or other database connec-
tor. The programming style is close to programming with Hibernate with a few differences. To
create the domain, there is a Domain Modeling Language in which the programmer describes
de domain classes and its relations. The domain description in said language is then processed
generating the Java classes used by the programmer.

The most important capability of this framework is that it supports almost for free from
the programmer’s point of view, transactions. This is important because a web application,
like our proposed system, is a concurrent system, since there can be several users accessing
the system at the same time and there can be multiple Evaluators running. Therefore we had
to handle concurrency in such a way that the shared domain data is kept in a consistent state.
Using the framework, every service call is transactional, which gives concurrency handling out
of the box and consistent data all the time.

4.4 Submission and evaluation variants

The system supports two types of submission modes that lead to two different evaluation
paradigms:

Version Control System: Submissions are imported from a Version Control System into the
system. This method in detailed in Section 4.4.1;

File Import: Submissions are imported from the filesystem. This method is explained in Sec-
tion 4.4.2.

One of the reasons for the existence of different submission methods is for the system to
be able to adapt to different teaching philosophies the faculty might want to enforce in the

30 CHAPTER 4. IMPLEMENTATION

course. Some teachers are in favor of instantaneous (or as soon as it is possible to evaluate the
submitted solution) feedback. Others might prefer to have tests to be run all at the same time
and once a day10, others provide students with a small set of tests for them to check if their
solution is on the right way, etc.

Another reason for the duality of submission criteria is some teachers do not want to over-
load students with having to learn how to interact with a Version Control System on top of
having to learn a programming language and solve a problem although one may argue it is a
needed skill for every Software Engineer and they will have to learn for some other courses
which enforce collaboration of big groups.

The choice between the import methods is made at course level on system configuration,
and there is never a mix of import methods on the same course which might cause some con-
fusion on students.

4.4.1 Version Control System / Source Code Management integration

Having chosen the CVS or Version Control System (VCS) integration route for a course sub-
missions can be queued to evaluate either by students or by teachers. For a student11 to have
its submission evaluated in this mode (prior to the final evaluation that is), he should first com-
mit his new work to the VCS supported by the course, once that is made, the student should
tell the system through its webpage he wants to evaluate the last submission contained on the
VCS. When this is done, the student’s latest submission is imported to the system and put in
the evaluation queue, to be evaluated in order. The student can then check the result of the
evaluation and how his solution to the project compares to the evaluated solutions from other
students in a form of a Ranking.

On this mode, teachers don’t have to do anything in order for submissions to be evaluated
on an ongoing project. After the project deadline ends they can instruct the system to evaluate
the last submission of all students to get the final grade of the project. Then the system accesses
the VCS associated with the project to evaluate and checks out the latest submission for each
student/group. For each submission, the system creates an internal submission and queues it
for evaluation. The evaluation is done by applying the evaluation tests and is marked as final
evaluation.

As mentioned earlier, the Version Control System currently supported by the system is
CVS, but the extension to other VCSes like SVN12 or git is easy to develop and integrate in the
system. In order to add a new VCS system to the supported list of import methods, the user
only needs to extend the abstract class SubmissionFileHandler with the new VCS system im-
porter based on the CVSSubmissionFileHandler class and when the new system is configured
invoke it instead. This importer class and its main method (getNewSubmissionFiles) receive as
arguments the student/group, submission and project and course informations like the repos-
itory to use. Based in this information this class builds the identification of the project to obtain
and checks it out from the VCS system associated with this importer class. The obtained sub-
mission is stored in the expected folder to be later compiled and evaluated by another compo-

10The current system only allows this to be made manually, but Section 6.4.4.2 details a scheduled approach that
can be easily implemented on a later version of the system.

11The procedure is the same if the project is a group project.
12Subversion - http://subversion.apache.org/

4.5. PROJECT EVALUATION PROCESS 31

nent of the system, the Evaluator. Section 6.4.2 explores the possible future work to be done on
this area.

