
Future Generation Computer Systems 107 (2020) 257–273

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Application-driven Cache-Aware RooflineModel
Diogo Marques a,∗, Aleksandar Ilic a, Zakhar A. Matveev b, Leonel Sousa a

a INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
b Intel Corporation, United States of America

a r t i c l e i n f o

Article history:
Received 9 April 2019
Received in revised form 2 December 2019
Accepted 25 January 2020
Available online 3 February 2020

Keywords:
Cache-Aware Roofline Model
Exascale applications
Performance modeling
Application characterization

a b s t r a c t

In the coming exascale era, the complexity of modern applications and hardware resources imposes
significant challenges for boosting the efficiency via execution fine-tuning. To abstract this complexity
in an intuitive way, recent application analysis tools rely on insightful modeling, e.g., Intel R⃝ Advisor
with Cache-aware Roofline Model. However, these approaches mainly consider the maximum archi-
tecture capabilities, which may limit their usability when characterizing real-world applications. To
address this issue, a novel Cache-Aware Roofline Model for more accurate performance modeling
of multi-cores is proposed, which realistically resembles application requirements. The proposed
fine-grain modeling relies on micro-benchmarking to decouple the attainable performance of the
micro-architecture for different utilization scenarios and for a diverse set of functional units and
memory levels. Memory sub-system traffic simulation, dynamic and static analyses are also used to
derive the requirements of the applications. Experimental results for a real multi-core system with
an Intel server processor and for a set of 13 kernels from exascale proxy applications, show that the
proposed models provide more accurate application characterization, optimization hints and bottleneck
detection in comparison to the state-of-the-art models.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The growing performance demands of modern applications
lead to the development of supercomputers with thousands of
cores, capable of executing trillions of floating-point operations
per second (Tflops/s) and accessing fast and larger memories.
While current systems can achieve a maximum performance of
143500 Tflops/s [1], the first exascale system, i.e., a machine able
to perform more than quintillion operations per second, is ex-
pected to be fully operational at the end of 2021 [2], marking the
beginning of the exascale era. Due to their huge computational
capabilities, exascale systems are expected to provide several
breakthroughs in the most diverse scientific areas. To attain such
high performance, these systems have been the subject of contin-
uous micro-architecture and technological improvements. These
enhancements intrinsically augment the hardware complexity,
e.g., a higher number of cores with advanced functionalities, a
more complex memory hierarchy, interconnects and integration
of diverse emergent technologies [3–5]. For this reason, relat-
ing application characteristics with the capabilities of underlying
hardware resources has become far from a trivial task.

∗ Corresponding author.
E-mail addresses: diogo.marques@inesc-id.pt (D. Marques),

aleksandar.ilic@inesc-id.pt (A. Ilic), zakhar.a.matveev@intel.com (Z.A. Matveev),
leonel.sousa@inesc-id.pt (L. Sousa).

In this scenario, correlating application behavior with the
upper-bound capabilities of different components in a highly par-
allel architecture is essential to identify the bottlenecks prevent-
ing applications from attaining maximum system performance.
With this aim, simulation tools and architecture-specific run-
time methods based on hardware counters were proposed [6,7],
which rely on an extensive evaluation to provide an in-depth
characterization of architecture/application interaction and capa-
bilities. However, these methods may be neither user-friendly nor
practical, thus only experienced users can extract useful informa-
tion from them when detecting application bottlenecks. In con-
trast, simple and insightful models, such as Cache-Aware Roofline
Model (CARM) [8], provide the means to quickly assess and
relate the architecture characteristics with the application ability
to exploit them, allowing software developers to fully focus on
application tuning and enabling applications to reach the maxi-
mum performance. CARM relates application characteristics and
system upper-bounds for performance, power consumption and
energy-efficiency [8,9]. It includes the entire memory hierarchy
(i.e. caches and Dynamic Random Access Memory (DRAM)) in a
single plot, providing a simple and insightful evaluation of how
different hardware resources influence application execution. For
these reasons, CARM is officially part of Intel R⃝ Advisor (included
in the Intel’s main application development framework) [10].
Current roofline modeling approaches usually only consider the
absolute maximums of the micro-architectures. The implementa-
tion of CARM in Intel R⃝ Advisor 2019 (Update 3), referred herein

https://doi.org/10.1016/j.future.2020.01.044
0167-739X/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2020.01.044
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2020.01.044&domain=pdf
mailto:diogo.marques@inesc-id.pt
mailto:aleksandar.ilic@inesc-id.pt
mailto:zakhar.a.matveev@intel.com
mailto:leonel.sousa@inesc-id.pt
https://doi.org/10.1016/j.future.2020.01.044


258 D. Marques, A. Ilic, Z.A. Matveev et al. / Future Generation Computer Systems 107 (2020) 257–273

Fig. 1. State-of-the-art roofline modeling approaches.

as Intel R⃝ Advisor CARM 19.3, follows this same idea. However,
this limits the capability of CARM to accurately characterize real-
world applications that contain different amounts of load and
store operations and may use diverse instruction set architecture
(ISA) extensions. This is a gap that the work proposed in this
paper intends to close.

CARM is already used to aid architecture design [11], and for
optimization and characterization of applications from different
domains, such as physics [12,13], quantum chemistry [14], med-
ical image processing [15], seismic modeling [16] and scientific
computation [17]. However, those works do not consider ap-
plication heterogeneity, which may result in a characterization
with reduced accuracy. For example, a real-world application may
contain several execution phases (kernels) that rely on different
instructions and hardware components, e.g., functional units or
memory levels. As it is shown herein, characterizing these kernels
within the model that only considers the absolute maximum
performance of the micro-architecture, such as the Intel R⃝ Ad-
visor CARM 19.3, may provide misleading characterization and
optimization hints. In contrast, this work proposes an application-
driven CARM methodology, herein referred as adCARM, which
explicitly considers the relevant application specifics and de-
mands to provide more precise insights and accurate character-
ization for real-world applications. The proposed methodology
closes the gap between the state-of-the-art (SoA) CARM and the
characteristics of applications that use diverse capabilities of the
micro-architectures. Furthermore, since the proposed adCARM
inherits the same interpretation methodology from SoA CARM,
it maintains the simplicity and insightfulness for characterizing
applications.

For this purpose, the work proposes a set of CARM-based
models that encapsulate micro-architecture upper-bounds for the
application-specific requirements and it includes the following
set of contributions:

– extensive evaluation of a processor, the Intel R⃝ Xeon R⃝ 6140
Gold (code-named Skylake), to experimentally assess peak
floating-point (FP) performance and sustainable bandwidth
of different memory levels for different instruction set ex-
tensions and load/store ratios;

– a set of CARM-based metrics and models to improve bottle-
neck detection and derived optimization insights;

– characterization of a set of exascale proxy applications to
demonstrate the insightfulness and usability of the proposed
models.

To achieve these objectives, a fine-grain micro-benchmarking
evaluation is performed to obtain an accurate characterization
of achievable micro-architecture upper-bounds. The experimental
results reveal that the adCARM provides a more precise charac-
terization of modern applications when compared to the existing
roofline modeling methodologies. Moreover, the proposed mod-
els are capable of accurately pinpointing the main application
execution bottlenecks in different parts of the micro-architecture.
This provides the means to select the best optimization tech-
niques to improve application performance on modern compu-
tational systems.

2. Background: Cache-aware Roofline Model

CARM characterizes performance upper-bounds for a given
architecture, with respect to the arithmetic intensity (AI), i.e.,
the amount of performed computations over the total amount of
requested data (bytes) [8]. By considering that memory operations
and computations can be simultaneously executed in modern
out-of-order processors, the overall execution is limited either
by the time to perform computations or by the time to serve
memory requests. Hence, CARM contains three distinct regions:
memory bound region (slanted roof), compute bound region (hor-
izontal roof) and a ‘‘mixed’’ region, where applications can be
both memory and/or compute bound. For each memory level, the
slanted roof intersects the horizontal roof at a single point, i.e., the
ridge point [8,9].

As it can be observed in Fig. 1a, CARM memory region includes
all memory levels (L1, L2, L3 and DRAM) in a single plot, each lim-
ited by its corresponding slanted roof. The maximum attainable
performance in this region is limited by the L1 cache bandwidth,
while the remaining levels offer a lower attainable performance,
due to the sustainable bandwidth reduction when data is fetched
further away from the core. The right part of the model, delimited
by the maximum FP performance (Fp), represents the compute
bound region.

When characterizing the application behavior, CARM decou-
ples the bottlenecks limiting the application execution, allowing
to select suitable optimization techniques to be applied. For ex-
ample, if an application is at the left side of the ridge point (kernel



D. Marques, A. Ilic, Z.A. Matveev et al. / Future Generation Computer Systems 107 (2020) 257–273 259

Table 1
Tested system specifics — Intel R⃝ Xeon R⃝ 6140 Gold processor (Single-Socket).
#Cores 18

Nominal frequency [GHz] 2.3

Theoretical Fp , AVX512 DP FMA [GFLOP/s] 1324.8

L1 Size [bytes] 32k
ORM bandwidth [GB/s] 7948.8

L2 Size [bytes] 1 MB
ORM bandwidth [GB/s] 2649.6

L3 Size [bytes] 1.375M/Core
ORM bandwidth [GB/s] 662.4

DRAM

Size [bytes] 32G
#Channels (8 bytes/channel) 2
Frequency [MHz] 2666
ORM bandwidth [GB/s] 42.66

‘‘M’’ in Fig. 1a), its execution is limited by memory accesses and
can be improved by applying memory-related optimizations. On
the other hand, an application positioned at the right side of the
ridge point (kernel ‘‘C’’ in Fig. 1a) is limited by arithmetic oper-
ations and its execution can be improved by code vectorization
or parallelization. Finally, an application placed in the ‘‘mixed’’
region (kernel ‘‘K’’ in Fig. 1a) may be limited by computations
and/or memory transfers, depending on their instruction mix and
on the memory levels exercised by the application.

Moreover, by plotting a vertical line at the AI of the appli-
cation, as shown in Fig. 1a, it is possible to uncover the main
sources of performance degradation. The intersections of this
vertical line and the CARM roofs represent the potential execu-
tion bottlenecks that might limit application performance. The
intersections right above and below the application point are
identified as the main sources of performance degradation and
should be the main target of optimization. In the example of Fig.
1a, the main bottlenecks of the application are accesses to L3 and
DRAM memories (see black dot in Fig. 1a).