4.4.2 File Import

The other submission mode supported by the system introduces a variation on the way the
users - either Students or Teachers - interact with the system in order to evaluate submissions
and to check the evaluation results caused by the change in the evaluation paradigm.

Starting with the teacher’s point of view, the way the teacher orders the system to evaluate
the students’ code is by getting the files students submitted on the file submission platform of
choice and then copies them to the import folder of the intended project. When the files are in
said folder, the teacher tells the system through its web interface those files are there and to start
importing them. Each group/student with a project to evaluate is assigned to a subfolder with
its number in the import folder. Then, for each student/group (again depending on the project)
with an entry in the import folder a new submission is created and put in the ”to evaluate”
queue. From that moment on the process is the same as on the other mode: Evaluators fetch the
queued submissions, evaluates them and the results are automatically published and accessible
on the website as each submission is evaluated.

On the File Import mode, Students do not have the instant feedback they get on the VCS
mode since they depend on the teacher to order the system to evaluate their submissions. They
upload their solution to the chosen upload system and only when the teacher chooses to eval-
uate the projects they can access the website to check the result of their last submission.

4.5 Project Evaluation Process

As mentioned in the previous sections, the system evaluates students’ project submissions. The
system must be able to evaluate said programs. Therefore, it needs to know how to compile a
submission, run it and compare the program’s result to the expected result. In order to have
the system as generic as possible (i.e. independent of the programming language applied to
develop the submitted program), we decided to allow teachers to define how each project is
evaluated, only enforcing a few rules.

The first step consists in defining the Project. For that, the teacher has to create a project in
its web interface. On the Add Project interface, teachers have to detail the following informa-
tion:

Name: The teachers should give a name to the project;

Group Project: If the project is an individual project or a group project;

Start Date: The date and time when submissions should start to be accepted and/or evaluated;

Deadline: The date and time until submissions concerning the project are accepted by the
system;

Main file: The name of the file where the ”Main” method is (for languages that use this) or the
name of the file that starts the program;

32 CHAPTER 4. IMPLEMENTATION

Deadline in class: This is an option where the deadline changes for each student/group. If this
option is active, the deadline is not on the date of the deadline, but on the last practical
class before the deadline. If the option is active, there is also given the option of this
new deadline being at the start or end of said class. This options were created to support
weekly homework for example;

Allowance: Time in minutes students can still submit projects after the deadline.

Compilation String String used in order to compile the project;

Execution String String used in order to execute the project;

Comparison String String used to compare the test’s output with the expected output;

Maximum execution time: Maximum execution time allowed for a test. If a test takes more
than this maximum time, it should be aborted and the result of the evaluation if this test
is considered unsuccessful.

Project’s Repository ROOT (optional depending on system mode): CVS Root for the project,
if the system is in CVS-Mode;

After defining the project (or rather before the system is to be used to evaluate projects), the
teacher should create the tests that evaluate the project. The system also contains a feature that
uses another set of tests to perform a preliminary evaluation. This set of tests to be executed
for each submission is important for students since it warns students if the project does not
comply with some tests and students can still correct their solutions before the deadline. The
experience of teachers of the Object-Oriented Programming course in IST is that if those tests
are made available to students so that they can execute the tests themselves, a large amount
of students still does not use the tests to correct their solution.. Some teachers do not like to
give access to the full evaluation test suite before the final evaluation is done. With this feature
teachers can use either a subset of the evaluation tests or a new set of tests in order to do the
preliminary evaluation.

These tests have to obey to a small set of rules in order for the system to be able to recognize
them and be able to work with them. The input and output files that concern each test must
have the same name and different extensions (only one dot per file). The extension .output
is reserved for the output of the test execution which is available for the system to use while
comparing to the expected result.

For example, we can have two tests for an imaginary project named test1 and test2. Each
of this tests has one input file named testX.in and one expected result named testX.out. The
second test, test2, also has an optional file called test2.import. After the teacher creates these
files, he should place them in the project folder. Having the files placed in the project folder,
the teacher has to inform the system the new tests are there. The system then parses the files on
the folder extracting the name and the associated extensions for each test and presents the list
of tests it found to the user for the user to select for each listed test if it is a Preliminary Test, an
Evaluation Test or both. Once the teacher submits this information the system finally is ready
to evaluate student’s solutions.