Besides CARM, the roofline modeling landscape includes two
additional approaches: Original Roofline Model (ORM) [18] and
its hierarchical variant [19], and Integrated Roofline Model (IRM)
[20]. While the compute region is evaluated equally in all three
models, their modeling of the upper-bounds in the memory sub-
system differs. Hierarchical ORM (Fig. 1b) considers the band-
width between memory levels, and its AI corresponds to the
amount of performed computations over the amount of data
requested by memory level ‘‘x’’ (bytesx) [18]. Due to this property,
a single application (kernel) is represented by ‘‘x’’ points in Hier-
archical ORM, one for each memory level. Similar to CARM, the
memory region of the Hierarchical ORM contains several roofs,
each one representing a memory level. The main execution bot-
tleneck corresponds to the minimum of the intersections between
the AIs of the ‘‘x’’ points with their correspondent roofs (e.g.,
DRAM bandwidth in Fig. 1b). Finally, IRM (Fig. 1c) aims at merging
both CARM and ORM in a single method. This model uses the
modeling approach of CARM in the memory subsystem i.e., it
considers the sustainable bandwidth seen from the core for each
memory level, while adopting ORM methodology for application
characterization and bottleneck detection (e.g., in Fig. 1c, DRAM
is the main execution bottleneck).

3. Micro-architecture benchmarking

The sustainable performance and memory bandwidth of x86
CPU architectures have greatly increased across different genera-
tions. This is mainly achieved with introduced micro-architectural
enhancements, such as improving the execution capacity and in-
cluding additional dispatch ports in the out-of-order engine [21].

Table 2
Intel model specific registers used for micro-architecture benchmarking.

FP AVX512 DP FP_ARITH_INST_RETIRED_512B_PACKED_DOUBLE
SP FP_ARITH_INST_RETIRED_512B_PACKED_SINGLE

FP AVX DP FP_ARITH_INST_RETIRED_256B_PACKED_DOUBLE
SP FP_ARITH_INST_RETIRED_256B_PACKED_SINGLE

FP SSE DP FP_ARITH_INST_RETIRED_128B_PACKED_DOUBLE
SP FP_ARITH_INST_RETIRED_128B_PACKED_SINGLE

FP scalar DP FP_ARITH_INST_RETIRED_SCALAR_DOUBLE
SP FP_ARITH_INST_RETIRED_SCALAR_SINGLE

Loads MEM_INST_RETIRED_ALL_LOADS

Stores MEM_INST_RETIRED_ALL_STORES

This trend is followed by the most recent Intel core architecture,
i.e., Sunny Cove, that supports one additional port for store oper-
ations when compared to previous Intel CPU micro-architectures,
containing 2 ports for loads and 2 ports dedicated to stores [22].
In particular for single-socket Intel R⃝ Xeon R⃝ Gold 6140 (Sky-
lake Server architecture), the support for double-precision (DP)
FP fused multiply–add (FMA) instructions from 512-Advanced
Vector Extension (AVX512) at the nominal operating frequency,
makes its theoretical performance equal to 1324.8 GFLOP/s@2.3 GHz
(18 cores), i.e., twice the performance offered by AVX instruc-
tions, which was the highest ISA supported in previous micro-
architectures. This performance increase also occurs in the mem-
ory subsystem, whose theoretical L1 bandwidth for AVX512 in
Intel R⃝ Xeon R⃝ Gold 6140 is equal to 7948.8 GB/s (18 cores@
2.3 GHz), while for AVX instructions it is equal to 3974.4 GB/s.

Current multi-cores support a variety of instruction types and
ISA extensions, enabling the existence of a vast range of potential
factors that may impact the performance of different applica-
tions. Due to the micro-architecture complexity, a theoretical
evaluation of its capabilities does not allow to pinpoint the main
execution bottlenecks. As such, it is essential to firstly charac-
terize and experimentally assess the sustainable upper-bound
capabilities of the micro-architecture for different execution and
utilization scenarios, most notably the upper-bounds of the mem-
ory subsystem and FP units for diverse instruction types and ISA
extensions.

This paper focuses on fully assessing the potential of a com-
puting system, as a case study with an eighteen-core Intel R⃝

Xeon R⃝ 6140 Gold processor. As shown in Table 1, the tested
system contains three cache levels (L1, L2 and L3) and a DRAM:
L1 (32 kB) and L2 (256 kB) caches are private to each core, while
the accesses to L3 cache (1.375 MB/core) and DRAM (32 GB)
are shared. At nominal frequency (2.3 GHz), the ORM bandwidth
between memory levels is 7948.8 GB/s, 2649.6 GB/s, 662.4 GB/s
and 42.66 GB/s, respectively for L1, L2, L3 and DRAM. In contrast
to ORM, CARM considers the sustainable bandwidth for different
memory levels, which can only be obtained through in-depth and
precise micro-architecture benchmarking.

Therefore, a set of assembly micro-benchmarks was designed
in order to assess the maximum performance of the system under
several execution scenarios, e.g., scalar memory accesses, Stream-
ing Single Instruction, Multiple Data Extension (SSE) instructions,
etc. These benchmarks have the structure of the Algorithms 1 and
2, respectively for ADD DP AVX512 instructions and SSE LD/ST
ratio instructions. These algorithms only represent a subset of the
benchmarks utilized in this evaluation, whose structure is easily
adaptable to evaluate different utilization scenarios.1

The micro-benchmarks in Algorithms 1 and 2 contain two
main loops. The outer loop ensures that the performed tests

1 The micro-benchmarks are available upon request to the corresponding
author.



260 D. Marques, A. Ilic, Z.A. Matveev et al. / Future Generation Computer Systems 107 (2020) 257–273

achieve a predefined time duration, in order to increase the
accuracy and stability of results. The inner loop contains 64 in-
structions, in order to exploit the capabilities of the Loop Stream
Detector (LSD), presented in some Intel micro-architectures. Its
utilization may increase benchmarking accuracy, by avoiding the
utilization of the memory hierarchy for instruction fetching. Al-
though the LSD is disabled in Intel Xeon Gold 6140 [21], this
factor must be taken into account when evaluating other micro-
architectures. Furthermore, in case that the LSD is not used,
the loop fits completely in the L1 instruction cache, preventing
evictions from this memory level. This avoids the utilization of
the unified (instructions and data) L2 cache, which could affect
the L2 bandwidth and degrade benchmark accuracy regardless
of the functional unit being tested. Furthermore, in case that
the number of tested instructions is not a multiple of the size
of the inner loop, i.e., 64 instructions, the remaining ones are
placed outside this loop. To minimize data dependencies, the
test code uses all available registers and, in order to increase
accuracy, the results presented in this paper are obtained as
the median across 1024 test code runs. To evaluate the amount
of executed memory/arithmetic instructions, it was necessary
to access the set of hardware counters presented in Table 2.
These performance counters are used to validate the accuracy of
the micro-benchmarks when performing the micro-architecture
evaluation. The results from the experimental evaluation could
also be obtained by only measuring the execution time of the
benchmark and by counting the number of operations executed,
which are defined a priori by the user as an input parameter.
The micro-benchmarks are run with 18 threads, each bound to a
single core, at nominal frequency, with the CentOS 7.5 operating
system and compiled with Intel Compiler 19.03. Hyper-threading
and turbo boost were turned off during experimental evaluation.

The performance of FP units for different ISA extensions is
presented in Fig. 2. As expected, maximum performance (i.e., FP )
is attained when executing AVX512 FMA instructions. For the
same data precision, ADD/MUL AVX512 only delivers half of FMA
flops (16 for DP and 32 for SP (single-precision)), hence their
performance is half of FP . Besides, DP ADD/MUL SSE and scalar
FP instructions only attain one eighth and one sixteenth of Fp,
respectively, since they handle smaller data width than AVX512
instructions. SP scalar FMA and ADD/MUL attain the same perfor-
mance of their DP scalar counterpart since both execute the same
amount of FLOPS per instruction (1 FLOP). While for AVX512, AVX

and SSE extensions, FMA SP and ADD/MUL SP performances are
double of their DP equivalents, the same scenario does not occur
for divisions (DIV). For AVX512 DIV and AVX DIV, SP performance
is 3.1× higher than DP performance, while for SSE, SP perfor-
mance is 2.6× higher than DP. Although scalar DIV also executes
the same amount of FLOPS for SP and DP (1 FLOP per instruction),
their performance is slightly different, demonstrating that divider
unit performance has a high dependency on the data precision.

The memory subsystem results (Fig. 3) show that the max-
imum bandwidth is achieved when requests are served by the
L1 cache, when executing AVX512 instructions. There is a re-
duction in the sustainable bandwidth when data is fetched from
the memory positioned further away from the core (i.e., L2, L3
or DRAM). Similarly to FP units, SSE and scalar DP instructions
achieve lower bandwidth than AVX and AVX512 DP instructions,
since their vector length can only handle 16 and 8 bytes at a time,
respectively.

Memory bandwidth is also affected by the utilization rate of
memory dispatch ports, i.e., the amount of load (LD) and store
(ST) instructions performed, and by the accessed memory level.
As shown in Fig. 3, the highest bandwidth is obtained when all
accesses are served by L1 cache and for 2 loads and 1 store
(2LD/ST) ratio. The theoretical L1 bandwidth is experimentally
achieved for LD and LD/ST (5299.2/s), and for ST (2649.6/s). How-
ever, for 2LD/ST ratio, only 69.2% of the theoretical bandwidth
is achieved, i.e., 5562.42 GB/s. This result corresponds to the
maximum sustainable L1 bandwidth stated by Intel in [21] (≈133
bytes per cycle). On the other hand, the ST ratio corresponds to
the minimum sustainable bandwidth in all memory levels, inde-
pendently of the ISA extension and load/store ratio. L2 and DRAM
bandwidths are also greatly impacted by load/store ratio and their
maximum corresponds to the case when only LD operations are
performed, achieving for AVX512 instructions around 2630.12
GB/s and 41.41 GB/s, respectively.

The diverse features supported by modern micro-architectures
are exercised differently by the real-world applications. As it is
possible to observe in Figs. 2 and 3, this can lead to diverse FP
performance and memory bandwidth upper-bounds, depending
on the execution scenario, e.g., ISA extension used, the amount
of loads and stores, etc. Thus, it is crucial to take into account
application requirements when performing their characteriza-
tion, in order to attain an accurate identification of application
bottlenecks. To attain this objective, it is necessary to perform an



D. Marques, A. Ilic, Z.A. Matveev et al. / Future Generation Computer Systems 107 (2020) 257–273 261

Fig. 2. Floating-point performance for different instruction set extensions and data size: DP — Double Precision; SP — Single Precision.

Fig. 3. Memory bandwidth for different instruction set extensions and data size: LD — Load; ST — Store.

evaluation of the micro-architecture capabilities according to the
application specifics, to correlate the application behavior with
the underlying hardware. While some of this information could
be obtained with open-source benchmarks, such as SHOC [23],
these benchmarks are not flexible enough to evaluate the per-
formance upper-bounds of the modern architectures for different
factors, which is essential to build the proposed adCARM.

4. Proposed models and metrics

As shown through in-depth micro-architecture benchmarking,
FP performance and memory bandwidth depend on multiples
factors, e.g., different FP instructions, accesses to different mem-
ory levels, etc. Since applications may exercise a diverse set
of hardware components during their execution, it is essential
that insightful models, such as CARM, can take into account the
features of each application, providing a more accurate charac-
terization and more precisely pinpoint the potential execution
bottlenecks, thus allowing for improved optimization hints.

To include this information in CARM, it is necessary to scale
the upper-bounds of the compute and memory regions according
to application specifics. Due to the support of a wide number of
instruction types, this scaling depends on several factors, such as,
ISA extension used and the type of executed operations (e.g., FMA,
ADD, etc.). For example, an application that only performs scalar
instructions must be characterized in a model whose roofs cor-
respond to the maximum performance of the micro-architecture
under these conditions. In this section, the upper-bounds of the
model are derived in order to encapsulate the impact of these
factors in a single model, resulting in the adCARM. The notations
used in the model derivation are presented in Table 3.

4.1. Scaling the performance upper-bounds

As referred previously, modern processors such as the Intel R⃝

Xeon R⃝ 6140 Gold were target of several enhancements in order
to keep up with the growing performance demands. One example
of these improvements is the support of multiple instruction
types, which perform diverse operations over different data sizes.
This greatly affects how each application exploits the hardware
capabilities, since it influences both FP performance and memory
bandwidth.

In particular, each memory instruction of type ‘‘i’’ (e.g. AVX512,
AVX, SSE, Scalar, . . . ) requests a different amount of data, which
affects the maximum attainable bandwidth. By assuming that
each instruction type ‘‘i’’ is served at its maximum rate, the max-
imum attainable bandwidth of the memory level y ∈ {L1, L2, . . . ,
DRAM} for a load/store ratio ‘‘r ’’ (By

r ) can be defined as:

By
r =

β

TMEM
=

β∑
i Tβi

=

∑
i βi∑
i

βi
Byi,r

=

∑
i R

β

i × #βi∑
i
Rβ
i ×#βi

Byi,r

, (1)

where TMEM =
∑

i Tβi is the time to serve all memory requests, β
is the total amount of data requested by the application (in bytes),
βi is the total amount of bytes requested by the instruction type

‘‘i’’. Rβ

i =
INSTβ

i
INSTMEM

is the ratio of memory instructions ‘‘i’’ over the
total amount of memory instructions of the application, #βi is the
amount of bytes operated at the level of a single instruction of
type ‘‘i’’ (e.g., #βi = 64 bytes for AVX512 or 16 for SSE) and By

i,r
is the maximum attainable bandwidth of memory level ‘‘y’’ for
a given load/store ratio ‘‘r ’’ and instruction type ‘‘i’’. The subset
of values of By

i,r is given in Fig. 3. For example, an application
dominated by loads, with memory breakdown of 50% AVX512
(i = 0) and 50% SSE (i = 1), has maximum attainable bandwidth
in L1 cache equal to

By
r =

0.5 × 64 + 0.5 × 16
0.5×64
5288.75 +

0.5×16
1319.28

= 3301.8 GB/s , (2)

i.e., 0.6 times lower than the absolute maximum sustainable
bandwidth of L1 cache when only AVX512 is considered (5562.4
GB/s), which is utilized by the SoA approaches for architecture
modeling. Hence, characterizing an application without taking
into account its memory mix may provide misleading conclusions
regarding the application potential to exploit the maximum capa-
bilities of the system, and may even result in less accurate hints
about its execution bottlenecks.

Similar concept can be applied to performance of FP units.
By assuming that each FP instruction type ‘‘i’’ is executed at its
maximum performance, the maximum attainable performance
(Pa) is given by:

Pa =
φ

TFP
=

φ∑
i Tφi

=

∑
i φi∑
i

φi
Pi

=

∑
i R

φ

i × #φi∑
i
Rφ
i ×#φi
Pi

, (3)



262 D. Marques, A. Ilic, Z.A. Matveev et al. / Future Generation Computer Systems 107 (2020) 257–273

Fig. 4. Comparison between Intel R⃝ Advisor CARM 19.3 and adCARM.

Table 3
Description of parameters used in Sections 4.1 and 4.2.
Parameter Description

βi Total amount of bytes served by instructions of type ‘i’

β =
∑

i βi Total amount of bytes of the application

Tβi Time to serve memory requests of instruction type ‘i’

TMEM =
∑

i Tβi Time to serve all memory requests

#βi Number of bytes served by each instruction type ‘i’

INSTβ

i Total amount of memory instructions of type ‘i’

INSTMEM Total amount of memory instructions

Rβ

i =
INSTβ

i
INSTMEM

Ratio of memory instructions of type ‘i’

By
i,r Maximum bandwidth of memory level ‘y’, load/store

ratio ‘r’ and instruction type ‘i’
By
r Scaled bandwidth for the memory level ‘y’ and

load/store ratio ‘r’
Tφi Time to execute all FP instructions of type ‘i’

TFP =
∑

i Tφi Time to execute all FP instructions

φi Total amount of flops performed by instruction type ‘i’

φ =
∑

i φi Total amount of flops performed

Pi Maximum performance of FP instructions of type ‘i’

#φi Number of flops executed by each instruction of type ‘i’

INSTφ

i Total amount of FP instructions of type ‘i’

INSTFP Total amount of FP instructions

Rφ

i =
INSTφ

i
INSTFP

Ratio of FP instructions of type ‘i’

Pa Scaled FP performance

φM Total amount of masked flops performed

Tφ

M Execution time of masked FP instructions

η Masking utilization

φU Total amount of unmasked flops

Tφ

U Execution time of unmasked FP instructions

Pφ

U Performance of unmasked FP instructions

Pφ

M Maximum performance of masked FP instructions

F y
a,r Application-driven CARM

where TFP is the total time to perform FP instructions, φ is the
total amount of FP operations (flops) executed by the application,
while φi is the total amount of flops delivered by all instructions

of type ‘‘i’’ contained in the application. Rφ

i =
INSTφ

i
INSTFP

is the ratio
of FP instructions ‘‘i’’ over the total amount of FP instructions of
the application, #φi is the amount of flops delivered by a single
instruction of type ‘‘i’’ (e.g., 16 flops for DP AVX512 FMA or 4
flops for SP SSE ADD/MUL) and Pi is the maximum attainable
performance of the architecture for the instruction of type ‘‘i’’. The
subset of values of Pi is presented in Fig. 2.

In order to improve the accuracy of the calculated upper-
bounds, the maximum FP performance should also consider the
utilization of masked FP instructions, which is supported by re-
cent Intel micro-architectures. These instructions perform com-
putations only over a subset of the data contained in a register

and are able to prevent performance degradation in certain sce-
narios (e.g. these instructions can be used instead of ‘‘if’’ state-
ments). While the execution time of masked instructions (Tφ

M ) is
equal to the execution of unmasked instructions (Tφ

U ), the number
of executed flops vary significantly, thus affecting the maximum
attainable performance. In this scenario, the maximum FP perfor-
mance when executing masked instructions (Pφ

M ) is defined as:

Pφ

M =
φM

Tφ

M

=
ηφU

Tφ

U

= η × Pφ

U , (4)

where φM is the number of masked flops executed, η is the
masking utilization, i.e., the percentage of unmasked flops that
are executed and Pφ

U is the maximum performance of unmasked
operations. Eq. (4) can be applied to Eq. (3), in order to increase
the insightfulness of the adCARM.

It is also worth to mention that in this work, Eq. (3) is sep-
arately applied to instructions that perform the same type of
operations (for example, FMA and ADD) by taking into account
different data precision and instruction set extension mixes. Oth-
erwise, the compute bound region of the herein proposed ad-
CARM would only contain one roof, which would reduce model
insightfulness. Besides, the dispatch ports for ADD/MUL and FMA
are shared with high-latency instructions, e.g., divider and square-
roots. Hence, in this scenario, assuming maximum performance
for all instruction types ‘‘i’’ supported by the micro-architecture,
may lead to a scaling of the roofs that do not reflect the system
upper-bounds for that execution scenario.

4.2. adCARM: Application-Driven CARM

From Eqs. (1) and (3), it is possible to derive an analytical
model for the proposed adCARM, which states that the maximum
attainable floating-point performance (F y

a,r ) of the architecture is
calculated as:

F y
a,r = min {AI × By

r , Pa}

= min {AI ×

∑
i R

β

i × #βi∑
i
Rβ
i ×#βi

Byi,r

,

∑
i R

φ

i × #φi∑
i
Rφ
i ×#φi
Pi

} . (5)

The Figs. 4a and 4b present Intel R⃝ Advisor CARM 19.3 and the
adCARM for a certain mix of instructions, respectively. By com-
paring both models, it is possible to observe that by taking into
account the characteristics of diverse instruction types, adCARM
tunes the optimization space to the right dimension, showing that
certain applications might not be able to achieve the maximum
attainable performance of the processor (as considered in the SoA
approaches). Hence, the proposed method is able to encapsulate
diverse characteristics of modern applications, providing tighter
performance upper-bounds, which leads to more accurate and
insightful hints regarding application execution bottlenecks.

While the approach presented in this work can be applied to
the compute roofs of current roofline approaches, the scaling of



D. Marques, A. Ilic, Z.A. Matveev et al. / Future Generation Computer Systems 107 (2020) 257–273 263

the memory roofs is a property of CARM approach and cannot
be applied to ORM or Hierarchical ORM. In detail, ORM and
Hierarchical ORM consider the maximum bandwidth between
consecutive memory levels, which is not affected by the data
size involved in the memory accesses. Hence, independently of
the type of memory accesses performed by the application, ORM
and Hierarchical ORM use always the same bandwidth roofs,
while the proposed adCARM is able to fully adapt to application
characteristics.

To build and use the adCARM two steps have to be fulfilled:
(1) analysis of the instruction mix of the application in order
to extract its specifics, and (2) an experimental evaluation ac-
cording to application characteristics obtained in the previous
step, by using micro-benchmarks that explore multiple processor
features. These steps can be automatized in Intel R⃝ Advisor, by
extending its instruction mix analysis and benchmarking capa-
bilities, in order to extract the information necessary to build the
proposed adCARM, allowing the users to fully focus on application
characterization and optimization.

Moreover, the adCARM is not limited to a single micro-
architecture. The experimental evaluation can be applied to other
micro-architectures by porting the micro-benchmarks described
in Section 3. Regarding the step 1, the instruction mix of the
application can be obtained by using tools like Intel Software
Development Emulator (SDE), which supports a wide range of
Intel micro-architectures, or by using open-source tools such as
DynamoRIO [24]. Tools based on performance counters could
also be used to obtain some of the data related to application
execution, e.g., amount of loads, stores and FP instructions and
cache misses. However, there are no counters available in Intel
micro-architectures that allow decoupling the size of each mem-
ory access (64 bytes, 32 bytes, etc.), neither classifying the type
of FP instructions (FMA, ADD, DIV).