Student’s projects are then submitted to the system by either one of the methods referenced
in Section 4.4 and added to the queue. Then the Evaluators ask for the work as stated on
Section 4.2.2.1 and start evaluating it.

4.5. PROJECT EVALUATION PROCESS 33

For each submission to evaluate the system has to compile the code first. To compile the
code, the system parses the Compilation String the teacher specified on the project definition
in order to know how to compile the code. This method was chosen to give teachers some
freedom in the way they choose programing languages for the course, since this way we can
support any language that compiles through the command line. As a consequence, it also
supports building tools like Make and Ant. At the moment in the first iteration teachers can
use one variable on this string named %ALLJAVA% which represents all the Java files in the
submission folder and on its subfolders. Using this variable, teachers can create their own
compilation string. An example is:

javac -encoding UTF-8 -cp libs/:. %ALLJAVA%

When the compilation fails, the evaluation is aborted and the submission is marked as not
able to compile and the error the compiler outputted is stored for later display to either the
student or the teacher if they request it.

Having compiled the student’s solution, the system now has to execute each test associated
with the project. This part of the process involves executing the compiled submission code with
the files of each test in order to produce the expected result. For this, the Execution String is
processed. This string supports the variable %MAINFILE% which represents the file contain-
ing the ”main” function (e.g. %MAINFILE%.java), and also supports the variable %TEST%
representing the current test name. This can be specified to utilize the files associated with the
test as inputs. Every execution has its output automatically saved to a file named temp%TEST%
which can be used later. Following our example, if the teacher defined the project (enforcing it
in its rules) as having its input file provided in the -Din flag, the import to the -DImport and to
output the result to -Dout, the Execution String would be:

java -cp libs/:. -Dfile.encoding=UTF-8 -DImport=%TEST%.import -Din=%TEST%.in -
Dout=%TEST%.out %MAINFILE%

One other feature this execution phase has is to selectively exclude parts of the exe-
cution command. In the current example, on test1 the system would not include the -
Dimport=%TEST%.import part of the string because test1 doesn’t contain the file test1.import.
This feature has its limitations in the current form in which the only part that is not included in
the final execution command is the substring (separating the given string by the space charac-
ter) that contains the description of the file that does not exist.

Finally in order to evaluate if the result the execution of the student’s program is the ex-
pected one, the Comparison String is used. This step compares the output of the student’s
program executed with the test’s input with the test’s expected output. For this the system
also uses a string defined in the project named Comparison String to make the comparison.
This string can use the variables introduced in the Execution String, and the temp%TEST% also
presented before. So, in our example, a possible Comparison String could be:

diff -iwc %TEST%.out temp%TEST%

This approach of letting teachers define the strings for compilation, execution and compar-
ison allows a degree of freedom in the choice of programming language used since the system
can use any language whose compiler and execution can be called from the command line. Fur-
ther developments in this area are possible and some of them are introduced in Section 6.4.5.

After the submission has been evaluated the results are automatically made available for
the users, teachers or the student (or students belonging to the group) that submitted the

34 CHAPTER 4. IMPLEMENTATION

project. To access these results, the users must use the web interface of our application.

4.6 Conclusions

The system presented in Chapters 3 and 4 complies with the majority of the requirements ana-
lyzed in Section 1.3.

One of the main requirements was the availability. The system needs to be able to accept
student submissions. Offloading that responsibility and load to proven reliable systems helps
fulfilling this requirement.

Another of the requirements tackled is scalability. The proposed system allows for vertical
scalability (adding more local workers to take advantage of multiple cores of the new comput-
ers) and has the foundations in place for horizontal scalability (distributing work by remote
workers).