Although adCARM roofs are scaled according to application
specifics, it inherits the same simple and insightful characteriza-
tion methodology from the corresponding SoA CARM. Thus, the
methodology described in Section 2 can be used to take advan-
tage of the proposed adCARM, i.e., (1) verification of the model
region where the application is placed (memory, memory and
compute or compute regions) in order to narrow the optimization
strategy and (2) plotting a vertical line at the AI of the application
and observe the intersections of this line with the model roofs in
order to identify the potential execution bottlenecks.

4.3. Proposed metrics

While adCARM inherits the simple and insightful character-
ization methodology from SoA CARM, it also contains some of
CARM limitations. In particular, although CARM nature allows the
model to show the existence of memory locality and cache reuse,
it may not be able to pinpoint the exact memory level that should
be the main focus of optimization. This can be considered as the
main weakness of CARM. For example, for a given memory bound
application, if 75% of memory requests are served by L1 cache and
25% are served by DRAM, the application performance might be
placed between L2 and L3 roofs. This effect suggests the existence
of data locality in private caches but it does not allow to derive
easily that DRAM traffic must be the main focus of optimization.
Aiming at tackling this issue, two additional CARM-based metrics
are proposed to complement CARM analysis: memory share and
memory impact.

Memory share of memory level ‘‘y’’ (MSy) corresponds to the
amount of data that is served by each memory level over the total
amount of bytes of the application (β) and it is given by:

MSy =
βy

β
, (6)

where βy is the amount of data requested by the core and
served by memory level ‘‘y’’, after the data transverses all pre-
vious memory levels. This corresponds to the memory traffic
approach taken by CARM. This metric allows verifying the exis-
tence of cache reuse and the success of memory-related optimiza-
tion. For example, after applying the cache blocking technique,
it is expected to visualize an increase of cache memory shares,
while DRAM share decreases, whereas in the herein adCARM,
application performance gets closer to cache roofs.

On the other hand, memory impact of memory level ‘‘y’’ (MIy)
corresponds to the fraction of time spent serving the requests of
memory level ‘‘y’’ from a CARM perspective, i.e, between the core
and the memory level ‘‘y’’. MIy is calculated as:

MIy =

βy

By∑
m

βm
Bm

, (7)

where By is the bandwidth of memory level ‘‘y’’ as considered in
the adCARM (see Eq. (1)), βy is the amount of data served by
memory level ‘‘y’’ and

∑
m

βm
Bm

(m ∈ {L1, L2, . . . ,DRAM}) is the
total time spent at serving all memory requests. In order to obtain
a more accurate memory impact, the formula derived in Eq. (1) is
used in Eq. (7), assuming that all memory levels execute the same
relative amount of each type of instruction, i.e., Rβ

i is equal for all
the levels. While MSy pinpoints the existence of cache utilization,
MIy defines which memory level must be the main optimization
focus. For example, since DRAM has much lower bandwidth than
caches (as shown in Section 3), even if MSy shows that majority
of data is served by caches, it is still possible that DRAM is the
main bottleneck.

It is worth to mention that the derivation of Eqs. (5)–(7)
slightly resemble some of capacity equations proposed in [25,
26]. However, while the main focus of capacity equations is
the co-design of hardware according to software requirements
(or vice-versa), the adCARM aims at providing a more accu-
rate characterization of applications, in order to select the best
optimization techniques that allow the improvement of applica-
tion performance. In fact, as it will be experimentally shown in
Section 5, these proposed models and metrics provide a more
accurate characterization of real-world applications when mixing
multiple ISA extensions and different load/store ratios, when
compared to the SoA roofline modeling approaches.

5. Application characterization

As shown in Section 3, micro-architecture upper-bounds de-
pend on multiple factors, imposed by the application-specific
requirements. Hence, to achieve an accurate characterization of
applications, it is essential to consider application specifics when
decoupling their bottlenecks and deriving an optimization strat-
egy. With this aim, this work proposes the adCARM, which is able
to adapt to the requirements of real-world applications, providing
precise optimization hints to achieve an efficient execution in
modern systems, to fully exploit their capabilities. In this Section,
the impact of ISA extensions in roofline modeling approaches is
analyzed through in-depth characterization of finite difference
code (ISO-3DFD) [27,28], by evaluating the modeling insights
provided for AVX512 and scalar versions of the application. Fur-
thermore, a set of proxy applications from Exascale Computing
Project Proxy Application Suite [29] is evaluated in Intel R⃝ Advisor
CARM 19.3 and with the proposed adCARMs in order to assess
the improvements derived from the utilization of the proposed
model.

The applications were executed in the processor presented
in Table 1 and in the same conditions applied for the micro-
architecture benchmarking, i.e., with 18 threads, each bound to a



264 D. Marques, A. Ilic, Z.A. Matveev et al. / Future Generation Computer Systems 107 (2020) 257–273

single core, at nominal frequency, with the CentOS 7.5 operating
system and compiled with Intel Compiler 19.03. Hyper-threading
and turbo boost were turned off during application execution.
The performance and arithmetic intensity of each application
are obtained through Intel R⃝ Advisor 19.3 analysis. The cache
simulation tool contained in this framework provides an estima-
tion of the data traffic between memory levels, which is used
herein to derive the memory share and memory impact of the
applications. However, this tool does not decouple the type of
memory requests served by each memory level (e.g. 8B, 16B, etc.).
This information could potentially be obtained through com-
plex and time-consuming cycle-accurate simulators, which would
contribute to increase the complexity of the proposed approach.
To overcome these issues, it is considered that all memory levels
perform the same relative amount of instruction types when
deriving the memory impact and memory share metrics, which
maintains methodology simplicity. Furthermore, Intel R⃝ Software
Development Emulator (Intel R⃝ SDE) 3.0 [30] is used to obtain
the FP and memory instruction mixes of each application, by
following the methodology presented in [31]. The information
obtained from SDE is then used to build the proposed models.
The total amount of loads and stores requested by the core (that
is used to calculate the load/store ratio of the application) is also
obtained from Intel R⃝ SDE.

In order to validate the insights given by the proposed mod-
els, Top-Down analysis [7] is obtained through the Bottom-Up
from the General Exploration in Intel R⃝ VTuneTMAmplifier 2019
(Update 3). Top-Down decouples the application execution bot-
tlenecks in several categories, namely: retiring (RET), core-bound
(CB), memory-bound (MB), bad speculation (BS) and frontend-
bound (FE). RET and CB are mainly related to the utilization of
dispatch ports in the micro-architecture, while MB represents
the memory bottlenecks, mostly related to stalls inducted by
memory accesses. BS and FE represent bottlenecks from branch
misprediction and backend starvation.

5.1. Impact of instruction set extensions on existing roofline method-
ologies

ISO-3DFD [27,28] implements a finite difference method with
isotropic, which can be used in several real-world applications
(e.g., seismic modeling, wave propagation). According to Intel R⃝

Advisor 19.3 analysis, this application only contains one main ker-
nel (loop at iso-3dfd_parallel.cc:107). As it can be observed in Al-
gorithm 3, this kernel performs an 8th-order and 3-dimensional

Fig. 5. Top-Down analysis for ISO-3DFD Scalar.

stencil computation and the version used in this work already
includes some optimizations related to memory accesses, such as,
cache blocking and prefetching optimizations (through pragmas).
Due to the nature of stencil computations, this loop is expected
to be mostly memory bound, especially in what concerns the
accesses to the elements in ‘‘z’’ direction that do not allow fully
exploiting the data locality in privates caches, in contrast to the
elements in ‘‘x’’ and ‘‘y’’ directions whose cache reuse is improved
by cache blocking. To attain the effects of different ISA exten-
sions on the characterization of state-of-the-art roofline modeling
methods, two versions of ISO-3DFD are considered – Scalar and
AVX512 versions – which are obtained by compiling the code
with no-vec and xCOMMON-AVX512 flags, respectively.

Top-Down analysis of Scalar ISO-3DFD, presented in Fig. 5,
identified three main components in the 1st level: memory bound
(43.6%), retiring (38.5%) and core bound (17.9%). Although the
core bound contribution is significantly smaller than the one
of memory bound, there is a considerable impact from retiring
that may suggest that application performance can be limited
by in-the-core or close-to-the-core components. However, 40%
of the retiring belongs to ‘‘Others’’ category, indicating that non-
FP instructions, such as memory requests, have a big impact in
kernel execution. On the other hand, 92.3% of the memory bound
stalls originate from DRAM, hinting that this application is likely
to be limited by memory accesses, with very limited potential
to reach any compute roof. However, by following the charac-
terization methodologies presented in Section 2, it is possible
to verify that the state-of-the-art approaches, presented in Figs.
6a (Intel R⃝ Advisor CARM 19.3), 6b (Hierarchical ORM) and 6c
(IRM), do not corroborate the Top-Down analysis. While IRM and
Hierarchical ORM characterize the kernel as pure compute bound,
Intel R⃝ Advisor CARM 19.3 places the loop below the L3 roof in
the compute and memory bound region, implying the potential of
this kernel to achieve the SP Scalar ADD roof, while being mainly
limited by L3 and DRAM.

By analyzing the instruction mix of Scalar ISO-3DFD, it is
possible to verify that existing roofline methods do not adapt
to application specifics. The FP instruction mix of this kernel
contains only SP Scalar ADD instructions, while its memory mix
shows the existence of data requests of 4B (65%) and 8B (35%). Be-
sides, its load/store ratio is around 63, hence its memory footprint
is dominated by load instructions. By scaling the roofs according
to the application specifics, it can be observed that the mem-
ory roofs in the adCARM (Fig. 6d) move down when compared
with the Intel R⃝ Advisor CARM 19.3 (Fig. 6a), due to the lower
bandwidth attained by 4B and 8B requests when compared to
AVX512 instructions. This effect increases the area of the memory
region to the right, causing the kernel to be placed on top of
L2 roof and to be classified as memory bound in the adCARM,
as expected from Top-Down analysis. Accordingly, a possible
optimization direction to improve application performance would
be to improve the memory accesses, by using instructions that
can handle bigger data sizes (e.g. AVX512).



D. Marques, A. Ilic, Z.A. Matveev et al. / Future Generation Computer Systems 107 (2020) 257–273 265

Fig. 6. Characterization of ISO-3DFD Scalar version in state-of-the-art roofline approaches and adCARM.

Fig. 7. Top-Down analysis for ISO-3DFD AVX512.

The hints provided by the adCARM are also confirmed by the
proposed memory metrics. The memory share metric indicates
that 97% of the data requested by Scalar ISO-3DFD is served by L1
cache, while only 1% is served by DRAM. A similar scenario occurs
from memory impact perspective. L1 cache impact is around 89%,
while DRAM only has an impact of 7%. It is worth emphasizing
that a large impact for the L1 cache should be interpreted as a
‘‘positive impact’’ to the overall application performance, while
the impact presented for all the other memory levels results
in performance degradation, thus it should be interpreted as a
‘‘negative impact’’. In fact, for a purely memory-bound kernel,
the maximum performance can only be achieved with 100% of
L1 impact (and traffic). As such, the L1 impact can be used as
a relative measure of code optimization state (higher is better),
while the impact value for other memory levels should be used
as an additional measure for precise bottleneck detection (lower
is better). In other words, the negative impact of accesses to
other memory levels is the one that prevents the application
from achieving the highest value for L1 accesses (i.e., 100%). Based
on these metrics it is possible to conclude that ISO3D-FD Scalar
has its memory accesses very well optimized, corroborating with
adCARM characterization, i.e., limited by private caches. Due to
DRAM accesses, the kernel is not able to attain the L1 roof and,
for further performance improvements, DRAM should still be the
main focus of optimization. These conclusions are quite different
from the ones reached with the not-application-driven roofline
models.

Regarding ISO-3DFD AVX512 kernel, its Top-Down analysis
(Fig. 7) is dominated by memory bound (76.3%), with most the

stalls coming from DRAM (95.8%). Retiring and core contributions
are 9.2% and 13.4%, respectively. Due to the high memory com-
ponent and low retiring and core, ISO-3DFD AVX512 is expected
to be completely limited by memory. Similar characterization is
obtained with the state-of-the-art rooflines, which are presented
in Figs. 8a (Intel R⃝ Advisor CARM 19.3), 8b (ORM) and 8c (IRM).
ORM and IRM hint that the main bottleneck is DRAM, which
supports Top-Down analysis. However, these methods do not
provide any insights related to the possible existence of cache
utilization and memory locality, since their aim is to pinpoint
the main execution bottleneck. Intel R⃝ Advisor CARM 19.3 places
the loop close to L3 cache, indicating that some of the data
traffic is not related to memory stalls and is handled by caches.
However, Intel R⃝ Advisor CARM 19.3 also hints that the kernel has
the potential to attain the SP AVX512 ADD roof, which is highly
unlikely due to the strong memory bound nature of the code.

The FP mix of AVX512 ISO-3DFD is composed of AVX512
instructions, namely SP AVX512 ADD (87%) and SP AVX512 FMA
(13%). Since it uses AVX512 instructions and does not mix differ-
ent data precision, the compute region of the proposed adCARM
does not suffer any changes when compared with the existing
roofline approaches, as it can be observed in Fig. 8d. On the
other hand, its memory instruction mix contains two distinct
request types, 8B (40%) and 64B (60%), and it is dominated by
load instructions (load/store ratio of 14). This affects mainly the
bandwidth of L1 and L2 caches, reducing the maximum attainable
performance that can be achieved in the memory region of the
proposed model. This causes the effect previously observed for
ISO-3DFD Scalar when scaling the roofs, i.e., the memory roofs
move down in the adCARM, increasing the memory region area to
the right. This changes the region where the kernel is placed from
the memory and compute region (Intel R⃝ Advisor CARM 19.3)
to the memory region (adCARM), which fully corroborates the
Top-Down analysis. Similarly to the characterization of ISO-3DFD
Scalar, the adCARM hints that to improve application perfor-
mance it is necessary to apply optimizations related to memory.
One possible strategy to improve application performance corre-
sponds to increasing the granularity of the memory accesses, by
reducing the amount of 8B transfers.

Finally, the memory share metric confirms the existence of
cache utilization, with 42% of the traffic handled by L1, 47% by
L2 and only 10% by DRAM, confirming the insights provided by
adCARM, which places the kernel on top of L3 roof. From memory



266 D. Marques, A. Ilic, Z.A. Matveev et al. / Future Generation Computer Systems 107 (2020) 257–273

Fig. 8. Characterization of ISO-3DFD AVX512 version in state-of-the-art roofline approaches and adCARM.

Fig. 9. The instruction Mix of exascale proxy applications.

Table 4
Application kernels characterized in Intel R⃝ Advisor CARM 19.3 and adCARM.
Application Domain Input set #Kernel Kernel name SDE LD/ST ratio LD/ST ratio used

Sw4lite 3D seismic modeling LOH.1-h100.in

1 Loop at rhs4sg_rev.C:116 13.9 LD
2 Loop at rhs4sg_rev.C:357 5.6 2LD/ST
3 Loop at ew-cfromfort.C:991 21.9 LD
4 Loop at ew-cfromfort.C:80 5.67 2LD/ST
5 Loop at ew-cfromfort.C:49 3.34 2LD/ST
6 Loop at ew-cfromfort.C:120 3.11 2LD/ST

MiniQMC Monte Carlo

1 Loop at ParticleBConds.h:184 2.43 2LD/ST
#Atoms = 256 2 Loop at MultiBspline.hpp:282 2.25 2LD/ST

3 Loop at MultiBspline.hpp:89 2.43 2LD/ST
#Electrons = 3072 4 Loop at TwoBodyJastrow.h:334 2.47 2LD/ST

5 Loop at TwoBodyJastrow.h:316 2.68 2LD/ST

ExaMiniMD Molecular dynamics Region box block 1 Loop at force_lj_neigh_impl.h:178 8.08 LD
0 128 0 128 0 128 2 Loop at force_lj_neigh_impl.h:270 11 LD

impact point of view, most of the performance is degraded due to
DRAM (84%), while 14% of the impact is due to the private caches,
pinpointing DRAM as the main bottleneck .

5.2. Characterization of exascale proxy applications with Cache-
aware Roofline Model

5.2.1. Extracting the application-specific parameters for model con-
struction

Since exascale systems are yet to be released, it is not possible
to evaluate the performance of applications when running on
these machines. One solution is the utilization of proxy appli-
cations that represent, until a certain level, the characteristics
of their full versions. For this reason, an accurate characteriza-
tion of these applications is an important asset to extract useful
information about their execution bottlenecks. Furthermore, the

approach considered to derive the adCARM proposed in this
work is general enough to be applied to any out-of-order pro-
cessor, with several functional units and a memory hierarchy
with several memory levels. This is the case of future exascale
systems. Hence, adCARM is expected to be an important tool
when optimizing application performance even in these future
systems.

To demonstrate the usability and insightfulness of the ad-
CARM, a set of proxy applications from Exascale Computing
Project (ECP) Benchmark Suite [29] are characterized in Intel R⃝

Advisor CARM 19.3 and with the adCARM, namely: Sw4lite,
MiniQMC and ExaminiMD. As it can be observed in Table 4, a
total of 13 kernels are evaluated in this work. The majority of
hotspots in these applications have a load/store ratio of 2 loads
and 1 store, while only four loops are dominated by loads, i.e.,
kernels 1 and 2 from Sw4lite and the two loops from ExaminiMD.



D. Marques, A. Ilic, Z.A. Matveev et al. / Future Generation Computer Systems 107 (2020) 257–273 267

Fig. 10. Characterization of Sw4lite kernels in Intel R⃝ Advisor CARM 19.3 and adCARM.

The input sets of each application were selected in order to
guarantee that all levels of the memory hierarchy were utilized,
to provide a full analysis of the application behavior and their
possible bottlenecks.

From the instruction mix of each kernel, obtained from the
Intel R⃝ SDE, it is possible to verify that these loops cover a wide
range of ISA extensions and instruction types. The FP instruction
mix presented in Fig. 9a shows that while some kernels are
completely dominated by FP AVX512 instructions (kernels 1, 2
and 6 from Sw4lite and kernels 1,2,4 and 5 from MiniQMC),
others can be dominated by Scalar instructions (kernels 4 and
5 from Sw4lite and kernel 2 from ExaminiMD) or may contain
significant contributions of scalar instructions mixed with vec-
tor instructions (kernel 3 from Sw4Lite, kernels 3 and 5 from
MiniQMC and kernel 1 from ExaminiMD). The existence of scalar
instructions impacts negatively the performance of these kernels,
implying that they are not able to attain the maximum FP perfor-
mance of the architecture if their main bottlenecks are related to
computational units. It is also worth to mention that kernels 4
and 5 from Sw4lite, 3 from MiniQMC and kernels 1 and 2 from
Examinimd have some impact from ‘‘Others’’ FP instructions (e.g.

divisions, square roots, comparisons), which may contribute to
further degrade their performance.

A similar scenario can be observed in the memory mix pre-
sented in Fig. 9b. Except the kernel 6 from Sw4Lite, which is
completely dominated by memory transfers of 64 bytes, all the
remaining kernels have significant contributions from diverse
types of memory instructions, mainly from scalar requests, i.e., 8B
and 4B. For this reason, these applications may have their band-
width degraded due to the lower performance of these instruc-
tions. Some kernels also have a small portion of ’’Others’’, which
corresponds to 1B and 2B memory transfers. However, their con-
tribution does not surpass the 5% for any application, hence their
impact on the memory bandwidth is not very significant.

Since these applications contain a diverse instruction mix, at
both FP and memory levels, their maximum attainable perfor-
mance does not correspond to the architecture absolute maxi-
mums. Due to this instruction diversity in real applications, it is
essential to consider the upper-bounds of the micro-architecture
that meet the application requirements in order to provide an
accurate characterization. As it was observed in the characteri-
zation of ISO-3DFD Scalar, by considering the instruction mix of
the applications, the bottlenecks pinpointed by CARM can change



268 D. Marques, A. Ilic, Z.A. Matveev et al. / Future Generation Computer Systems 107 (2020) 257–273

Fig. 11. Top-Down for Sw4Lite.

Fig. 12. Memory share and memory impact metrics for Sw4Lite.

significantly, thus changing the region of the model where the
application is classified. This behavior is also expected for the
ECP proxy applications evaluated in this work, since the scalar
instructions presented in the memory and FP mixes of these
workloads translate in a lower FP performance and memory
bandwidth, lowering the roofs of the adCARM and impacting the
application characterization.

5.2.2. In-depth characterization of exascale proxy applications
By using the instruction mix obtained from Intel R⃝ SDE (Figs.

9a and 9b), it is possible to build the adCARM for each kernel, by
applying Eq. (5) presented in Section 4.2.