Although there were some requirements that we were not able to fully fulfill on this iter-
ation of the system to full extent such as the ability to support multiple evaluation strategies.
However, for this case remark that the system does have various evaluation strategies since it
behaves differently when in VCS mode and on File Import mode, but there is still not a mech-
anism in place to make these evaluation strategies pluggable and interchangeable. Although,
the main intent of these requirement was to control system load and this load can be controlled
by the number of evaluators running. If only one evaluator is running the queue might grow
bigger, but the execution load will not increase since the system only evaluates submissions
through the Evaluators and they only evaluate one submission at a time. This didn’t happen
with the POEval system since the submissions were evaluated as soon as they were submitted
to the system. If there were to many submissions being made during a small interval of time
(which could happen near the deadline of a project) the system was not able to handle such a
load.

5Evaluation
5.1 Methodology

To evaluate the effectiveness of this system testing must be done emulating real load conditions
in order to assert if the requirements are being complied with. As noted before, the system has
to be able to receive submissions even if under heavy load, and when heavy load usually hap-
pens is on the deadline day. In order to verify if the performance requirements are met we have
to submit projects to the system with a high ratio of submission and having several simultane-
ous users. Performance testing could be made using the system in a production environment
(supporting a running course) solo or alongside the previous system, or using submission data
from previous and current years and simulating the requests. In either options, tests have to
be specified for each submission artifact (project or assignment). In the former case, running
the system alongside the old one, a proxy would have to be set up in order to receive student
submissions, timestamp them and send to both new and old systems. This solution would
introduce a level of indirection that would need to be evaluated by the faculty of the course
in which the test would be conducted. In the latter option, former years submissions would
be fed to the system following their timestamps in order to simulate the actual load that the
previous system was under and verify how the new system behaves in the same situation.

We decided to choose the second case since this one gives us more freedom to specify the
load conditions. This way we are going to evaluate the system running a set of final student
submissions from last semester’s Object-Oriented Programming course in the Taguspark Cam-
pus of Instituto Superior Técnico using the created system and then comparing it qualitatively
with the method used to evaluate these submissions on production. For all the tests run the
dataset consisted of 55 different project submissions and the time limit for each test to execute
was 5 seconds1.

The system used to evaluate students’ projects last semester can be seen as a manual ver-
sion of our automatic system:

• Students submitted their work to the university’s academic system Fénix as tar.gz files,

• Teacher downloaded all submissions to his computer,

• Ran a series of scripts to evaluate students’ submissions which for each submission cre-
ated a file containing the result of the evaluation and created a consolidated report for all
submissions,

• and then had to manually publish it in the course’s webpage.

1After the 5 seconds the process would be killed and the test evaluated as a failure.

36 CHAPTER 5. EVALUATION

What we will focus on this evaluation on is on achieving the same results to prove the
correctness of the evaluation method and try to achieve them in a relatively close amount of
time as the previous method.

The tests were run in a Early-2011 Macbook Pro containing a Intel Core i7 2.2Ghz with 8Gb
of RAM and a 7200rpm HDD running Mac OS X Lion.

Having a multicore computer available, we will also test the performance of the system us-
ing various Evaluators which will test scalability and performance gains. The tests will be run
with various numbers of Evaluators running to assert the scalability of the system. Note that
the processor on the test machine is a quad-core with Hyper-threading technology allowing for
each core to run two simultaneous threads, which means the processor can run eight threads
at the same time.

For the first two experiments - Section 5.2 and Section 5.3 - we are evaluating correctness
and pure performance, so the system was used in File Import mode. This is the mode where
teachers fetch student’s programs from some other submission method and feed them to the
system in one bulk operation. This approach was chosen because the two experiments are
comparing the new system’s performance to the old system, which uses the same approach.

5.2 Experiment One: Checking the correctness of the
system

The first experiment consisted in ascertaining the correctness of the system. This was ac-
complished by evaluating last year’s final submissions of the Object-Oriented Programming
course’s project on both the new system proposed in this work and the system used to evaluate
and grade students during the course. The new system would be correct if the results matched
the old one.

After submitting the 55 submissions to the system we verified that the results obtained
were the same for both systems, the ”old version” and our system.

Another metric measured was the time both solutions took to process and evaluate all the
submissions. Table 5.1 contains the time both solutions took to complete. We were expecting
a performance hit comparing to the previous version, but 20% was is a bit more than we ex-
pected. A performance hit was expected because the system is running in a web-application
container (Apache Tomcat), on top of a framework that saves data in memory and posteriorly
in a database (Fénix Framework), the mechanisms and services needed to answer the requests
to the system’s users and has a series of mechanisms like the Monitor - that ensures the Evalu-
ators (only one in this Experiment) are running and not faulty - which run in separate threads
than the Evaluator.

Part of this performance hit can also have a relation with the processor architecture of the
hardware in which the tests were run, since these processors can overclock one core automati-
cally if the others do not have load. The old system only executes one action at a time and does
not involve web interactions. At the time of this evaluation data points were gathered I did not
have access to another machine that would not auto-overclock when running single threaded
programs.

We also verified how the new system handles some special cases concerning the type of
errors that we can have while evaluating the system. The special cases were:

5.3. EXPERIMENT TWO: PERFORMANCE OF THE SYSTEM 37

System Start Time End Time Time Delta Percentage Delta Evaluators
Old System 22:57 23:25 28m 100% 1
New System 20:40 21:14 34m 121.4% 1

Table 5.1: Experiment One time comparison

System Start Time End Time Time Delta in minutes Percentage Evaluators
Old System 22:57 23:25 28m 100% 1
New System 20:40 21:14 34m 121.4% 1
New System 21:30 21:52 22m 78.6% 2
New System 22:00 22:17 17m 60.7% 3
New System 22:23 22:37 14m 50% 4
New System 22:41 22:54 13m 46.4% 5
New System 21:14 21:26 12m 42.8% 6
New System 21:34 21:46 12m 42.8% 7
New System 21:52 22:04 12m 42.8% 8
New System 22:12 22:23 11m 39.3% 9
New System 22:29 22:41 12m 42.8% 10
New System 22:52 23:03 11m 39.3% 11
New System 19:47 19:59 12m 42.8% 16
New System 22:54 23:05 11m 39.3% 32

Table 5.2: Experiment Two time comparison

• Submission with a very slow implementation of the project. In this case the tests will fail
due to the fact the tests reached the timeout limit.

• Submissions that fail all test cases associated with the project.

On the 55 submissions there are some of them that don’t compile, some that are slow implemen-
tations and fail some tests because they are too slow and some that fail all test cases associated
with the project. Our system handles well these types of special submissions.

5.3 Experiment Two: Performance of the system

The second experiment used to test the system and compare it to the previous version is related
to how the system behaves under load and if it benefits of the growing number of cores in new
machines. For this, we tested the new system running various numbers of Evaluators.

Table 5.2 contains the results of the runs made. The result of running the old system served
as a reference time (100%) to which all of the other results were compared to. As can be noted,
if two evaluators are run at the same time the results are already faster than the old system and
the performance gains keep increasing in the tested hardware up until six different Evaluators
are running. After six Evaluators, the performance of the system remains almost constant.

38 CHAPTER 5. EVALUATION

1

1

2

3

4

5

6

7

8

9

10

11

16

32

0 10 20 30 40

28

11

12

11

12

11

12

12

12

13

14

17

22

34

Time in Minutes

N
um

be
r o

f E
va

lu
at

or
s

Figure 5.1: Experiment Two time comparison chart

The performance gains and its leveling can be better seen in Figure 5.1.

Another aspect tested in this experiment was how the system behaved retrieving answers
through the web interface under high load. During the execution of the tests the web interface
was used to access the results of the submissions (already evaluated or being evaluated) several
times on all runs2. Slowdowns only became noticeable when the system was under very high
loads like on the run with 32 Evaluators where the system’s load average surpassed 50. And
even then the system would retrieve the information in 1 or 2 seconds. On tests up to 10
Evaluators no performance hit was noticeable on the web interface.