Sw4lite characterization in Intel R⃝ Advisor CARM 19.3 and
proposed adCARMs is presented in Fig. 10. By comparing Intel R⃝

Advisor CARM 19.3 and adCARM characterization, Sw4lite kernels
are, in general, close to the memory region in the adCARM, easily
visualized by the approximation of the dots to the shaded areas
presented in models. This confirms Top-Down insights, which
characterizes all Sw4Lite kernels as highly memory bound, as it
can be observed in Fig. 11a. Moreover, kernels 1, 2 and 3 are
similarly characterized by the two models, although the adCARMs
shorten up the optimization space by considering tighter upper-
bounds for each kernel, as it can be observed by the lower
attainable performance of L1 and L2 caches. These kernels are also
placed between L3 and DRAM roofs on both models, hinting the
existence of accesses to caches. On the other hand, it is possible
to observe some changes between models in kernels 4, 5 and
6. Kernels 4 and 5 change their characterization region from
‘‘mixed’’ region in Intel R⃝ Advisor CARM 19.3 to memory bound
region in the adCARM. These kernels also surpass the DRAM roof
in the proposed model, suggesting some cache utilization, while
in the state-of-the-art model they are placed on top of the DRAM
roof. The characterization of kernels 1, 2, 3, 4 and 5 in the adCARM
corroborates with the Top-Down results presented in Fig. 11b,

where each kernel is significantly impacted by accesses to L2 and
L3 caches. Kernel 6 is positioned on top of the DRAM roof in
adCARM, while in Intel R⃝ Advisor CARM 19.3 it is below DRAM,
hinting the existence of bottlenecks related to latency. The Top-
Down analysis confirms adCARM insights, by defining this kernel
as completely limited by DRAM bandwidth without hinting the
existence of bottlenecks related to latency.

These observations are also confirmed by the perspective of
the memory metrics proposed in this work. As it can be observed
in Fig. 12a, most of the memory requests of kernels 1, 2, 3, 4 and
5 are handled by private caches with most of the requests served
by L1 cache. Although kernel 3 has around 60% of its memory
transfers served by private caches, the remaining accesses are
related to DRAM, which contributes to reducing its performance.
Moreover, kernel 6 requests are entirely handled by DRAM, which
corroborates with the proposed CARM characterization, i.e., it is
positioned on top of the DRAM roof. Although the majority of the
loops have some cache utilization, according to memory impact
results, presented in Fig. 12b, DRAM is the main bottleneck of all
Sw4lite kernels, which prevents the kernels from surpassing the
L3 cache roof. To further improve application performance, it is
necessary to reduce DRAM traffic, through memory-access related
optimizations. For example, reducing the amount of scalar mem-
ory transfers (8B and 4B) executed by these loops (Fig. 9) could
lead to performance improvements, since this type of instructions
is associated with lower performance.

Similarly to Sw4lite, almost all of MiniQMC kernels move
closer to the memory region of the adCARM when compared to
the Intel R⃝ Advisor CARM 19.3, as it can be observed in Fig. 13.
Once again, this is in accordance with the memory bound na-
ture exposed by Top-Down analysis (Fig. 14a). Furthermore, it
is possible to visualize in the memory breakdown of Top-Down
analysis (Fig. 14b) that almost all MiniQMC kernels have their
performance heavily impacted by DRAM accesses together with
requests to private caches, which are responsible to place the
kernels between L3 and DRAM in the adCARM. The kernel 1 is
the only hotspot limited by the stores, i.e., the store execution is
the main source of stalls in the memory bound component.

Moreover, while kernels 1, 2 and 3 are positioned between
L3 and DRAM roofs in both models, kernels 4 and 5 are placed
above DRAM in the adCARM, whereas in Intel R⃝ Advisor CARM
19.3 these two kernels are positioned on top of DRAM roof. Hence,
differently from Intel R⃝ Advisor CARM 19.3, adCARM hints the
existence of cache utilization for all kernels, which corroborates
with memory share metric, presented in Fig. 15a. As pinpointed
by memory shares, most of the memory accesses are served by L1
cache in all kernels, which boost application performance, placing
all the kernels above the DRAM roof in the application-driven
model. However, as it is shown in Fig. 15b, DRAM still dominates
the memory impact of the kernels, avoiding the kernels from
outperforming L3 roof. It is worth to mention that the kernel



D. Marques, A. Ilic, Z.A. Matveev et al. / Future Generation Computer Systems 107 (2020) 257–273 269

Fig. 13. Characterization of MiniQMC kernels in Intel R⃝ Advisor CARM 19.3 and adCARM.

Fig. 14. Top-Down for MiniQMC.

Fig. 15. Memory share and memory impact metrics for MiniQMC.

with higher performance, i.e., MiniQMC-1, is the kernel with the
highest L1 impact (49%).

Finally, ExaminiMD characterization is presented in Fig. 16. As
it can be observed, kernel 1 is characterized as purely memory
bound in the adCARM. However, differently from Sw4lite and
MiniQMC kernels, ExaminiMD loops have high contributions from
retiring and core bound, showing the potential to be compute
bound (Fig. 17a). ExaminiMD-1 is balanced between these three
Top-Down components, suggesting bottlenecks in both memory
hierarchy and core resources. On the other hand, its retiring
breakdown indicates that these contributions come from non-
FP instructions, i.e., they can be related to memory requests
and other types of instructions. This hints that the high retiring
component could be the result of memory requests served by
private caches. This is confirmed by the memory breakdown
presented in Fig. 17b, which shows that most of the stalls come
from L1 cache (68%), although DRAM still has an impact of 20%.
Hence, DRAM may be one of the execution bottlenecks. This is
also corroborated by memory impact metric (Fig. 18b) which
suggests that performance-wise, DRAM has an impact of 50%,
contributing to performance degradation and preventing the loop
from attaining private caches roofs. Since its memory requests
are mostly handled by L1 cache, it is positioned above DRAM, in
particular, on top of L3 cache in both models.

As presented in the Top-Down of ExaminiMD-2 (Fig. 17a), this
hotspot is completely dominated by retiring and core bound, with
some impact of bad speculation, which might cause performance
degradation. The mild memory bound component of this kernel is
completely dominated by L1, hinting that this loop is not limited
by memory. Since most of its retiring is composed of FP arith-
metic (Fig. 17c), this kernel has a strong compute bound nature.
This can be visualized in the proposed model, where although the



270 D. Marques, A. Ilic, Z.A. Matveev et al. / Future Generation Computer Systems 107 (2020) 257–273

Fig. 16. Characterization of ExaMiniMD kernels in Intel R⃝ Advisor CARM 19.3 and adCARM.

Fig. 17. Top-Down for ExaminiMD.

kernel gets closer to the memory region, it maintains its compute
bound nature. While Intel R⃝ Advisor CARM 19.3 hints that it is not
possible to surpass the Scalar ADD roof, the adCARM shows that
the loop has the potential to achieve the FMA Roof (it contains
some DP Scalar FMA instructions), although it needs to transverse
the private caches roofs. This is supported by memory share and
memory impact metrics (Figs. 18a and 18b, respectively), that
present high contribution from L1 cache. Nevertheless, DRAM has
still a small impact on the performance, thus to transverse the
private caches roofs it might be necessary to focus the optimiza-
tion on DRAM traffic. The core bound breakdown (Fig. 17c) also
pinpoints the divider arithmetic unit as one of the main sources
of stalls that limits application performance and may prevent the
loop from achieving the FMA performance.

Fig. 18. Memory share and memory impact metrics for ExaminiMD.

From the analysis performed with adCARM and metrics, sev-
eral conclusions can be derived regarding the bottlenecks that
may limit application performance in modern systems. For ex-
ample, for an application with well optimized memory accesses
(e.g., ISO-3DFD), even a few DRAM accesses may have a significant
‘‘negative impact’’ on performance. Since DRAM accesses lead
to an increased performance degradation, emergent and novel
memory technologies may be necessary for memory hierarchy to
improve the performance of certain applications. This situation
becomes worse when considering that applications may contain
diverse types of instructions from different ISA extensions and
data sizes. As it is shown in the proposed adCARMs, this can
result in the reduction of the maximum attainable performance of
the applications in all CARM regions. Hence, to fully exploit the
potential of modern systems, algorithm design and prototyping
need to be carefully performed in order to reduce the impact of
instructions that may prevent the application from reaching the
absolute performance maximums as offered by the architecture.

6. Related work

Currently, roofline modeling panorama is dominated by three
distinct approaches, namely: Cache-Aware Roofline Model
(CARM) [8], Original Roofline Model (ORM) [18,19] and Inte-
grated Roofline Model (IRM) [20]. Although all three modeling
approaches relate performance with arithmetic intensity (AI),



D. Marques, A. Ilic, Z.A. Matveev et al. / Future Generation Computer Systems 107 (2020) 257–273 271

ORM AI and IRM/CARM AI are distinct, since these methods
observe memory traffic differently (as referred in Section 2).
The work presented in [32] extends ORM memory region by
decoupling the total amount of bytes in store and load oper-
ations, to provide insights about which memory operation is
the main bottleneck. The extended model contains two DRAM
roofs (one for stores and one for loads) and the applications are
represented by two AIs — store AI and load AI. However, this
method does not decouple the time relative to only loads and
only store operations, which may limit its application character-
ization capabilities. On the other hand, the proposed adCARM
considers application specifics and memory ports utilization by
evaluating the load/store ratio of the application to define tighter
performance upper-bounds that meet application requirements.
Besides, differently from CARM, ORM memory region cannot en-
capsulate different instruction set extensions and data precision,
since the bandwidth between memory levels is not affected by
these parameters. Furthermore, regarding FP peak performance,
the work presented in [32] only considers the peak performance
for sequential and parallel codes, whereas the adCARM considers
different flavors of FP instructions, independently of the number
of cores.

A set of ORM extensions are also presented in [33]. Through
simulation methods and a performance analysis based on di-
rected acyclic graphs, the model proposed in [33] considers
the throughput of several micro-architectural components, such
as reservation station and reorder buffer. However, since this
model is mainly constructed based on the simulations, it may
have a limited adaptability in general application optimization
frameworks (e.g., Intel R⃝ Advisor). Moreover, the high amount
of considered micro-architecture bottlenecks may also impact
the model insightfulness, which is one of the main strengths
of the roofline models. On the other hand, the adCARM evalu-
ates application specifics through source-code/assembly analysis,
maintaining model simplicity while improving its usability.

Execution cache-memory performance model (ECM) [34] takes
a similar approach to roofline modeling as adopted in CARM,
by considering that (to some extent) computations and memory
transfers are overlapped. It also considers the amount of loads
and stores performed by each application, however this method-
ology is only applied to AVX instructions. On the other hand,
the adCARM reflects different load/store ratios when performing
instructions from the different instruction set extensions. Besides,
differently from the adCARM, which main goal is to provide
first order insights regarding application bottlenecks and opti-
mization, ECM aims at predicting application performance and
its usability is limited to memory bound applications, whereas
adCARM characterizes memory and compute bound applications.