5.4 Experiment Three: Multiple Clients on CVS mode

Since the system supports CVS, another feature needed testing is the retrieval of submissions
under load. For this experiment, the system was setup in CVS mode with the CVSROOT point-
ing to a server in the Rede de Novas Licenciaturas in Instituto Superior Técnico. A program
was developed that would emulate four students submitting projects in intervals of 0.5 sec-

2Even though this information was probably in memory due to the Fénix Framework, the system still had to use
some cpu resources to retrieve it.

5.4. EXPERIMENT THREE: MULTIPLE CLIENTS ON CVS MODE 39

System Number of Submissions Time Delta Evaluators
New System 10 2m 4
New System 20 5m 4
New System 30 7m 4
New System 40 9m 4
New System 50 11m 4
New System 60 13m 4
New System 70 16m 4
New System 100 22m 4

Table 5.3: Experiment Three time table

onds. Each student would submit 25% of the submissions.

The goal of the experiment was to check if all submissions were properly acquired and to
time how long the system would take to empty the queue.

Table 5.3 presents the results of this experiment. As expected, all submissions are properly
retrieved and evaluated and the time the Evaluators take to empty the queue grows linearly
with its size as can be seen if Figure 5.2. Note that once the system gets enough programs to
feed all the active Evaluators, the behavior in terms of load is comparable as the one in the
previous experiment, even if there are still other threads fetching the submissions from the
Submission System.

This experiment was also conducted using the browser instead of an automated program.
Four students were logged in and submitting projects within 2-3 seconds of each-other3 consis-
tently and the behavior was the same as in the automated experiment albeit with less submis-
sion load.

3One each student and then looping back to the first student.

40 CHAPTER 5. EVALUATION

10

20

30

40

50

60

70

100

0 10 20 30

22

16

13

11

9

7

5

2

Time in Minutes

N
um

be
r o

f S
ub

m
is

si
on

s

Figure 5.2: Experiment Three time comparison chart

6Conclusions
6.1 Contributions

The use of automatic evaluation systems in education proved to be useful easing the workload
on the teachers and improving the amount, quality and speed of the feedback to students.
Though, most of these systems do not comply with all requirements deemed important for
using in programming courses.

In this work we have identified a set of requirements(Section 1.3) that should be met by an
automatic evaluation system to be used in the context of a programming course. Some of the
requirements are the following:

• File submission

• Specification of automatic tests

• Execution of automatic tests

• Language independence

• Accessibility

• Performance

• Scalability

We have built a system that meets these requirements, namely that handles load situations,
is fast and is easy to use. Moreover, the experiments presented in Chapter 5 show that this
system is efficient and is able to support a high load, being able to handle a high number of
simultaneous users and a high rate of project submissions.

6.2 Limitations

This work has its limitations in evaluating programming assignments since it is based in in-
put/output tests. Other kinds of tests involving code introspection and code quality (an exam-
ple would be whether the program under test implemented a given Design Pattern or not) can
not be addressed by the proposed system.

Although, the system could be extended or adapted to run tests based on automated testing
frameworks such as JUnit1 or TestNG2 for example if students were forced to implement and
respect a given a interface.

1JUnit - A test framework for Java projects. http://www.junit.org/
2TestNG - Another test framework for Java projects. http://testng.org/doc/index.html

42 CHAPTER 6. CONCLUSIONS

Out of the scope of this thesis was for the created system to have all of the functionalities
needed to manage a course including course announcements, e-learning capabilities such as
content spreading functionalities such as the course’s bibliography and support materials, tests,
exams, final grades, etc. The proposed system could in the future provide an API for it to be
able to cooperate with other systems such as Fénix (Section 2.7).

6.3 Alternative Applications or Uses

The scope in which this system could be used would not only be reduced to programming
courses but, like some of the systems presented on Chapter 2 such as Mooshak, could also be
used to evaluate programming competitions.