The work presented in [35] takes a different perspective for
application analysis, by evaluating the performance portability
across different architectures for several applications, parallel
programming models and scientific libraries. Although perfor-
mance portability is not the main focus of roofline approaches,
these methods can be used to evaluate the different bottlenecks
that limit application performance for diverse system configu-
rations. In fact, the performance portability method in [35] is
already adapted to ORM [36], demonstrating the usability of
roofline approaches to evaluate application performance when
changing the configuration of the underlying hardware. Since the
adCARM proposed in this paper provides a more accurate applica-
tion characterization, this method can be also used to obtain ac-
curate hints regarding application execution in different systems.
Besides, the adCARM can also provide insights about application
bottlenecks for future memory configurations, e.g., when used
together with Cache Simulation Tool in Intel R⃝ Advisor. In this
scope, an ORM-based methodology to predict the performance for

a future processor is proposed in [37], showing that the roofline
methods can be used with this aim.

Moreover, the work in [38] presents a fine-grained profil-
ing with low overhead, aiming at predicting the performance
of MPI applications before their execution. Although the ad-
CARM uses online measurements to obtain application perfor-
mance, prediction models to estimate application performance
could be utilized together with adCARM, providing more ac-
curate information about the bottlenecks that limit application
performance without running it on the system. This would allow
software developers to select the best optimization techniques
before deploying the workloads in the real systems.

CARM is also extended to different architectures in several
state-of-the-art works. The works [39,40] extend CARM usabil-
ity to non-uniform memory access (NUMA) computing systems,
by considering the bandwidth of remote memories in several
different conditions (e.g. congested and contented accesses) and
also different memory types (e.g. MCDRAM). In [41], the CARM
approach is applied to NVIDIA graphic units. Since the herein
adCARM is based on assembly-code analysis to identify applica-
tion requirements, it is general enough to be also applied to the
described architectures.

Differently from the Intel R⃝ Advisor CARM 19.3, which only
considers the absolute maximum of the micro-architectures, the
adCARM considers the different application characteristics when
constructing memory and compute roofs. This work can be used
to improve Intel R⃝ Advisor CARM implementation, providing to
hardware engineers and software developers an insightful and
more powerful model for bottleneck detection. In fact, since the
adCARM uses assembly analysis to obtain application instruction
mix, which is already partially implemented in Intel R⃝ Advisor
(code analytics tab), it is a feasible method to extend Intel R⃝

Advisor CARM implementation without losing simplicity.

7. Conclusions

The continuous micro-architectural improvements have lead
to an increase in the complexity of the underlying hardware of
modern systems. Future exascale systems are expected to involve
thousands of cores and advanced technologies in different hard-
ware subsystems, making it difficult for application designers to
attain the maximum performance offered by these machines. For
this reason, powerful and insightful methods, such as CARM, are
crucial to provide a fast analysis regarding application bottlenecks
and optimization hints. However, since current state-of-the-art
approaches for roofline modeling only consider the absolute max-
imum performance of the micro-architecture, these methods do
not provide enough accuracy for relating hardware capabilities
and the ability of the applications to explore them.

To close this gap, this paper proposes an application-driven
CARM for precise performance modeling, in order to improve
model insightfulness and usability when characterizing real-world
applications, as well as to ease the application optimization
process. With this aim, a set of assembly micro-benchmarks was
carefully constructed to uncover the upper-bounds of an Intel
Xeon Gold 6140 processor for different load/store ratios, memory
levels and FP instructions and ISA extensions. The benchmarking
results have shown that these parameters have a huge effect on
sustainable bandwidth of different levels of the memory hierar-
chy, as well as on the FP performance. Since modern applications
use different types of instructions, it is essential that CARM is
able to adapt to their specifics, in order to provide an accurate
characterization.

The adCARM proposed in this paper, together with the met-
rics used to complement CARM analysis, has provided a more
precise application characterization, when compared to the SoA



272 D. Marques, A. Ilic, Z.A. Matveev et al. / Future Generation Computer Systems 107 (2020) 257–273

CARM, for a set of 13 kernels from the ECP Benchmark Suite
(Sw4lite, MiniQMC and ExaminiMD). The insights derived from
the proposed model clearly correlate with the execution bottle-
necks obtained from an analysis tool contained in Intel R⃝ VTuneTM
Amplifier (Top-Down), thus showing that the adCARM offers a
significant improvement over the state-of-the-art roofline mod-
els. Besides, through an in-depth characterization of a finite dif-
ference method application (ISO-3DFD), it was possible to verify
that the characterization of real-world workloads benefits from
considering application specifics for micro-architecture model-
ing, leading to more accurate conclusions in what concerns the
execution bottlenecks that limit application performance, when
compared with existing roofline methodologies. As future work, it
is expected to include information related to memory latency, di-
verse memory access patterns and to consider the impact of high
latency instructions in the compute roofs, such as divisions and
square-roots, which can also impact the application performance.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported by Intel Corporation and Portuguese
national funds through Fundação para a Ciência e a Tecnologia
(FCT), under grants SFRH/BD/136053/2018, UIDB/50021/2020 and
PTDC/CCI-COM/31901/2017 (LISBOA-01-0145-FEDER-031901).

References

[1] Top 500, The list, 2020, https://www.top500.org/lists/2019/11/ [Online;
visited January-2020].

[2] ECP 2019, Application development report, 2019, https://exascaleproject.
org/wp-content/uploads/2019/11/ECP_AD_update_2019_11_25_spreads.pdf
[Online; visited November-2019].

[3] NERSC, Cori configuration, 2019, https://docs.nersc.gov/systems/cori/
[Online; visited November-2019].

[4] H. Schmit, R. Huang, Dissecting Xeon+FPGA: Why the integration of CPUs
and FPGAs makes a power difference for the datacenter, in: Proceedings of
the International Symposium on Low Power Electronics and Design, ACM,
2016, pp. 152–153.

[5] J. Doweck, W.-F. Kao, A.K.-y. Lu, J. Mandelblat, A. Rahatekar, L. Rap-
poport, E. Rotem, A. Yasin, A. Yoaz, Inside 6th-generation Intel core: New
microarchitecture code-named Skylake, IEEE Micro 37 (2) (2017) 52–62.

[6] N. Binkert, B. Beckmann, G. Black, S.K. Reinhardt, A. Saidi, A. Basu, J.
Hestness, D.R. Hower, T. Krishna, S. Sardashti, et al., The gem5 Simulator,
ACM SIGARCH Comput. Archit. News 39 (2) (2011) 1–7.

[7] A. Yasin, A Top-Down method for Performance Analysis and Counters
Architecture, in: Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, IEEE, 2014, pp. 35–44.

[8] A. Ilic, F. Pratas, L. Sousa, Cache-aware Roofline model: Upgrading the loft,
IEEE Comput. Archit. Lett. 13 (1) (2013) 21–24.

[9] A. Ilic, F. Pratas, L. Sousa, Beyond the Roofline: Cache-Aware Power and
Energy-Efficiency Modeling for Multi-cores, IEEE Trans. Comput. 66 (1)
(2016) 52–58.

[10] A. Shinsel, Intel Advisor Roofline, 2017, https://software.intel.com/en-us/
articles/intel-advisor-roofline [Online; posted 02-March-2017].

[11] J.-S. Park, H.-E. Kim, H.-Y. Kim, J. Lee, L.-S. Kim, A vision processor with
a unified interest-point detection and matching hardware for accelerating
a stereo-matching algorithm, IEEE Trans. Circuits Syst. Video Technol. 26
(12) (2015) 2328–2343.

[12] S. Titarenko, M. Hildyard, Hybrid multicore/vectorisation technique applied
to the elastic wave equation on a staggered grid, Comput. Phys. Comm.
216 (2017) 53–62.

[13] T. Koskela, J. Deslippe, B. Friesen, K. Raman, Fusion PIC Code Performance
Analysis on The Cori KNL System, in: Cray User Group Conference, 2017.

[14] A. Mathuriya, Y. Luo, R.C. Clay III, A. Benali, L. Shulenburger, J. Kim,
Embracing a new era of highly efficient and productive quantum Monte
Carlo simulations, in: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ACM, 2017, pp.
1–12.

[15] E. Serrano, A. Ilic, L. Sousa, J. Garcia-Blas, J. Carretero, Cache-Aware
Roofline Model and Medical Image Processing Optimizations in GPUs,
in: Proceedings of the International Conference on High Performance
Computing, Springer, 2018, pp. 509–526.

[16] V. Etienne, T. Tonellot, K. Akbudak, H. Ltaief, S. Kortas, T. Malas, P.
Thierry, D. Keyes, Optimization of finite-difference kernels on multi-core
architectures for seismic applications, in: Intel EXtreme Performance Users
Group, 2018.

[17] D. Marques, H. Duarte, A. Ilic, L. Sousa, R. Belenov, P. Thierry, Z.A. Matveev,
Performance analysis with Cache-Aware Roofline Model in Intel Advisor,
in: Proceedings of the International Conference on High Performance
Computing & Simulation, IEEE, 2017, pp. 898–907.

[18] S. Williams, A. Waterman, D. Patterson, Roofline: an insightful visual
performance model for multicore architectures, Commun. ACM 52 (4)
(2009) 65–76.

[19] D. Doerfler, J. Deslippe, S. Williams, L. Oliker, B. Cook, T. Kurth, M. Lobet,
T. Malas, J.-L. Vay, H. Vincenti, Applying the roofline performance model
to the Intel Xeon Phi Knights Landing processor, in: Proceedings of the
International Conference on High Performance Computing, Springer, 2016,
pp. 339–353.

[20] T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry, Z. Zhao,
R. Gayatri, H. Shan, L. Oliker, et al., A novel multi-level integrated roofline
model approach for performance characterization, in: Proceedings of the
International Conference on High Performance Computing, Springer, 2018,
pp. 226–245.

[21] Intel Corporation, Intel
R⃝

64 and IA-32 Architectures Software Developer
Manual, 2013, [Online].

[22] I. Cutress, Intel’s Architecture Day 2018: The Future of Core, Intel GPUs,
10nm, and Hybrid x86 - Sunny Cove Microarchitecture: A Peek At the Back
End, 2019, https://www.anandtech.com/show/13699/intel-architecture-
day-2018-core-future-hybrid-x86/2 [Online; visited March-2019].

[23] A. Danalis, G. Marin, C. McCurdy, J.S. Meredith, P.C. Roth, K. Spafford,
V. Tipparaju, J.S. Vetter, The scalable heterogeneous computing (SHOC)
benchmark suite, in: Proceedings of the Workshop on General-Purpose
Computation on Graphics Processing Units, ACM, 2010, pp. 63–74.

[24] D. Bruening, Q. Zhao, S. Amarasinghe, Transparent dynamic instrumenta-
tion, ACM SIGPLAN Not. 47 (7) (2012) 133–144.

[25] D.J. Kuck, Computational capacity-based codesign of computer systems, in:
High-Performance Scientific Computing, Springer, 2012, pp. 45–73.