6.4 Future Work

6.4.1 Remote Evaluators

One of the possible updates the created system can have is to be able to support external or
stand alone evaluators. This would allow the main server to contain only the Evaluation Man-
ager and only one or two Evaluators and offload the rest of the hard work to simple clients
located in other machines in cases the workload is very big and the system is running several
courses at the same time. The system is currently configured to run in a single course mode,
but the infrastructure is in place for the system to support several courses with a few changes
in the system’s code mainly in the Presentation Layer.

On the Remote Evaluator front, the Monitor is already ready to handle them, only needing
to expose the used services as Web Services for the Remote Evaluators to be able to access the
system. There is also the need to upload the project’s descriptions and tests for each of the Re-
mote Evaluators on startup or when they are modified. For each submission to be evaluated it
also needs to be fetched, what would be easy in VCS mode having the Evaluator downloading
it directly from the source. This functionality would not be that useful on File Import mode
since the Evaluation Manager would have to send the submissions to the Remote Evaluators.

6.4.2 Support for more import solutions

As discussed previously on Section 4.4 the system supports two methods to import the stu-
dent’s submissions: from a Version Control System or in File Import mode.

On the former case, the created system only supports CVS as version control system, but
the extension of the import system to include other version control systems is trivial as it has
already been detailed in Section 4.4.1. New handlers for Subversion, git, Mercurial3, Darcs4 or
any other source control management/versioning system can be easily created and added to
the system.

3Mercurial - a free distributed source control management tool. http://mercurial.selenic.com/
4Darcs - Another free, open source source code management system. http://darcs.net/

6.4. FUTURE WORK 43

On the latter case and given the case the faculty of the course in which the system would
be used do not want to support a VCS system, a new functionality of file upload could be easily
implemented allowing for students to upload their files to the system.

6.4.3 Fénix Integration

As mentioned on Section 6.2, one of the possible followups for this work, considering the uni-
versity on which both projects were born, is some kind of integration between the Fénix System
and the proposed evaluation system could be achieved.

There are several kinds of integration possible on this matter, from simple API or Web
Service calls to full code integration of the created system into the Fénix Academic Management
System to support all the programming courses lectured on the universities using it.

6.4.4 Other improvements

This section presents some minor functionalities the system and its users would also benefit
from.

6.4.4.1 Sandbox

The system already encapsulates the execution of the tests in their own processes and revokes
it of some privileges. The next step would be to completely sandbox the execution of the tests
making it impossible for some malicious5 or buggy code to access to parts of the system it
should not.

This would also allow the Remote Evaluator (Section 6.4.1) idea to flourish allowing per-
sonal computers of the faculty of the courses, per example, to evaluate some of their students’
submissions without any problem.

6.4.4.2 Scheduled evaluations

For the purpose of some pedagogic exercise or for automation purposes, teachers might want
to be able to schedule the evaluation of a project (or programming assignment) to a certain date
and time. This could be used to automatically evaluate the project submissions with the final
evaluation tests per example one hour after the deadline allowing the students to have faster
feedback and the teachers not to have to worry to manually start the final evaluation. This
feature would only be useful in VCS-mode.

6.4.4.3 Localization / Internationalization

Mainly a cosmetic feature that would be useful to add to the system is the ability for the presen-
tation layer to be displayed in different languages, which would allow the system to be used
in schools and universities of a broader range of countries.

5Students can be mean these days :D

44 CHAPTER 6. CONCLUSIONS

The framework in which the web front-end was built upon, Google Web Toolkit, provides
a set of tools which allow an easy internationalization implementation.

6.4.4.4 Statistics

The amount of data collected during a course or set of courses could be statistically analyzed
and used to extract patterns (data mining) which could help both students and the faculty of
the courses valuable information.

For students this could provide some indicators on the evolution of their work against their
colleagues in a more precise way than the Ranking feature per example.

To the faculty of the course, this data could provide valuable information in how the cur-
rent promotion of students is complying to the expected results, if the current project difficulty
is adequate, if new teaching methods or techniques are making any sort of effect, among others.

6.4.4.5 Evaluation Policies

Another interesting mechanism the system could have in the future are evaluation/execution
policies. These policies may range from limiting the number of submissions per project a stu-
dent/group has, to daily limits of evaluations, etc.