[26] W. Jalby, D.C. Wong, D.J. Kuck, J.-T. Acquaviva, J.-C. Beyler, Measuring com-
puter performance, in: High-Performance Scientific Computing, Springer,
2012, pp. 75–95.

[27] C. Andreolli, Eight Optimizations for 3-Dimensional Finite Difference
(3DFD) Code with an Isotropic (ISO), 2017, https://software.intel.com/en-
us/articles/eight-optimizations-for-3-dimensional-finite-difference-3dfd-
code-with-an-isotropic-iso [Online; posted 02-March-2017].

[28] C. Andreolli, P. Thierry, L. Borges, G. Skinner, C. Yount, J. Reinders, J.
Jeffers, Characterization and optimization methodology applied to stencil
computations, in: High Performance Parallelism Pearls, Morgan Kaufmann
Walthan, MA, 2015, pp. 377–396.

[29] ECP, Proxy Apps Suite, 2019, https://proxyapps.exascaleproject.org/ecp-
proxy-apps-suite/ [Online; visited November-2019].

[30] A. Tal, Intel R⃝ Software Development Emulator, 2019, https://software.intel.
com/en-us/articles/intel-software-development-emulator [Online; visited
November-2019].

[31] R. Karthik, Calculating ‘‘FLOP’’ using Intel R⃝ Software Development
Emulator (Intel R⃝ SDE), 2019, https://software.intel.com/en-us/articles/
calculating-flop-using-intel-software-development-emulator-intel-sde
[Online; visited November-2019].

[32] G. Ofenbeck, R. Steinmann, V. Caparros, D.G. Spampinato, M. Püschel,
Applying the roofline model, in: Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and Software, IEEE, 2014,
pp. 76–85.

[33] V.C. Cabezas, M. Püschel, Extending the roofline model: Bottleneck anal-
ysis with microarchitectural constraints, in: Proceedings of the IEEE
International Symposium on Workload Characterization, IEEE, 2014, pp.
222–231.

[34] J. Hofmann, J. Eitzinger, D. Fey, Execution-cache-memory performance
model: Introduction and validation, 2015, arXiv preprint arXiv:1509.03118.

[35] S.J. Pennycook, J.D. Sewall, V.W. Lee, Implications of a metric for
performance portability, Future Gener. Comput. Syst. 92 (2019) 947–958.

https://www.top500.org/lists/2019/11/
https://exascaleproject.org/wp-content/uploads/2019/11/ECP_AD_update_2019_11_25_spreads.pdf
https://exascaleproject.org/wp-content/uploads/2019/11/ECP_AD_update_2019_11_25_spreads.pdf
https://exascaleproject.org/wp-content/uploads/2019/11/ECP_AD_update_2019_11_25_spreads.pdf
https://docs.nersc.gov/systems/cori/
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb4
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb4
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb4
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb4
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb4
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb4
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb4
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb5
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb5
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb5
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb5
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb5
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb6
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb6
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb6
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb6
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb6
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb7
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb7
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb7
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb7
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb7
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb8
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb8
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb8
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb9
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb9
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb9
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb9
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb9
https://software.intel.com/en-us/articles/intel-advisor-roofline
https://software.intel.com/en-us/articles/intel-advisor-roofline
https://software.intel.com/en-us/articles/intel-advisor-roofline
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb11
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb11
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb11
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb11
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb11
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb11
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb11
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb12
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb12
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb12
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb12
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb12
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb13
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb13
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb13
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb14
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb14
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb14
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb14
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb14
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb14
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb14
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb14
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb14
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb15
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb15
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb15
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb15
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb15
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb15
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb15
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb16
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb16
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb16
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb16
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb16
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb16
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb16
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb17
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb17
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb17
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb17
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb17
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb17
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb17
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb18
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb18
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb18
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb18
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb18
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb19
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb19
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb19
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb19
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb19
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb19
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb19
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb19
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb19
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb20
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb20
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb20
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb20
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb20
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb20
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb20
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb20
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb20
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb21
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb21
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb21
https://www.anandtech.com/show/13699/intel-architecture-day-2018-core-future-hybrid-x86/2
https://www.anandtech.com/show/13699/intel-architecture-day-2018-core-future-hybrid-x86/2
https://www.anandtech.com/show/13699/intel-architecture-day-2018-core-future-hybrid-x86/2
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb23
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb23
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb23
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb23
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb23
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb23
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb23
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb24
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb24
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb24
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb25
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb25
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb25
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb26
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb26
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb26
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb26
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb26
https://software.intel.com/en-us/articles/eight-optimizations-for-3-dimensional-finite-difference-3dfd-code-with-an-isotropic-iso
https://software.intel.com/en-us/articles/eight-optimizations-for-3-dimensional-finite-difference-3dfd-code-with-an-isotropic-iso
https://software.intel.com/en-us/articles/eight-optimizations-for-3-dimensional-finite-difference-3dfd-code-with-an-isotropic-iso
https://software.intel.com/en-us/articles/eight-optimizations-for-3-dimensional-finite-difference-3dfd-code-with-an-isotropic-iso
https://software.intel.com/en-us/articles/eight-optimizations-for-3-dimensional-finite-difference-3dfd-code-with-an-isotropic-iso
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb28
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb28
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb28
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb28
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb28
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb28
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb28
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/calculating-flop-using-intel-software-development-emulator-intel-sde
https://software.intel.com/en-us/articles/calculating-flop-using-intel-software-development-emulator-intel-sde
https://software.intel.com/en-us/articles/calculating-flop-using-intel-software-development-emulator-intel-sde
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb32
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb32
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb32
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb32
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb32
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb32
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb32
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb33
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb33
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb33
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb33
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb33
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb33
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb33
http://arxiv.org/abs/1509.03118
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb35
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb35
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb35


D. Marques, A. Ilic, Z.A. Matveev et al. / Future Generation Computer Systems 107 (2020) 257–273 273

[36] C. Yang, R. Gayatri, T. Kurth, P. Basu, Z. Ronaghi, A. Adetokunbo, B. Friesen,
B. Cook, D. Doerfler, L. Oliker, et al., An empirical roofline methodology
for quantitatively assessing performance portability, in: Proceedings of
the IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC, IEEE, 2018, pp. 14–23.

[37] J. Kwack, G. Arnold, C. Mendes, G.H. Bauer, Roofline analysis with Cray
performance analysis tools (CrayPat) and roofline-based performance pro-
jections for a future architecture, Concurr. Comput.: Pract. Exper. 31 (16)
(2019) e4963.

[38] G. Lu, W. Zhang, H. He, L.T. Yang, Performance modeling for MPI appli-
cations with low overhead fine-grained profiling, Future Gener. Comput.
Syst. 90 (2019) 317–326.

[39] N. Denoyelle, B. Goglin, A. Ilic, E. Jeannot, L. Sousa, Modeling large compute
nodes with heterogeneous memories with Cache-Aware Roofline Model,
in: Proceedings of the International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems,
Springer, 2017, pp. 91–113.

[40] N. Denoyelle, B. Goglin, A. Ilic, E. Jeannot, L. Sousa, Modeling Non-Uniform
Memory Access on Large Compute Nodes with the Cache-Aware Roofline
Model, IEEE Trans. Parallel Distrib. Syst. 30 (6) (2018) 1374–1389.

[41] A. Lopes, F. Pratas, L. Sousa, A. Ilic, Exploring GPU performance, power
and energy-efficiency bounds with Cache-Aware Roofline Modeling, in:
Proceedings of the IEEE International Symposium on Performance Analysis
of Systems and Software, IEEE, 2017, pp. 259–268.

Diogo Marques is currently pursuing his Ph.D. degree
in Electrical and Computer Engineering at the Insti-
tuto Superior Técnico (IST), Universidade de Lisboa,
Lisbon, Portugal. He is also a member of the SiPS
research group at Instituto de Engenharia de Sistemas
e Computadores R&D (INESC-ID). His current research
interests include insightful modeling of multi-core
processors and heterogeneous systems.

Aleksandar Ilic is received the Ph.D. degree in electri-
cal and computer engineering from Instituto Superior
Técnico (IST), Universidade de Lisboa, Lisbon, Portu-
gal, in 2014. He is currently an Assistant Professor
with the Department of Electrical and Computer En-
gineering, IST, and a Senior Researcher of the Signal
Processing Systems Group, Instituto de Engenharia de
Sistemas e Computadores R&D (INESC-ID), Lisbon, Por-
tugal. His research interests include high-performance
and energy-efficient computing and modeling on paral-
lel heterogeneous systems. He has contributed to more

than 40 papers in international journals and conferences.

Zakhar Matveev received his Ph.D. degree in com-
puter science (computational geometry and computer
graphics) from Nizhny Novgorod State University of
Architecture and Civil Engineering (Russia). His cur-
rent focus is a hardware/software co-design, Roofline
performance model, memory and vector parallelism
optimization tools. The professional interests are in
the areas of high performance computing co-design,
parallel programming, computer graphics, code mod-
ernization and scalable software design. Zakhar is a
product architect for Roofline performance methodol-

ogy automation and is also an active contributor to Xeon Phi performance
analysis user groups and conference workshops.

Leonel Sousa received the Ph.D. degree in electrical
and computer engineering from the Instituto Superior
Técnico (IST), Universidade de Lisboa (UL), Lisbon, Por-
tugal, in 1996. He is currently a Full Professor with UL.
He is also a Senior Researcher with the R&D Instituto
de Engenharia de Sistemas e Computadores (INESC-ID).
He has authored or coauthored more than 250 papers
appearing in journals and international conferences,
and has edited four special issues of international jour-
nals. His research interests include VLSI architectures,
computer architectures, parallel computing, computer

arithmetic, and signal processing systems. Prof. Sousa is a Fellow of the IET, and
a Distinguished Scientist of the ACM.

http://refhub.elsevier.com/S0167-739X(19)30958-6/sb36
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb36
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb36
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb36
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb36
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb36
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb36
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb36
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb36
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb37
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb37
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb37
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb37
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb37
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb37
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb37
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb38
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb38
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb38
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb38
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb38
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb39
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb39
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb39
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb39
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb39
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb39
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb39
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb39
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb39
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb40
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb40
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb40
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb40
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb40
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb41
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb41
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb41
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb41
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb41
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb41
http://refhub.elsevier.com/S0167-739X(19)30958-6/sb41

	Application-driven Cache-Aware Roofline Model
	Introduction
	Background: Cache-aware Roofline Model
	Micro-architecture benchmarking
	Proposed models and metrics
	Scaling the performance upper-bounds
	adCARM: Application-Driven CARM
	Proposed metrics

	Application characterization
	Impact of instruction set extensions on existing roofline methodologies
	Characterization of exascale proxy applications with Cache-aware Roofline Model
	Extracting the application-specific parameters for model construction
	In-depth characterization of exascale proxy applications


	Related work
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