Some of the ideas behind having these policies are to enforce some control over the re-
sources of the system, for students to be forced to think if they are really sure if they want to
lose one of their available options to evaluate their solution, etc.

6.4.5 Improvement of compile/execution/comparison string parsing

The new system already allows for a variety of options regarding the compilation and exe-
cution of the students’ programs and the comparison of their output with the test’s expected
output. However, as in everything, we find there is some room to improve these features.

One example that could be improved is the execution of programs using UNIX pipes and
the selective exclusion feature presented in Section 4.5. This would not work if the execution
string contained ¡ test.import and the file test.import did not exist because, in the current imple-
mentation, it would parse them as different arguments making the pipe appear in the string
with no file to pipe to the executing program.

A possible solution is the definition of a simple syntax to allow a bigger range of possibili-
ties while creating the compile, execution and comparison strings.

Bibliography

Cachopo, J. (2007, September). Development of Rich Domain Models with Atomic Actions.
Ph. D. thesis.

Cachopo, J. and A. Rito-Silva (2006). Versioned boxes as the basis for memory trans-
actions. Science of Computer Programming 63(2), 172 – 185. Special issue on synchronization
and concurrency in object-oriented languages.

Clements, P., F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and
J. Stafford (2008). Documenting Software Architectures: Views and Beyond. SEI Series in
Software Engineering. Addison Wesley.

Dalziel, J. (2003). Implementing learning design - the learning activity management
system (lams).

Garcı́a-Mateos, G. and J. L. Fernández-Alemán (2009). A course on algorithms and
data structures using on-line judging. ITiCSE’09, July 6–9, 2009, Paris, France.

Leal, J. P. and R. Queirós (2008). Design of a repository of programming problems.

Leal, J. P. and F. Silva (2001a). Managing programming contests with mooshak. Eunis
2002 - The 8th International Conference of European University Information Systems, 2002, July,
Porto, Portugal.

Leal, J. P. and F. Silva (2001b). Mooshak: a web-based multi-site programming contest
system. Software—Practice Experience, Volume 33 , Issue 6 (May 2003), Pages: 567 - 581, 2003,
ISSN:0038-0644.

Revilla, M. A., S. Manzoor, and R. Liu (2008). Competitive learning in informatics:
The uva online judge experience. Olympiads in Informatics, 2008, Vol. 2, 131–148 c© 2008
Institute of Mathematics and Informatics, Vilnius.

Samir E. Ashoo, Troy Boudreau, D. A. L. (2008). PC2 Documentation -
Version 9.1 What’s New Document. California State University in Sacramento.
http://www.ecs.csus.edu/pc2/doc/v9/WhatsNewInV9.1.pdf.

45

	Introduction
	Introduction
	Goal
	Requirements
	Functional Requirements:
	Non-functional Requirements

	Outline

	State of the Art
	Introduction
	Mooshak
	PC2
	UVa Judge and EduJudge
	PO Eval
	e-Learning Systems
	Fénix
	Conclusions

	Architecture
	System's Architecture
	Application's Layered Architecture
	Domain and Persistency
	Business Logic and Services
	Presentation

	Implementation
	Introduction
	Layered Architecture
	Domain
	Business Logic and Services
	Monitor and Evaluators

	Presentation

	Fénix Framework and JVSTM
	Submission and evaluation variants
	Version Control System / Source Code Management integration
	File Import

	Project Evaluation Process
	Conclusions

	Evaluation
	Methodology
	Experiment One: Checking the correctness of the system
	Experiment Two: Performance of the system
	Experiment Three: Multiple Clients on CVS mode

	Conclusions
	Contributions
	Limitations
	Alternative Applications or Uses
	Future Work
	Remote Evaluators
	Support for more import solutions
	Fénix Integration
	Other improvements
	Sandbox
	Scheduled evaluations
	Localization / Internationalization
	Statistics
	Evaluation Policies

	Improvement of compile/execution/comparison string parsing

